
CD Quartz Cocoa Lib User Guide.
Overview.! 1

Project Repositories.! 1

How to Build CD Quartz Cocoa Lib.! 1

Quartz Cocoa Lib! 2

Description! 2

Lifecycle! 4

Library Include File.! 5

Library Organisation.! 5

Context! 5

Modifier Queue! 6

Context Modifier! 7

List of Context Modifiers.! 7

A Usage Example.! 10

Overview.
This document provides details of how to incorporate this library into your own projects.

Project Repositories.

Project Name Git Hub URL Description

CDQuartzCocoa
Lib

http://github.com/cxd/
CDQuartzCocoaLib

This is the main project.

CDGraph http://github.com/cxd/CDGraph This project contains the
library CDGraph on which
CDQuartzCocaLib depends.
This is located in a separate
repository as it is shared by
a separate project.

How to Build CD Quartz Cocoa Lib.

CD Quartz Cocoa Lib User Guide.

https://cxd@github.com/cxd/CDQuartzCocoaLib.git
https://cxd@github.com/cxd/CDQuartzCocoaLib.git
https://cxd@github.com/cxd/CDQuartzCocoaLib.git
https://cxd@github.com/cxd/CDQuartzCocoaLib.git
http://github.com/cxd/CDGraph
http://github.com/cxd/CDGraph

1 Checkout a copy of CDGraph to a working
directory.

2 Open the CDGraph project in XCode and build it.

3 Check out a copy of CDQuartzCocoaLib.

4 Open the CDQuartzCocoa project in XCode.

5 Adjust the project dependency for
CDGraph.xcodeproj
Use Command-I to choose the correct path.

6 Adjust the path to the CDGraph.framework in
XCode.
The framework will be produced by building
CDGraph.
It will be located in the CDGraph/build/Debug
directory.

7 Adjust the framework search paths.
Make sure that the target uses the correct search
path for any dependencies.

8 Check include search paths.
Make sure they include the correct paths to
CDGraph or CDGraphTouch if compiling a *Touch
project.

8 Repeat the process for other projects within the
CDQuartzCocoaLib project that have a
dependency on CDGraph.

CDQuartzGraph
CDQuartzGraphTouch

Quartz Cocoa Lib
Description
The Quartz Cocoa Lib is built upon a series of “modifiers” or operations that change a
“context”, these modifiers are sequenced in one or more “queues”, a queue can then be
executed changing the context by applying the modifiers in sequence.
Sequences of modifiers can be constructed and stored for later execution (such as from a
serialized archive) or executed on different contexts (such as execution on a graphics
context for drawing to the screen or on a graphic context for drawing to a bitmap image).

CD Quartz Cocoa Lib User Guide.

It is possible to add additional “context” types and “modifier” types as needs arises,
currently Quartz based contexts and modifiers are supported. However the same concept
could be applied to different graphics libraries.

CD Quartz Cocoa Lib User Guide.

Lifecycle

The following diagram depicts a typical usage lifecycle of the library, although the method
calls shown in the diagram are not literal counter parts of the api.

Step Description Parameters

Main Application Initialises
Context

The “QContext” object is
created.

During creation the
CGContextRef is retrieved
from the environment or
created (if writing to an
image) and supplied to the
QContext object.

Modifier Queue is Created A “QModifierQueue” is
created, this queue will be
used to store “modifiers”
that will be used to change
the context.

Create and Enqueue
Modifiers.

Different “modifiers” are
created and stored on the
“QModifierQueue” in the
order that they should be
applied to the context.

Different modifiers may
require different initialisation
parameters, such as size,
colour and the like.

CD Quartz Cocoa Lib User Guide.

Step Description Parameters

Update the Context. Once the “QModifierQueue”
has been configured with a
sequence of modifiers it
can then be used to update
the context.
The call to “updateContext”
is used to apply each
modifier in the sequence to
the graphics context.
A copy of the original
“QModifierQueue” is
returned from this operation
and the original queue can
be destroyed.
In most cases the
“UpdateContext” cycle is
the repeating action that is
applied whenever a context
should be changed.
Alternately, new “modifiers”
may be added to the queue
in between repetitions.
Additionally multiple queues
may be created by different
“modifiers” to allow for
nested sequences where
required.

The “QContext” is supplied
as well as the
“QModifierQueue” instance
that contains the sequence
of modifiers to apply to the
context.

Library Include File.
To use the library, include the following header.

#import "QuartzCocoaLib/QuartzCocoaLib.h"

Library Organisation.

Context
The context is a container object for the graphics context that will be acted upon by
modifiers.
This context is represented by the “QContext” object which is used to store a reference to
the “CGContextRef”. The “CGContextRef” allows different types of graphics contexts to be
stored.

CD Quartz Cocoa Lib User Guide.

Modifier Queue
The modifier queue “QModifierQueue” is used to store sequences of context modifiers
which can be applied to one or more “Contexts”. The modifier queue is a short lived object,
when it is applied to the context a copy of the queue is returned and the original object can
be destroyed.

CD Quartz Cocoa Lib User Guide.

Context Modifier
The context modifier is an object that is capable of changing the graphics context, this may
be a shape or some sort of mode for the graphics context. Lines, Circles, Rectangles,
Shadows and Colours are represented as Context Modifiers.
A context modifier will implement the protocol “QContextModifier” and for convenience
may extend the base class “QAbstractContextModifier”.

The role of the modifier is to “update” a context that is supplied to it. A modifier may be
composed of nested sequences of “modifiers” that can be used to construct complex
operations, and generally uses an internal “QModifierQueue” for this purpose.
A “QContextModifier” should also implement the “NSCoding” protocol in order to support
serialization so that sequences of changes can be serialized and deserialized and
potentially applied across different processes or different times.

The process of using the library generally consists of using existing “QContextModifiers”
and potentially building more complex “QContextModifiers” in order to affect further
changes in the graphics context.

List of Context Modifiers.

The following table lists the available context modifiers. It is recommended to review the
source code for details on how to initialise them.

Generally, the process of using a modifier only requires that they be initialised with their
various initialisation parameters and then added to a modifier queue (via the “enqueue”

CD Quartz Cocoa Lib User Guide.

call) the modifiers will then apply their changes in the order that they have been added to
the queue (in this way the process of building up a sequence of modifiers is somewhat
declarative or similar to “configuring” a queue of operations).
For details of the initialisation method calls, review your copy of the source code.

Type Name Description Type

QArc An arc can be used to draw
curves and uses a centre
point, a radius and start and
end angles to define its
extent. Multiple arcs can be
concatenated togethor.

Concrete

QBezierCurve A bezier curve is a line that
is drawn using two control
points to determine
magnitude of the curve at
the start and end.

Concrete

QBlendMode A blend mode will set the
graphics context to use a
specific type of blending
when drawing.

Concrete

QBoundedObject The bounded object is a
protocol declaration for any
shape that may require the
bounds to be computed.

Protocol

QColor A color is used to describe
RGBA components for
drawing and is the base
type for color modifiers.

Abstract Base

QFillColor A fill color describes the
color with which shapes
should be filled within the
current context.

Concrete

QFilledRectangle A filled rectangle describes
a rectangle that will be filled
with a color.

Concrete

QFillPath A fill path describes a series
of lines, either “QArc”,
“QBezierCurve” or “QLine”
that will be filled with a
“QFillColor”.

Concrete

CD Quartz Cocoa Lib User Guide.

Type Name Description Type

QImage A QImage provides a
convenient way to draw
images in the current
context.

Concrete

QJoinCap A QJoinCap describes the
style with which joints in
curves should be drawn.

Concrete

QLabel A QLabel provides a
convenient way to draw a
single line of text.

Concrete

QLine A QLine is stroked path with
a start and end point.

Concrete

QLineCap A QLineCap specifies the
style with which terminated
lines will be drawn.

Concrete

QMove A move is akin to lifting a
pen from the paper and
moving it to another point
on the paper.

Concrete

QPoint A point is a 2 dimensional
unit of measure. The
QPoint object also has a
number of geometry helper
methods.

Unit of Measure

QRectangle A rectangle is the base
class for shapes that are
drawn in the graphics
context. It can also be used
as a unit of measure and
provides a number of
geometry methods.

Abstract Base

CD Quartz Cocoa Lib User Guide.

Type Name Description Type

QRestoreContext In quartz it is possible to
save and restore the
graphics context state.
When a state is saved new
graphics operations can be
applied without direct
impact on the previous
graphics state. When
restored the previous
graphics state can be
modified directly.
Using save and restore
state allows for nested
modifications to the
graphics context.

Concrete

QSaveContext Save context allows the
current graphics state to be
saved prior to any further
changes.
Save should always be
followed by a “restore” at
some later point.

Concrete

QShadow A shadow will be applied to
graphics shapes within the
current context.

Concrete

QStrokeColor The specified stroke color
to be used for outlined
shapes.

Concrete

QStrokedRectangle A rectangle that also has an
outline.

Concrete

QStrokeWidth The width to use for shape
outlines.

Concrete

QTestYinYang A test shape that draws a
yin yang symbol in a nested
modifier queue.

Concrete

An Example.

The following example is an excerpt from the test project “TestGraphicsContext”, when
run the application will draw a number of shapes into a view resulting in the following
image.

CD Quartz Cocoa Lib User Guide.

The following listing illustrates the configuration of the “QModifierQueue” and the
sequence of “modifiers” that were created to generate the test program.

- (void)drawRect:(NSRect)rect {
!
 // a context reference.
! // contexts can reference any type of graphics context.
! if (context == nil)
! {
! ! context = [[QContext alloc] initWithContext:[[NSGraphicsContext
currentContext] graphicsPort]];
! ! [context retain];
! ! queue = [[QModifierQueue alloc] init];
! ! [queue retain];
! !
!
! ! // the set of instructions to store within a queue.
! ! [queue enqueue:[[QFillColor alloc] initWithRGBA:1 G:0 B:0 A: 1]];
! ! [queue enqueue:[[QFilledRectangle alloc] initX:10 Y:10 WIDTH:100 HEIGHT:
100]];
! ! [queue enqueue:[[QFillColor alloc] initWithRGBA:0 G:0 B:1 A: 0.5]];
! ! [queue enqueue:[[QFilledRectangle alloc] initX:10 Y:120 WIDTH:100 HEIGHT:
100]];
! !
! ! // test stroke rectangle.
! ! [queue enqueue:[[QSaveContext alloc] init]];
! ! [queue enqueue:[[QStrokeWidth alloc] initWidth:5.0]];
! ! [queue enqueue:[[QStrokeColor alloc] initWithRGBA:0 G:0 B:1 A: 1]];
! ! [queue enqueue:[[QStrokedRectangle alloc] initX:10 Y:120 WIDTH:100 HEIGHT:
100]];
! ! [queue enqueue:[[QRestoreContext alloc] init]];
! !
! ! // test shadow and outline
! ! [queue enqueue:[[QSaveContext alloc] init]];
! ! [queue enqueue:[[QShadow alloc] initWithBlur:2.0 O:5.0 YO:-5.0]];
! !

CD Quartz Cocoa Lib User Guide.

! ! [queue enqueue:[[QFillColor alloc] initWithRGBA:0 G:1 B:0 A:1]];
! ! [queue enqueue:[[QFilledRectangle alloc] initX:120 Y:120 WIDTH:100 HEIGHT:
100]];
! ! [queue enqueue:[[QRestoreContext alloc] init]];
! !
! ! [queue enqueue:[[QSaveContext alloc] init]];
! !
! ! [queue enqueue:[[QLineCap alloc] initWithStyle:QLineCapRounded]];
! ! [queue enqueue:[[QJoinCap alloc] initWithStyle:QJoinCapRounded]];
! ! [queue enqueue:[[QStrokeWidth alloc] initWidth:5.0]];
! ! [queue enqueue:[[QStrokeColor alloc] initWithRGBA:0.0 G:0.5 B:0.0 A: 1]];
! ! [queue enqueue:[[QStrokedRectangle alloc] initX:120 Y:120 WIDTH:100 HEIGHT:
100]];
! ! [queue enqueue:[[QRestoreContext alloc] init]];
! !
! ! // create test shape yin/yan circle.
! ! [queue enqueue:[[QTestYinYang alloc] initWithCentre:[[QPoint alloc]initX:
110 Y:110]]];
! ! ! ! !
! ! // test loading an image from a url.
! ! [queue enqueue:[[QImage alloc] initWithUrl:@"http://devimages.apple.com/
home/images/iphonedevcenter.png" X:10 Y:300]];

! !
! ! [queue enqueue:[[QSaveContext alloc] init]];
! ! [queue enqueue:[[QStrokeColor alloc] initWithRGBA:0 G:0 B:0 A: 1]];
! ! [queue enqueue:[[QLabel alloc] initWithText:@"Test Text" X: 100 Y: 50
WIDTH:250 HEIGHT:100]];
! ! [queue enqueue:[[QRestoreContext alloc] init]];
! }
!
! QModifierQueue *copy = [QModifierQueue updateContext:context SourceQueue:queue];
! [queue autorelease];
! queue = copy;
! [copy retain];
}

The body of code above can be separated into three sections (as shown in the section on
the “lifecycle”).

The first section creates a reference to the context and the queue.

context = [[QContext alloc] initWithContext:[[NSGraphicsContext
currentContext] graphicsPort]];
[context retain];
queue = [[QModifierQueue alloc] init];
[queue retain];

The second section is concerned with creating different types of modifiers and adding
them in sequence to the modifier queue. For example:

[queue enqueue:[[QFillColor alloc] initWithRGBA:1 G:0 B:0 A: 1]];

The final section executes the changes on the current context, destroys the previous
instance of the queue and stores the new copy for use. The last section is executed every
time “drawRect” is called (whenever the view is redrawn), the current copy of the queue
always contains the sequence of instructions that are used to draw into the context.

QModifierQueue *copy = [QModifierQueue updateContext:context
SourceQueue:queue];
[queue autorelease];
queue = copy;

CD Quartz Cocoa Lib User Guide.

http://devimages.apple.com/home/images/iphonedevcenter.png
http://devimages.apple.com/home/images/iphonedevcenter.png
http://devimages.apple.com/home/images/iphonedevcenter.png
http://devimages.apple.com/home/images/iphonedevcenter.png

[copy retain];

How to Create a Context Modifier

A context modifier for convenience should derive from the base class
“AbstractContextModifier”.
When defining a new context modifier there are two general approaches:

• Compose the new modifier out of smaller existing modifiers.
• Perform all context changes within the modifier itself.

In both cases some initialisation parameters may be required (this is up to the type of work
the modifier will perform).

The modifier will apply changes to the supplied context in the “update” method
implementation. The method signature is:

/**
 Change the supplied context.
 **/
-(void)update:(QContext *)context;

The supplied context will have a reference to the CGContextRef where changes can be
applied using the quartz api.

Additionally the “modifier” should implement the “NSCoding” protocol in order to permit
serialization, as it is convenient be able to read and write modifier queues to file.

CD Quartz Cocoa Lib User Guide.

