Technology

node.js - because JS is dynamic, has first class functions and closures and node
has a huge ecosystem

Interfaces

Storage interface

The purpose of the storage interface is to make storage swappable, therefore it
should focus on what the app needs, not on how to fetch it.

General

init

init(options, function(err))

Initializes the storage with the specified options.

e options.name - name of the storage

e options.mode - normal or feeding mode, indicates if triplie plans to query
the storage or to feed massive amounts of data to it.

Batch operations (batch)

Batch operations module. Queries that request information instead of doing
updates or insert must not be run inside a batch.

begin
begin(function(err))

Tells the storage that a batch of inserts and updates will follow. This can be
safely ignored by the storage layer if its not required.

end
end (function(err)

Tell the storage that the batch has ended.

Dictionary functions (dict)

all
all(function(err, [words]))

Loads the entire dictionary array. Word objects look like this:

{
id: unique
word: ’word’,
count: 20

}

put

put (word, function(err))
putMany ([words], function(err))

Add one or more new words. If they exist only their count is incremented.

get js get(string): word, get(id): word getMany([strings]):
[words] getMany([ids]): [words] Get one or many words. The operation
should be sync which means the data layer should cache all words.

Markov chains model (markov)

next
next([ids], function(err, [words]))

Given the n-gram [ids], find all the next possible words. The n-gram is guaranteed
to have length <=5

prev
prev([words], function(err, [words]))

Similar to next() but finds previous words.

put

put (ngram[], function(err))
putMany ([ngram[], ngram[], ...], function(err))

Puts one or more ngrams to the DB. If they do not exist they should be created.
If they exists they should be updated with a +1 count.

For put, the n-grams must have exactly 6 words.

Associations model (assoc)
get

get(w, function(err, [assocs]))

get([wl, w2], function(err, assoc))

getMany ([w, w, w, ...], function(err, [assocs]))

getMany ([[wl, w2], [wl, w2], ...], function(err, [assocs])

Gets all associations in which the specified words (or pairs)

An association result is an object:
{id1, id2, count}

where id1 < id2

put

put ([wl, w2], function(err))
putMany([[wl, w2], [wl, w2], ...], function(err))

Puts one or more associations into the DB. If they do not exist they should be
created. If they do, they should be updated with a +1 count.

	Technology
	Interfaces
	Storage interface
	General
	Batch operations (batch)
	Dictionary functions (dict)
	Markov chains model (markov)
	Associations model (assoc)

