%, StackMob

Building an AirBnB Clone Workshop

360iDev 2013

Introduction

We are creating an Apartment Sharing app based on the popular service AirBnB. Of course,
AirBnB is much more than a set of features. | find it's more fun to explore technology using a
real use case for developing an app.

Features

Our starting point is a fully baked Ul for our app. This allows us to focus on the interesting part of
adding user creation, login, logout, fetching our apartments, uploading new apartment data,
triggering an email and adding offline caching.

What you’ll need for the workshop

A Mac computer running XCode version 4.6.3 or newer.
Your own StackMob Account (free to create)

Amazon Web Services account for S3

Agenda

StackMob Overview
Core Data Basics
StackMob SDK Overview
Hands on Lab

Advance Prep

You should have received an email and completed the advance preparation for this workshop, if
you have not, please complete this section now. If you have any questions, please ask us.

Sign Up for StackMob

If you don’t have a StackMob account, you can signup at http://bit.ly/bnbclone. During the signup
process your first app will be created for you.

You'll be taken to the Getting Started page, go ahead and click link “skip and go directly to
Dashboard”.

Go to S3 Module on StackMob

Once you are in the StackMob Dashboard, press the “G” on your keyboard. A search window
will open. Type in S3 and you'll see “Module : S3 File Storage”, hit the enter key. Now let’s get
our Amazon Web Services credentials.

Get your AWS Credentials

Open a new browser window and go to http://aws.amazon.com and login. Select My Account /
Console in the upper right and select Security Credentials. You'll be prompted to login with
your Amazon username/password. You may get a popup, click Continue to Security
Credentials.

On the left, select Users. Then click Create New Users. Enter a name for your user and click
Create. You will have the option to Download Credentials. Please download them to your
desktop for future reference.

Close the popup window and you should see your new user in a list. Select your new user. The
window at the bottom will appear with tabs. Select the Permissions tab. Click Attach user
Policy. Under Select Policy Template scroll down and select Amazon S3 Full Access. (we will
discuss attaching policies for specific buckets during the workshop). Click Apply Policy.

Great! Now you'’ve got your user on AWS setup. Let’s create a bucket.

Create your S3 Bucket
In the upper left, select Services, and from the menu choose S3. Click Create New Bucket
and give your bucket a name and select US Standard for region.

Add Credentials and Bucket Name to StackMob S3 Module.

Open the user credentials CSV file you downloaded. Copy and paste the Access ID and

http://www.google.com/url?q=http%3A%2F%2Fbit.ly%2Fbnbclone&sa=D&sntz=1&usg=AFQjCNFD7-krPO-SVRW9RmqiEIg0bzQ6FA
http://www.google.com/url?q=http%3A%2F%2Faws.amazon.com&sa=D&sntz=1&usg=AFQjCNFu81XILcJn5Wh9O2ZLqz8yE2pbDA

Access Key into StackMob Dashboard. Enter the name of your S3 bucket to StackMob
Dashboard. Click the Submit button, you'll get a popup window select, Yes, Set my bucket to
public read. You should see a blue success message.

Code Download for the Workshop
We have the code available on Github for download
https://github.com/stackmob/ApartmentShare/tree/stackmob-removed

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fstackmob%2FApartmentShare%2Ftree%2Fstackmob-removed&sa=D&sntz=1&usg=AFQjCNGtOksZMd7W3JScK22JEYltd2iB7w

Section 1

Schema Configuration - Hands on

We saw Matt demonstrate schema inference to dynamically create our schemas. Let’s see
how we create schemas manually.

From the dashboard select Schema Configuration. Click Create New Schema. Enter
apartment as the name for your schema.

Click Add Field and create the following fields.

apartment_type : string
location : string
room_count : int

price : float

photo : binary

Scroll down and set your Schema Permissions.
e create : allow to any logged in user
e read: open
e update : allow to sm_owner
e delete : allow to sm_owner
Click Save Schema.

Every app created on StackMob has a User schema automatically created. Let’s modify our
User schema to add an email field.

From the dashboard select Schema Configuration. Click Edit next to the User Schema.

Click Add Field and create the following field. We will use this email field later to contact the
apartment owner.

e email : string
Click Save Schema.

Scroll down and let’s change the field used for the forgot password email.
Click Save Schema.

Section 2

Add your API Key - Hands On

You'll find your API keys on the home screen of the StackMob Dashboard
(http://dashboard.stackmob.com). Clicking the HOME button on the left menu will take you to the
dashboard home.

Copy the Development Public API key.

With the API Key we can initialize the StackMob SDK in our app. Open the ApartmentShare
project in XCode.

Open: Classes > AppDelegate >AppDelegate.m.
You'll see we've defined a variable PUBLIC_KEY. Paste your API key there.

Build and Run your Project

http://www.google.com/url?q=http%3A%2F%2Fdashboard.stackmob.com&sa=D&sntz=1&usg=AFQjCNEsTRlG6MwQaWSqQJ2QeVTs6LTptQ

Section 3

Core Data Model - Walkthrough

We’ve already included your Core Data model, so let’s take a look at it along with the
NSManagedObject classes based on the entities.

HHHE Bapamnenuhare b [:la... b [:lC...} [:lM...} |:_|A.. ¥ Lamydatamodel.xcdatamndel ¥ E.ﬁpanment

ENTITIES ‘v Attributes
_E Attribute & Type
& user apartmentld String =
apartmentType String S
FETCH REQUESTS [createddate Integer G4 S
CONFIGURATIONS location String v
@ ov o -
[roomCount Integer 16 =
SmM_owner 5tring G
+ - |
'T Relationships
Relationship & Destination Inverse
+ -

Section 4

User Creation - Hands on

We'll need to create a user account, so we can login to our app. We do this through Core Data
using our User model.

OPEN: Classes > Views > Register > ADVRegisterViewController.h

Add the following property
@property (strong, nonatomic) NSManagedObjectContext *managedObjectContext;

OPEN: Classes > Views > Register > ADVRegisterViewController.m

Add the following imports
#import "User.h"
#import "StackMob.h"

Init the managedObjectContext inside the viewDidLoad method
self.managedObjectContext = [[[SMClient defaultClient] coreDataStore] contextForCurrentThread];

Inside the signUpPressed method, create a new User managed object model in the current
context and save the context.

User *newUser = [[User alloc] initintoManagedObjectContext:self.managedObjectContext];

[newUser setUsername:self.userRegisterTextField.text];
[newUser setEmail:self.emailRegisterTextField.text];
[newUser setPassword:self.passwordRegisterTextField.text];

[self.managedObjectContext saveOnSuccess:{
[self.navigationController popViewControllerAnimated:YES];
} onFailure:A(NSError *error) {
NSLog(@"Error : %@", error);

i

Build and Run your Project

Section 5

User Login - Hands on
Now that we have a user account, let’s login to our app. We do this through the StackMob client.

OPEN: Classes > Views > Login > ADVLoginViewController.m

Add the following imports
#import "StackMob.h"

In the loginPressed method, use the StackMob Client to login our user, in the success block
we’ll confirm they are logged in and perform a segue to the Apartment List View.

[[SMClient defaultClient] loginWithUsername:self.userTextField.text password:self.passwordTextField.text
onSuccess:A(NSDictionary *results) {

[self performSegueWithldentifier:@"list" sender:self];

} onFailure:A(NSError *error) {
NSLog(@"Error : %@", error);

K

Build and Run your Project

Section 6

User Logout - Hands on
Now that you are logged in, you want to logout of our app. We do this through the StackMob
client.

OPEN: Classes > Views > ApartmentListVlew > ADVApartmentListViewController.m

Add the following imports
#import "StackMob.h"

In the loginLogoutPressed method, use the StackMob Client to logout our user, in the success
block we’ll confirm they are logged in and perform a segue to the Login View.

[[SMClient defaultClient] logoutOnSuccess:*(NSDictionary *result) {
NSLog(@"Success, you are logged out");

[self.navigationController popViewControllerAnimated:YES];

} onFailure:M(NSError *error) {
NSLog(@"Logout Fail: %@",error);

18

In the getLogText method, add the following line to display the appropriate text on the
login/logout button:

NSString* logText = [[SMClient defaultClient] isLoggedin] ? @"Log Out" : @"Log In";

Section 7

Add UserVoice -Hands on

UserVoice helps you manage customer support for you app with feedback forms and an
embedded knowledge base.

UserVoice is a StackMob partner. We’ve added the UserVoice SDK to the project already. Let’s
add the module through StackMob Marketplace.

Go to the StackMob Marketplace at http://marketplace.stackmob.com. Select User Voice and
click the install button. After you successful install, click view it in your dashboard.

To get our init code, click on the Settings button. This will sign you into the UserVoice
dashboard. In the upper right, click on Settings > Mobile.

Copy the configuration code
UVConfig *config = [UVConfig configWithSite:@"YOUR_USERVOICE_URL"
andKey:@"YOUR_KEY"
andSecret:@"YOUR_SECRET";

[UserVoice presentUserVoicelnterfaceForParentViewController:self andConfig:config];

OPEN: Classes > Views > Login > ADVLoginViewController.m

Paste the code in showHelp method.

Build and Run your Project

http://www.google.com/url?q=http%3A%2F%2Fmarketplace.stackmob.com&sa=D&sntz=1&usg=AFQjCNFjJyWL4r_ZHQOu8jMWI-OmwOiSnA

Section 8

Apartment List - Hands on

We need to fetch the apartments, in order to display hem. We do this through Core Data using
a NSFetchRequest.

OPEN: Classes > Views > ApartmentList > ADVApartmentListViewController.h

Add the following property
@property (strong, nonatomic) NSManagedObjectContext *managedObjectContext;

OPEN: Classes > Views > ApartmentList > ADVApartmentListViewController.m

Init the managedObjectContext inside the viewDidLoad method
self.managedObjectContext = [[[SMClient defaultClient] coreDataStore] contextForCurrentThread];

Inside the getAllApartments method, init a NSFetchRequest based on the Apartment managed
object model, then execute the fetch request.

NSFetchRequest *fetch = [[NSFetchRequest alloc] initWithEntityName:@"Apartment"];
[self.managedObjectContext executeFetchRequest:fetch onSuccess:*(NSArray *results) {
self.apartments = results;
[self.apartmentTableView reloadData];
[MBProgressHUD hideHUDForView:self.view animated:YES];
} onFailure:A(NSError *error) {
[MBProgressHUD hideHUDForView:self.view animated:YES];
NSLog(@"Error : %@", [error localizedDescription]);

18

Section 9

Apartment Upload - Hands on

We need to upload an apartment, in order to view a list of them. We do this through Core Data
using our Apartment model.

OPEN: Classes > Views > UploadView > ADVUploadimageViewController.h

Add the following property
@property (strong, nonatomic) NSManagedObjectContext *managedObjectContext;

OPEN: Classes > Views > UploadView > ADVUploadimageViewController.m

Add the following imports
#import "StackMob.h"
#import "Apartment.h"

Init the managedObjectContext inside the viewDidLoad method
self.managedObjectContext = [[[SMClient defaultClient] coreDataStore] contextForCurrentThread];

Inside the uploadDataToServer method, create a new Apartment managed object model in the
current context and save the context.

Apartment *newApartment = (Apartment *)[NSEntityDescription
insertNewObjectForEntityForName:@"Apartment” inManagedObjectContext:self.managedObjectContext];

[newApartment assignObjectld];
NSData *imageData = UllmageJPEGRepresentation(self.uploadimageView.image, 0.4);

NSString *picData = [SMBinaryDataConversion stringForBinaryData:imageData name:@"apartment.jpg"
contentType:@"image/jpg"];

NSString* apartmentType = self.apartmentTypeControl.selectedSegmentindex == 0 ? @"House" : @"Flat";

NSNumber* price = [NSNumber numberWithFloat:[self.price TextField.text floatValue]);
NSNumber* roomCount = [NSNumber numberWithFloat:self.roomsSlider.value];

[newApartment setPhoto:picDatal;

[newApartment setLocation:self.locationTextField.text];
[newApartment setRoomCount:roomCount];
[newApartment setPrice:price];

[newApartment setApartmentType:apartmentType];

[self.managedObjectContext saveOnSuccess:{
[MBProgressHUD hideHUDForView:self.view animated:YES];
NSLog(@"Successful upload");
[self.navigationController popViewControllerAnimated:YES];

} onFailure:*(NSError *error) {
[MBProgressHUD hideHUDForView:self.view animated:YES];
NSLog(@"Error: %@", [error localizedDescription));

1;

Section 10

SendGrid Email - Hands on

SendGrid offers a email services via their API. As a StackMob partner, we’ve found SendGrid
very popular with app developers. Installing the SendGrid Module on StackMob allows you to
send email through StackMob’s SDK. Let’s add the module through the StackMob Marketplace.

Go to the StackMob Marketplace at http://marketplace.stackmob.com. Select SendGrid and
click the install button. After you successful install, click view it in your dashboard.

We already have a contact form. All we need to do is add the code to send an email to the
owner of the apartment from the currently logged in user.

We need to save the email of the currently logged in user:
OPEN: Classes > Views > LoginView > ADVLoginViewController.m
Go to the loginPressed method and in the success block of the login call add:

/I Save email for contacting owner
[[NSUserDefaults standardUserDefaults] setObject:[results objectForKey:@"email"]
forKey:@"ContactOwnerEmailKey"];

OPEN: Classes > Views > ContactOwnerView > ADVContactOwnerViewController.m

Inside the sendButton method, get the senderEmail from NSUserDefaults, create a Custom
Code request for sendgrid. Next, create an NSDictionary with your email parameters, serialize to
JSON and set as the request body. Perform the custom code request and handle the success
or error blocks.

NSString *senderEmail = [[NSUserDefaults standardUserDefaults]
objectForKey:@"ContactOwnerEmailKey"];

SMCustomCodeRequest *request = [[SMCustomCodeRequest alloc]
initPostRequestWithMethod:@"sendgrid/email”
body:nil];

NSArray *usernames = [[NSArray alloc]
initWithObjects:self.apartmentOwner, nil];

/[convert object to data
NSDictionary *dic = [[NSDictionary alloc]
initWithObjectsAndKeys:

http://www.google.com/url?q=http%3A%2F%2Fmarketplace.stackmob.com&sa=D&sntz=1&usg=AFQjCNFjJyWL4r_ZHQOu8jMWI-OmwOiSnA

usernames, @"usernames",
@"Inquiry On Apartment”, @"subject",
self. message.text, @"html",
senderEmail, @"from",

nil];

NSError* error = nil;

NSData* jsonData = [NSJSONSerialization
dataWithJSONObject:dic
options:0 error:&error];

[request setRequestBody:[[NSString alloc]
initWithData:jsonData
encoding:NSUTF8StringEncoding]];

[[[SMClient defaultClient] dataStore] performCustomCodeRequest:request onSuccess:*(NSURLRequest
*request, NSHTTPURLResponse *response, id JSON) {

[MBProgressHUD hideHUDForView:self.view animated:YES];

UlAlertView *successAlertView = [[UlAlertView alloc] initWithTitle:@"Success" message:@"Email sent!"
delegate:self cancelButtonTitle:@"Ok" otherButtonTitles:nil, nil];

[successAlertView show];
} onFailure:A(NSURLRequest *request, NSHTTPURLResponse *response, NSError *error, id JSON){

[MBProgressHUD hideHUDForView:self.view animated:YES];
NSLog(@"Error: %@", [error localizedDescription]);

i

Build and Run your Project

Section 11

Forgot Password Template - Walk through

Now that we have the SendGrid Module, we can customize our forgot email template.

https://dashboard.stackmob.com/module/forgotpassword

For those who want to embed a link in the email and point to a hosted web page where the user
can reset their password, we’ve written up a blog post on the topic.

https://blog.stackmob.com/2013/06/build-a-better-forgot-password-email/

https://www.google.com/url?q=https%3A%2F%2Fdashboard.stackmob.com%2Fmodule%2Fforgotpassword&sa=D&sntz=1&usg=AFQjCNEdxcp8ZDuPO-zWkaw-R4FnFneDAA
https://www.google.com/url?q=https%3A%2F%2Fblog.stackmob.com%2F2013%2F06%2Fbuild-a-better-forgot-password-email%2F&sa=D&sntz=1&usg=AFQjCNHLKMW6qHIjmY4yWJ9SFV6hOIyZqg

Section 12

Offline Sync

Using Core Data with StackMob is not a requirement. You can use the datastore API for
all the work you’ve done today. But, using Core Data with StackMob offers the added
benefit of online/offline caching and data synchronization.

OPEN: Classes > AppDelegate > AppDelegate.m
Change the following line of code
SM_CACHE_ENABLED = YES;

and uncomment the block of code inside the didFinishLaunchingWithOptions
method.

OPEN: Classes > Views > ApartmentList > ApartmentListViewController.m

Inside the cellForRowAtindexPath method and after this line NSString *picString = [apartment
valueForKey:@"photo"]; Add the IF statement

if (([SMBinaryDataConversion stringContainsURL:picString]) {
Before the return cell add the ELSE statement.

}else {
Ullmage *image = [Ulimage imageWithData:[SMBinaryDataConversion dataForString:picString]];
cell.apartmentimageView.image = image;
[self.apartmentimages setObject:image forKey:indexPath];

}

Build and Run your Project

