
Getting Started with the iOS SDK
Version 4

A Production
 Page 1 of 9

Introduction
 3

Before You Begin
 3

Getting Started
 4

Adding the Framework / Resources and Configuring Your Project
 4

Initializing the Ballista SDK
 5

Enabling Ballista Color ID Support
 6

Testing the SDK
 7

Tracking Triggers and Timed Events
 8

Timed Events Life Cycle
 9

Timed Events Real-Time Reporting
 9

Ballista	 Getting Started with the iOS SDK

Version 4 © 2013 WhereCloud, Inc.
 Page 2 of 9
30 October, 2013 12:16

Introduction
The Ballista Framework (formerly called AppRelay) for iOS makes it easy for developers to collect
user engagement data and custom reports from their apps. The Ballista service also provides an
easy way to target and provide rich campaigns to your user.

This document provides a guide to getting started with the service and setup your application to
enable metrics tracking.

Before You Begin
Before begin integrating the Framework, make sure you have the following:

• The latest Ballista iOS Framework Library
the latest library is available on a public git repository:
https://github.com/wherecloud/ballista-sdk-ios-precompiled

• The CrashReporter iOS Framework Library V1.1-rc2 or later available at
https://code.google.com/p/plcrashreporter/

• Your application bundle identifier (in the form com.company.xyz) which you need to provide
us via email at: info@goballista.com

• Note: Please send it from the email account you want us to use as your username.

• Upon reception of your bundle id, we will return you an access to the Ballista dashboard acces-
sible here: https://client.goballista.com

The minimum deployment target version when using the Ballista iOS Framework is limited to iOS
5.0 and higher.

Ballista	 Getting Started with the iOS SDK

Version 4 © 2013 WhereCloud, Inc.
 Page 3 of 9
30 October, 2013 12:16

https://github.com/wherecloud/ballista-sdk-ios-precompiled
https://github.com/wherecloud/ballista-sdk-ios-precompiled
https://code.google.com/p/plcrashreporter/
https://code.google.com/p/plcrashreporter/
mailto:info@goballista.com
mailto:info@goballista.com
http://dashboard.apprelay.net
http://dashboard.apprelay.net

Getting Started
There are two steps to getting started with the framework: (1) adding it to you Xcode project and
(2) initializing the tracker.

Adding the Framework / Resources and Configuring Your Project

Make sure you follow all the steps below to ensure the integration is performed correctly.

• Drag & drop AppRelay.framework and CrashReporter.framework from the finder to
your project.
You can either copy it in your source tree, which make it easier to work with other developers in your team, or
just reference it relatively to your project.

Warning: If you’re already using a third party framework for crash reports that statically integrates
the PLCrashReporter framework (such as Crittercism), you should not add the
CrashReporter.framework in your project or you will experience errors when the application
gets build (linking error: duplicate symbols)

• Drag & drop the framework’s AppRelay.framework/Resources folder from the finder to
your project.
Their are some mandatory resources files in it like the AppRelay.plist file.

• In the “Build Settings” of your project, ensure you have “-ObjC -all_load” defined in the
Other Linker Flags.
This is mandatory for the compiler to embed objective-C code defined in categories.

• In the “Build Phases” of your project, expands the “Link Binary With Library” section and add the
following frameworks and libraries :

CoreTelephony.framework

Security.framework

AdSupport.framework (weak link)

CFNetwork.framework

SystemConfiguration.framework

QuartzCore.framework

PassKit.framework (weak link)

libz.dylib, libstdc++.dylib, libicucore.dylib

Ballista	 Getting Started with the iOS SDK

Version 4 © 2013 WhereCloud, Inc.
 Page 4 of 9
30 October, 2013 12:16

Initializing the Ballista SDK

To initialize the Ballista SDK, import the <AppRelay/Apprelay.h> file in your application dele-
gate and add this code to the application:didFinishLaunchingWithOptions: method:

With that single line, the SDK will be monitoring “sessions” of the application running in foreground
and background and sending events to the platform accordingly.

Note: Please ensure your application is initializing the Ballista SDK with the startTracker-
WithAPIKey method. The other methods available are needed when a deeper integration with the
application is being performed.

Warning: If you’re already using a third party framework for crash reports (like Crittercism), you
should disable the crash reports from Ballista framework to avoid unknown exceptions thrown by
PLCrashReporter. Add the following line of code just before the
startTrackerWithAPIKey:bundleId: call to ARService.

You will still access the quality of service details in the goballista website but you will not be able to
download the .crash files for each crash that will be reported.

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 NSString *bundleIdentifier = [[NSBundle mainBundle] bundleIdentifier];

 [[ARService sharedService] startTrackerWithAPIKey:@"YOUR_API_KEY"
 bundleId:bundleIdentifier];

 // Initialize your application here!
 return YES;
}

[[ARService sharedService]setCrashReportsEnabled:NO];

Ballista	 Getting Started with the iOS SDK

Version 4 © 2013 WhereCloud, Inc.
 Page 5 of 9
30 October, 2013 12:16

Enabling Ballista Color ID Support

Ballista allows you to easily test event propagation and campaign distribution using a revolutionary
color id technology.

This technology allows you to easily pinpoint specific devices for testing and validating events
propagation and campaign reception

You can optionally support the Ballista Color ID in your mobile applications by integrating a specific
URL Scheme.

This is done by enabling support in the info.plist of your application:

The syntax is to prefix the value of your API key with the string “ba-”.

You also have to forward URL open requests to the Ballista SDK, if those URLs are not specific to
your application.

Add the following code to your AppDelegate.m file :

- (BOOL)application:(UIApplication *)application
 openURL:(NSURL *)url
 sourceApplication:(NSString *)sourceApplication
 annotation:(id)annotation{

 //Do Your Stuff here :
 //return YES if you handled an URL of your concern

 //Ballista Color Id integration
 if([[ARService sharedService]handleApplication:application
 openURL:url
 sourceApplication:sourceApplication]){
 return YES;
 }

 return NO;
}

Ballista	 Getting Started with the iOS SDK

Version 4 © 2013 WhereCloud, Inc.
 Page 6 of 9
30 October, 2013 12:16

Testing the SDK

You can now test that your application is properly integrated:

To test proper integration, log into the Ballista Dashboard using the provided credentials. Within
that dashboard, select the Activity Log button.

Now start your Ballista-enabled application, you should see events being display that would look
something like below:

{
 "appid": "com.wci.turntape",
 "appversion": "1.1.1",
 "appbuildnumber": "457",
 "devicemodel": "iPhone4,1",
 "devicetimezone": "-25200",
 "devicelocale": "en",
 "deviceresolution": "640x960",
 "systemname": "iOS",
 "systemversion": "6.1.3",
 "networktype": "-1",
 "networkcarrier": "310VZW",
 "networkcarriername": "Verizon",
 "inetaddress": "99.48.88.9",
 "geo_latitude": 33.92689895629883,
 "geo_longitude": -117.86119842529297,
 "geo_city": "Brea",
 "geo_region": "CA",
 "geo_country": "US",
 "userid": "4D0B4C4C-09C4-4A5A-AAD7-55D45A9BA84F",
 "vendorid": "D0B5D5E9-E7CC-4142-908C-83560DA7F84C",
 "advertisingid": "1D35603F-CB63-448C-9B4C-3E77B6686E00",
 "advertisingtrackingenabled": "1",
 "sdkversion": "1.3.0 (138)",
 "sdkcampaignsenabled": "1",
 "sessionid": "E986D600-7BC3-444C-8524-FC9CB3AE056C",
 "eventid": "16D95AC7-42CA-49E1-9511-952B2B2D07ED",
 "timestamp": "1377718229.328880",
 "event": "app.session.begin",
 "value": {}
}

Ballista	 Getting Started with the iOS SDK

Version 4 © 2013 WhereCloud, Inc.
 Page 7 of 9
30 October, 2013 12:16

Tracking Triggers and Timed Events
The Ballista iOS Framework supports the tracking of two types of events: triggers and timers. Trig-
gers are designed to track a single action, this is the most basic form of tracking (i.e., deleting a
note). Timers on the other hand are events with a duration, these are useful to track the time the
user spent doing an activity (i.e., playing a game level).

Both types of events can carry custom properties (in the form of a dictionary of key/value pairs) to
be use for analytics or segmentation.

For example, tracking a story favorited by the user in a news application:

Any kind of metadata can be appended to an event.

Tracking a timer is done in the same manner. In the following example, we use a timer to start
tracking the time spent by a user reading a specific section of a news application:

When the user leaves the section, we simply call:

[[ARService sharedService] trackEvent:@"Story Favorited"
 properties:@{ @"story": @"<story-tag>" }];

[[ARService sharedService] trackTimedEvent:@"Section Read"
 properties:@{ @"section" : @"sports" }];

[[ARService sharedService] stopTimedEvent:@"Section Read"];

Ballista	 Getting Started with the iOS SDK

Version 4 © 2013 WhereCloud, Inc.
 Page 8 of 9
30 October, 2013 12:16

Timed Events Life Cycle

The Ballista framework takes care of the timed events life cycle so you don’t have to. Meaning that
by default, a timed events will be:

• “paused” when the application is inactive (i.e., application is in foreground by doesn’t have the
focus, like when the Notification Center is covering the application) and “resumed” when the ap-
plication goes back to being active;

• “stopped” when the application goes in background;

• “restarted” when the application goes back in foreground;

This default behavior can be disabled if you want to manage the life cycle of timed events manually
for specific needs in your application.

Timed Events Real-Time Reporting

Another benefits of using timers (besides the automatic reporting of its duration) is their real-time
reporting in the Ballista platform. Every timer can be displayed in a capsule on the dashboard using
a live counter displaying the total live number of users who are currently being “timed.”

This gives you as a glimpse the current usage of a features in your application.

Ballista	 Getting Started with the iOS SDK

Version 4 © 2013 WhereCloud, Inc.
 Page 9 of 9
30 October, 2013 12:16

