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For a 1-of-c coding scheme this minimum value is 0. However, the error function
(6.148) is still valid, as we shall see, when t} is a continuous variable in the
range (0,1) representing the probability that input x" belongs to class Cr. In
this case the minimum of the error function need not vanish (it represents the
entropy of the distribution of target variables, as will be discussed shortly). It is
then convenient to subtract off this minimum value, and hence obtain the error
function in the form

E=-Y i‘t;; In (%Ez) (6.150)
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which is non-negative, and which equals zero when yi = {}, for all k and n.

We now consider the corresponding activation function which should be used
for the network output units. If the output values are to be interpreted as prob-
abilities they must lie in the range (0,1), and they must sum to unity. This can
be achieved by using a generalization of the logistic sigmoid activation function
which takes the form

exp(ax)

Uk 5= explan) (6.151)
which is known as the normalized exponential, or softrnaz activation function
(Bridle, 1990). The term softmax is used because this activation function rep-
resents a smooth version of the winner-takes-all activation model in which the
unit with the largest input has output +1 while all other units have output 0.
If the exponentials in (6.151) are modified to have the form exp(Bay), then the
winner-takes-all activation is recovered in the limit § — co. The softmax activa-
tion function can be regarded as a generalization of the logistic function, since
it can be written in the form
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where Ay is given by
Agx=ar—In Z exp{ag) 7 - (6.153)
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As with the logistic sigmoid, we can give a very general motivation for the
softmax activation function by considering the posterior probability that a hid-
den unit activation vector z belongs to class Cy, in which the class-conditional
densities are assumed to belong to the family of exponential distributions of the
general form

6.9: Cross-eniropy for multiple classes 239

p(2|Cs) = exp {A(Ok) + B(z,¢) + o;fz} . (6.154)

From Bayes’ theorem, the posterior probability of class Cy is given by

P(Chlz) = 5 (;(Ifrg:)(ﬁ'z)ck‘). (6.155)
Substituting (6.154) into (6.155) and re-arranging we obtain
p(Calr) = =2lo)__ (6.156)
2 explag)
where
ap = sz + wko (6.157)
and we have defined
wi =0y (6.158)
wro = A(0k) + In P(Cy.). (6.159)

The result (6.156) represents the final layer of a network with softmax activation
functions, and shows that (provided the distribution (6.154) is appropriate) the
outputs can be interpreted as probabilities of class membership, conditioned on
the outputs of the hidden units.

In evaluating the derivatives of the softmax error function we need to consider
the inputs to all output units, and so we have {(for pattern n)

BE" _ < OE" By

Bak - = Bykf aak ‘ (6160)
From (6.151) we have
Oykr
oy YrrOkk — Yh' Y (6.161)
while from (6.150) we have
aE" Epr
=-—. 6.162
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Substituting (6.161) and (6.162) into (6.160) we find
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which is the same result as found for both the sum-of-squares error (with a
linear activation function) and the two-class cross-entropy error (with a logistic
activation function). Again, we see that there is a natural pairing of error function
and activation function.

6.10 Entropy

The concept of entropy was originally developed by physicists in the context of
equilibrium thermodynamics and later extended through the development of sta-
tistical mechanics. It was introduced into information theory by Shannon {1948).
An understanding of basic information theory leads to further insights into the
entropy-based error measures discussed in this section. It also paves the way for
an introduction to the minimum description length framework in Section 10.10,
Here we consider two distinet but related interpretations of entropy, the first
based on degree of disorder and the second based on information content.

Consider a probability density function p(z) for a single random variable z.
It is convenient to represent the density function as a histogram in which the
z-axis has been divided into bins labelled by the integer 4. Imagine constructing
the histogram by putting a total of N identical discrete objects into the bins,
such that the ith bin contains N; objects. We wish to count the number of
distinct ways in which objects can be arranged, while still giving rise to the
same histogram. Since there are N ways of choosing the first object, (IV — 1)
ways of choosing the second object, and so on, there a total of N! ways to select
the N objects. However, we do not wish to count rearrangements of objects
within a single bin. For the ith bin there are N;! such rearrangements and so the
total number of distinct ways to arrange the objects, known as the multiplicity,
is given by
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(6.164)

The entropy is defined as (a constant times) the negative logarithm of the mul-
tiplicity
1 1
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We now consider the limit N — oo, and make use of Stirling’s approximation
InN!'~ NInN — N together with the relation ), N; = N, to give

: N; N;
§=- h}ﬂnoozi: (ﬁ) In (F) = Zi:p,; Inp; (6.166)
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Figure 6.13. Examples of two histograms, together with their entropy values
defined by {6.166). The histograms were generated by sampling two Gaussian
functions with variance parameters ¢ = 0.4 and ¢ = 0.08, and each contain
1000 points. Note that the more compact distribution has a lower entropy.

where p; = Ni/N (as N — o) represents the probability corresponding to the ith
bin. The entropy therefore gives a measure of the number of different microstates
(arrangements of objects in the bins) which can give rise to a given macrostate
(i.e. a given set of probabilities p;). A very sharply peaked distribution has a very
low entropy, whereas if the objects are spread out over many bins the entropy is
much higher. The smallest value for the entropy is 0 and occurs when all of the
probability mass is concentrated in one bin (so that one of the p; is 1 and all
the rest are 0). Conversely the largest entropy arises when all of the bins contain
equal probability mass, so that p; = 1/M where M is the total number of bins.
This is easily seen by maximizing (6.166) subject to the constraint 3=, p; = 1
using a Lagrange multiplier (Appendix C). An example of two histograms, with
their respective entropies, is shown in Figure 6.13.

For continuous distributions (rather than histograms) we can take the limit
in which the number M of bins goes to infinity. If A is the width of each bin,
then the probability mass in the ith bin is p; = p(z;)A, and so the entropy can
be written in the form

M
5= Jim S A ln (e} (6.167)
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