
Planning and Research Report

CI301- Individual Project

Thomas Taylor
Student Number: 08813043

Supervisor: Graham Winstanley

November 2011

1 Project Aims and Objectives

Aim The primary objective of my project is to investigate the feasibility and effective-
ness of incorporating academic machine learning techniques into computer games.

Objectives I intend to do this by developing an AI system which is capable of con-
trolling a number of agents to safely navigate a game environment.

The AI system should be able to:

• Analyse the environment

• Ascertain whether objects are beneficial or dangerous

• Develop a knowledge-base dynamically based on observations made whilst navi-
gating the environment

• Apply this knowledge-base in order to traverse the world

2 Problem Domain

According to John McCarthy, the computer scientist who first coined the term in
the 1950’s, artificial intelligence is ”the science and engineering of making intelligent
machines”[4]. An important aspect to creating an ’intelligent machine’ is the ability
to learn from experience, and modify behaviour accordingly when faced with similar
scenarios in the future. This is a problem which has been extensively researched, and
techniques have been developed to tackle a variety of learning problems. In fact, machine
learning techniques are already in use in a number of commercial applications such as
speech recognition, robotic control and machine vision, proving that it can be a very
useful solution, especially in solving problems which may have unexpected outcomes that
cannot be predicted by the software developer.

1



There has been substantial research into using machine learning in First-Person
Shooter (FPS), Real-Time Strategy (RTS), and more traditional board games. CBRe-
taliate, a case-based reinforcement learning (RL) system has been developed at Lehigh
University Pennsylvania, which utilises case-based reasoning in a team-based FPS game
to allow the system to react much quicker than if it were merely using RL[2]. Similarly,
NeuroEvolving Robotic Operatives (NERO), a system which uses neuroevolution (i.e.
the use of genetic algorithms to evolve a neural network) in real-time to train and battle
robotic armies was developed by The Digital Media Collaboratory at the University of
Texas[1].

Despite this promising research, the AI systems used in even the most cutting-edge
commercial games are far removed from that of academic AI research. Rather, the AI
we see in computer games focuses on trying to fool the player into believing the system is
more intelligent than it is, using ’smoke and mirrors’ and cheap tricks rather than proven
academic AI techniques. The reality is that games rarely venture beyond pathfinding
algorithms when it comes to using academic AI, with their apparent ’intelligence’ usu-
ally having been pre-scripted. Many games are even programmed to be intentionally
unintelligent (as described in ’Artificial Stupidity: The Art of Intentional Mistakes’ [3])
in order for the game not to be deemed too ’challenging’. This often means that ”a
large part of the gameplay in many games [is] figuring out what the AI is programmed
to do and learning to defeat it”[5]. While using basic AI is often an intentional ’design
feature’ in games, historically AI processing has been given much lower priority than the
3D graphics for example, meaning that highly complex AI systems were just not com-
putationally possible. However, in an age where computing power is advancing at such
a rapid pace, and given the apparent plateau in the more processor intensive processes
such as graphics, we are starting to see more focus and development into game AI. In-
deed, in a generation where computer games are incredibly complex and engaging forms
of entertainment with increasingly complex worlds, we need AI that can compliment
this; gamers will no longer accept sub-par artificial intelligence.

That being said, there are a few examples where AI has been used in commercial
games effectively in less ’out-of-the-box’ scenarios than merely creating highly efficient
teamwork-capable enemies in shooting games. One of these is Lionhead Studios’ 2001
’god’ game Black and White. In it, the player is given a pet ’Creature’ to do their
bidding, which has the capacity to learn from the player’s actions, as well as the actions
of the various AI-controlled characters in the game. For example, the Creature must
learn what objects are suitable to eat based on taste, and what it sees others eating. This
can result in the Creature learning to eat the player’s followers, which may require the
player to take corrective action. This learning is achieved with a combination of decision
trees and neural networks, and uses a modified version of Ross Quinlan’s decision tree
generation algorithm (ID3) to do so.

2



3 Solution

For the main deliverable of my project, I have chosen to create a game similar to the
popular puzzle game Lemmings, and replace the human control element with my AI
system. Originally released in 1991 for the PC and Commodore Amiga, the game has a
very simple premise: to guide a group of computer-controlled ’lemmings’ across a level
from the entrance-point to the exit. The lemmings themselves, although computer con-
trolled, have no AI to speak of, and merely walk in one direction until they reach an
immovable object (such as a wall) or a trap (water, spikes, big drops etc.), the latter
resulting in the unfortunate demise of the lemming. Each level requires that a certain
number of lemmings reach the exit in order for the player to progress. To complete a
level, the player is given a number of tools to help them such as umbrellas to avoid big
falls, girders to cross pits etc.

My project can be separated into two distinct parts/deliverables: the game compo-
nent, and the AI system controlling the agents’ behaviour.

3.1 The Game Component

The game component of my project is essentially a stripped-down version of Lemmings
with limited tools given to the lemmings (if any at all), and a very limited number of
levels. It should be able to work standalone (without the AI system) and would function
similarly to Lemmings; the characters would enter the level and simply walk continuously
until they are killed, or reach an immovable object, after which they return the way they
came.

3.1.1 Game Objects

The game itself will consist of a simple game environment viewed side-on, with movement
along two planes. The environment will essentially be a number of platforms of varying
heights and sizes.

In addition to the environment, the game will need a variety of obstacles to hinder
the progress of the lemmings. The obstacles that I plan to include in my game will
likely be pits, spikes, large rocks, and some form of water/lava. These obstacles will
need to be designed with a certain complexity so that determining their danger isn’t a
completely trivial matter. If possible, I would like to create objects using a shared pool
of components so that the system must analyse each component of the obstacle in order
to make an informed decision as to whether it is likely to be safe.

I will obviously also need the lemming characters themselves, which will need some
basic animation, as well as some very basic AI to allow them to move across the level.

3.1.2 Interface

The final thing needed for my game world will be the interface. For the sake of simplicity,
I am choosing to remove most (if not, all) of the tools which are given to the player.

3



Instead, I intend to add some sort of interface to the game which will allow the player to
tweak various parameters in the AI system. For example, the curiosity of the lemmings,
or the level of reward given for certain tasks. This will basically act as a way to test the
system in real-time without having to edit scripts or code directly, and allow for easier
(and more robust) user testing of my system.

3.2 The AI System

The AI system itself will form the bulk of my project, and will operate behind the scenes
to implement the machine learning techniques I intend to explore in this project. To
begin with, I plan on implementing reinforcement learning and decision trees, as I feel
that they are most applicable to the context of the game. However, time permitting,
I would also like to implement either neural networks or genetic algorithms to provide
further analysis.

3.2.1 Basic Functionality

In order for my project to be a success, my AI system needs to have certain basic
functionality. Firstly, the system will need to be able to recognise when an agent has
come into contact with any interactive objects, such as walls, spikes, large drops etc. My
system then needs to be able to deduce what kind of object it is from its attributes and
by querying its existing knowledge-base for any similar obstacles it may have already
encountered. My system then needs to be able to make an informed choice as to the
best decision for the agent to make. It will then need to store the resulting outcome,
be it positive or negative for later analysis. At the end of the current game, my system
should also be able to evaluate performance using some kind of algorithm to measure the
comparative efficiency of each learning technique used. A simple way to do this could
be to sum up the number of lemmings which were killed in the process, and measure
the time taken to complete the level, with the best techniques obviously killing the
least lemmings whilst taking the shortest time. A more complex (and more accurate)
algorithm could also take into account other variables such as the number of lemmings
that reached the exit, the number of tools used etc, or even analyse the performance of
individual lemmings.

3.2.2 Extra Functionality

In addition to this basic functionality, there are also a number of other features that I
would like to implement (time permitting). Firstly, I would like to have two modes in
the game: one where the lemming characters respawn at the entrance when they are
killed, and one where the lemmings are unable to respawn, and the game ends when
all lemmings have been killed. The latter could provide some interesting results, as the
user must develop a detailed enough knowledge base with a limited number of agents. I
would also like to implement the ability for agents to learn by ’watching’ other agents
interacting with the environment, in addition to learning from first-hand experience.

4



3.2.3 Issues

There are a number of issues regarding the functionality and implementation of my
system which I will need to address during the design phase. One such issue is whether
I will use a separate knowledge-base per lemming, or use a shared knowledge-base for
all lemmings. The latter will obviously result in a system which is much more efficient
at learning, but is perhaps less realistic (and entertaining). Using a separate knowledge-
base per agent would no doubt allow for much more interesting analysis at the end of
each game. Something else which I will need to address is how I manage the agents’
interaction with the environment; whether I will carry out automatic checks to update
the system, or use an event-based system to notify the AI of any agent interaction. A
final question I will need to address is that of user input; exactly how much the user
is able to change, and exactly what parameters will be most useful for the user to be
able to manipulate during runtime. It may be interesting for example, to be able to
adjust the ’curiosity’ of the lemmings (i.e. the likelihood that they will explore unknown
paths/obstacles).

As a final consideration, my system needs to be able to perform all of the above for
multiple agents in real-time, so performance will need to be a serious consideration so as
not to affect the gameplay or frame-rate, and my system will need to be appropriately
designed with this in mind.

3.3 Development, Software and Frameworks

In this section, I will briefly discuss the development of my project with regard to the
software and frameworks that I intend to use, as well as my reasoning behind them.

[For a gantt chart of my project development schedule, see appendix 1.]

3.3.1 Programming Languages

The first choice I was faced with was the language that I would use to program my system
in. As a significant chunk of my project is a game, the obvious choice would be to use
C++, as it offers the best performance, and has a lot of useful memory management
features. I eventually decided to use Objective C, as I wanted to set myself the challenge
of learning a new programming language. Objective C also has many benefits including
most of the performance and memory management features of C++ (both languages
being C based); performance obviously being a serious consideration when developing a
game. Another benefit to using Objective C is having the option to use Apple’s Xcode
as a development environment, as well as the incredibly useful performance profiling
program Instruments to get detailed analysis of the program’s performance. Xcode also
features some nice source control integration. Another benefit to using Objective C and
Xcode is the ability to develop my project as an iOS application to work on iPhone and

5



iPad devices. However, programming for iOS also brings with it severe limitations in
performance and storage capacity.

3.3.2 Game Engines

As I am essentially creating a game for part of my project, I would need to be able to
load character models/sprites and their accompanying textures, animations and bone-
structures (if applicable), be able to realistically calculate physics, have a user interface,
and so on. Implementing all of this myself would require a considerable amount of
programming time, time which could be better spent working on my AI engine. Because
of this, and the fact that my project has a clear focus on the AI behind the game
rather than the game itself, it seemed obvious for me to use an existing game engine.
There are a number of free game engines currently available, some popular examples
being Unity, which uses JavaScript, and is cross-platform (with publishing to iOS and
Android also available), Epic Games’ Unreal Engine (used in the Unreal Tournament,
Gears of War and Bioshock games among others) which is similarly cross-platform, and
Crytek’s CryEngine (used in the Crysis games).

As I have chosen to program my game in Objective C, I have decided to use the
popular open source CocoS2D 2D game engine. CocoS2D is perfectly suited to 2D
games such as Lemmings, and includes support for asset loading, integrated physics
(using the Box2D engine), a particle system and scene management among other things.
It is also highly optimised for use on mobile devices, and has integration with a high
score server, which would be interesting to use during user testing to compare users
results. CocoS2D also obviously includes support for all iOS touch gestures.

3.3.3 Source Code Control

I will be using a Git server hosted on GitHub to store the source code and documentation
for my project. Using source control is critical for any software development project,
as it not only provides a way for multiple users to work on a single project (or even a
single file) without the worry of file corruption, but more importantly, it also provides a
way to track the incremental development of a project, with the ability to revert certain
changes to an earlier version if need be. A big benefit of using GitHub is that it has a
very intuitive online interface, and includes some nicely integrated bug tracking.

3.3.4 Project Management

I will be managing my project from a web-based interface hosted on my web server called
ProjectPier, which enables me to set up tasks, milestones and a project wiki among other
things. It also implements bug tracking, which I may use instead of the GitHub system.

6



4 Research

I have documented my initial research in the form of an annotated bibliography. Along
with each source’s basic information, I have included a basic summary and any other
notes where appropriate.

4.1 Artificial Stupidity: The Art of Intentional Mistakes (article)

Author: Lars Liden
Journal: AI Game Programming Wisdom
Year: 2004

4.1.1 Summary and Notes

Discusses the technique of building intentional flaws into AI systems to add to the en-
tertainment value of the game. Largely focussed around the standard shooter genre.

Tricks to building ’stupid’ AI:

• Move Before Firing

• Be Visible

• Have Horrible Aim

• Miss the First Time

• Warn the Player

• Attack ’Kung-fu’ Style

• Tell the Player What You Are Doing

• React to Mistakes

• Pull Back at the Last Minute

• Intentional Vulnerabilities

4.1.2 Quotations

Fun can be maximized when mistakes made by computer opponents are
intentional

As an AI programmer, it is easy to get caught up in the excitement of
making an intelligent game character and to lose sight of the ultimate goal;
namely, making an entertaining game

7



The hallmark of a good AI programmer is the ability to resist the temp-
tation of adding intelligence where none is needed and to recognize when a
cheaper, less complex solution will suffice

The hallmark of a good AI programmer is the ability to resist the temp-
tation of adding intelligence where none is needed and to recognize when a
cheaper, less complex solution will suffice. The challenge lies in demonstrat-
ing the NPCs skills to the player, while still allowing the player to win

4.2 Types of Machine Learning Algorithms (book)

Author: Taiwo Oladipupo Ayodele

4.2.1 Summary and Notes

Gives some nice information on the differenct types of learning:

• Supervised learning

• Unsupervised learning

• Semi-supervised learning

• Reinforcement learning

• Transduction

• Learning to learn

with examples of algorithms for each, as well as background information.

4.3 The Complete History of Lemmings (webpage)

Url: http://www.javalemmings.com/DMA/Lem 1.htm
Last checked: 2011-10-21
Author: Mike Dailly

4.3.1 Summary and Notes

The history of Lemmings, as documented by one of the lead developers.

4.4 CS229: Machine Learning (webpage)

Url: http://cs229.stanford.edu/
Last checked: 2011-10-21
Organization: Stanford University

8



4.4.1 Summary and Notes

Homepage of the CS229 module: Machine Learning. Contains all of the lecture slides
and handouts etc.

4.5 Machine Learning (webpage)

Url: http://www.youtube.com/view play list?p=A89DCFA6ADACE599
Lastchecked: 2011-10-21
Author: Andrew Ng
Organization: Stanford University

4.5.1 Summary and Notes

A YouTube playlist of the lectures for the CS229 module: Machine Learning. Lots of
useful information about the different types of learning, algorithms etc.

4.6 Recognizing the Enemy: Combining Reinforcement Learning with
Strategy Selection using Case-Based Reasoning (article)

Author: Bryan Auslander, Stephen Lee-Urban, Chad Hogg and Hector Munoz-Avila
Journal: ECCBR Proceedings of the 9th European conference on Advances in Case-
Based Reasoning
Year: 2008

4.6.1 Abstract

This paper presents CBRetaliate, an agent that combines Case-Based Reasoning (CBR)
and Reinforcement Learning (RL) algorithms. Unlike most previous work where RL
is used to improve accuracy in the action selection process, CBRetaliate uses CBR to
allow RL to respond more quickly to changing conditions. CBRetaliate combines two key
features: it uses a time window to compute similarity and stores and reuses complete Q-
tables for continuous problem solving. We demon- strate CBRetaliate on a team-based
first-person shooter game, where our combined CBR/RL approach adapts quicker to
changing tactics by an opponent than standalone RL.

4.6.2 Summary and Notes

Research into using case-based reasoning to allow reinforcement learning to respond
more quickly to to changing conditions. A definite focus on the implementation.

Gives a nice introduction to the use of reinforcement learning in games.
If the system is doing ’well’, it stores the current case for later reference.
Some nice, in-depth discussion of the algorithms used in the research, as well as the

reasoning behind them - could be useful for designing my own algorithms later (also
some pseudocode examples).

9



4.6.3 Quotations

In this paper we present CBRetaliate, an agent that uses Case-Based
Reasoning (CBR) techniques to enhance the Retaliate RL agent. Unlike most
previous work where RL is used to improve accuracy in the case selection
process, CBRetaliate uses CBR to jump quickly to previously stored policies
rather than slowly adapting to changing conditions

4.7 Rapid and Reliable Adaptation of Rapid and Reliable Adaptation
of Video Game AI (article)

Author: Sander Bakkes, Pieter Spronck, Jaap van den Herik
Journal: Transactions on Computational Intelligence and AI in Games
Year: 2009
Volume: 1 Number: 2

4.7.1 Abstract

Current approaches to adaptive game AI typically require numerous trials to learn ef-
fective behaviour (i.e., game adaptation is not rapid). In addition, game developers are
concerned that applying adaptive game AI may result in un- controllable and unpre-
dictable behaviour (i.e. game adaptation is not reliable). These characteristics hamper
the incorporation of adaptive game AI in commercially available video games. In this
article, we discuss an alternative to these current approaches. Our alternative approach
to adaptive game AI has as its goal adapting rapidly and reliably to game circum-
stances. Our approach can be classified in the area of case-based adaptive game AI. In
the approach, domain knowledge required to adapt to game circumstances is gathered
automatically by the game AI, and is exploited immediately (i.e. without trials and
without resource- intensive learning) to evoke effective behaviour in a controlled manner
in online play. We performed experiments that test case- based adaptive game AI on
three different maps in a commercial RTS game. From our results we may conclude that
case-based adaptive game AI provides a strong basis for effectively adapting game AI in
video games.

4.7.2 Summary and Notes

Discusses an alternative method to learning which functions without trials and without
resource- intensive learning. Uses a downoaded ’case base’ of previously played games
to develop a strategy.

Some nice discussion on the different types of learning found in games (adaptive AI,
difficulty scaling etc.)

Very nice in-depth descriptions (with examples) of the implementation of the learn-
ing. However, the paper is mostly focussed towards Real-Time Strategy games.

10



4.7.3 Quotations

Nice description of what constitutes an entertaining game:

The purpose of a typical video game is to provide en- tertainment [1], [4].
Naturally, the criteria of what makes a game entertaining is dependent on
who is playing the game. The literature suggests the concept of immersion
as a general measure of entertainment [5], [6]. Immersion is the state of con-
sciousness where an immersant’s awareness of physical self is diminished or
lost by being surrounded in an engrossing, often artificial environment [7].
Taylor argues that evoking an immersed feeling by a video game is essential
for retaining a player’s interest in the game [6]. As such, an entertaining game
should at the very least not repel the feeling of immersion from the player
[8]. Aesthetical elements of a video game such as graphical and auditory pre-
sentation are instrumental in establishing an immersive game environment.

it is not uncommon that a game has finished before any effective behaviour
could be established, or that game characters in a game do not live sufficiently
long to benefit from learning

in our approach we consider that the challenge that is provided by the
game AI should be adaptable to fit individual players

Adaptation mechanism:
// Offline processing
A1. Game indexing; calculate indexes for all stored games.
A2. Clustering of observations; group together similar observations.
// Initialisation of game AI
B1. Establish the (most likely) strategy of the opponent player.
B2. Determine to which parameter?band values this opponent strategy can
be abstracted.
B3. Initialise game AI with an effective strategy observed against the oppo-
nent with the most similar parameter?band values.
// Online strategy selection
C1. Use game indexes to select the N most similar games.
C2. Of the selected N games , select the M games that best satisfy the goal
criterion.
C3. Of the selected M games , select the most similar observation.
C4. Perform the game strategy stored for the selected observation.

4.8 Evolutionary Entertainment with Intelligent Agents (article)

Author: David B. Fogel
Journal: Computer
Year: 2003
Volume: 36 Number: 6

11



4.8.1 Abstract

A common limitation of conventional video games is that players quickly learn the po-
sitions and behavior of computer-controlled characters, which usually take the form of
monsters.

Software developers pre-program these characteristics so, after playing the game
several times, the player comes to know exactly how and when the monsters will act.

4.8.2 Summary and Notes

Author is CEO of Natural Selection Inc.
Interesting article documenting an experiment into using neural networks to devvelop

a checkers playing program.
The system was run for about 6 months (840 generations of its evolution) and tested

on www.zone.com against real players, where it gained a ’master’ rating awarded to the
top 500 players out of 120,000.

4.9 Creating Intelligent Agents in Games (article)

Author: Risto Miikkulainen
Year: 2006
Volume: Winter

4.9.1 Abstract

Video games provide an ideal platform for the development and testing of machine-
learning techniques.

4.9.2 Summary and Notes

Article Focuses on neuroevolution, and gives some examples of where machine learning
has been used recently (early 00s). It also has a nice summary of research in the area
including NEAT and NERO.

Describes the NeuroEvolution of Augmenting Topologies (NEAT) - evolving neural
network appropriate for video games

4.9.3 Quotations

a large part of AI development is devoted to path-finding algorithms

a large part of the gameplay in many games is figuring out what the AI
is programmed to do and learning to defeat it

Evolutionary computation:

12



Each solution is evaluated in the task and assigned a fit- ness based on how
well it performs. Individuals with high fitness are then reproduced (by cross-
ing over their encodings) and mutated (by randomly changing components
of their encodings with a low probability). The offspring of the high-fitness
individuals replace the low-fitness individuals in the population, and over
time, solutions that can solve the task are discovered

Neuroevolution is particularly well suited to video games because (1) it
works well in high-dimensional spaces; (2) diverse populations can be main-
tained; (3) individual networks behave consistently; (4) adaptation takes
place in real time; and (5) memory can be implemented through recurrency
(Gomez et al., 2006; Stanley et al., 2005)

Entirely new game genres can be developed, such as machine-learning
games, in which the player explicitly trains game agents to perform various
tasks

To rtNEAT, [the sliders] represent coefficients for fitness components. For
exam- ple, the sliders specify how much to reward or punish agents for ap-
proaching enemies, hitting targets, getting hit, following friends, dispersing,
etc.

4.10 AI Game Programmers Guild (webpage)

Url: http://gameai.com/
Last checked: 2011-11-6

4.10.1 Abstract

Founded in 2008, the AI Game Programmers Guild currently consists of over 200 profes-
sional game AI developers from all across the industry and from around the world. Our
mission is to develop and promote excellence in game AI through education, community,
and recognition.

4.10.2 Summary and Notes

Blogs, papers, presentations, videos etc. posted by industry professionals in the area of
game AI.

4.11 Artificial Intelligence in Games (unpublished, possibly under-
graduate assignment)

Author: James Wexler
Year: 2002

13



4.11.1 Abstract

With its latest release ’Black and White’, Lionhead Studios has set the new standard
for artificial intelligence in games. Creatures in this game have an incredible ability to
learn that is implemented through a variety of AI algorithms and techniques. There
is much that could be added to the game given ample time and computing resources.
These additions include a partial order planner for creatures’ actions, a game-state search
algorithm and planner for a computer-controlled opponent, and a dynamic lookup table
to create better battling creatures.

4.11.2 Summary and Notes

Gives a nice history of video games with respect to their use of AI. Started in the
mid-sixties with Pong (and similar).

Also has a nice description of the type of AI techniques used in Black and White -
an example of a decision tree/weighting of actions

• Poorly written in places

• Needs more references

• Numerous subjective statements (”wonders of AI”, ”incredible”)

4.11.3 Quotations

A decision tree is built by looking at the attributes which best divide the
learning episodes into groups with similar feedback values. The best decision
tree is the one that minimizes entropy, a measure of how disordered the
feedbacks are. The algorithm used to dynamically construct decision-treesto
minimize entropy is based on (Ross) Quinlan’s ID3 system

Richard Evens (Black and White AI developer)

4.12 Playing Smart - Artificial Intelligence in Computer Games (arti-
cle)

Author: Eike F Anderson
Year: 2003
Organization: The National Centre for Computer Animation (NCCA)
Publisher: ZFX 3D Entertainment

4.12.1 Abstract

With this document we will present an overview of artificial intelligence in general and
artificial intelligence in the context of its use in modern computer games in particular. To
this end we will firstly provide an introduction to the terminology of artificial intelligence,

14



followed by a brief history of this field of computer science and finally we will discuss
the impact which this science has had on the development of computer games. This will
be further illustrated by a number of case studies, looking at how artificially intelligent
behaviour has been achieved in selected games.

4.12.2 Summary and Notes

Section 2 gives quite a nice overview of the history of AI, and some major develop-
ments/events in AI from 1931-1997.

Section 4 gives a nice summary of the main game AI techniques (rule-based, ma-
chine learning, extensible AI, knowledge-based) Black and While uses decision trees to
implement reinforcement learning.

• Not particularly well written

• Some unsubstantiated claims

4.13 Academic AI and Video games: a case study of incorporating
innovative academic research into a video game prototype (pro-
ceedings)

Author: Aliza Gold
Journal: IEEE - Symposium on Computational Intelligence and Games (CIG’05)
Year: 2005

4.13.1 Abstract

Artificial intelligence research and video games are a natural match, and academia is
a fertile place to blend game production and academic research. Game development
tools and processes are valuable for applied AI research projects, and university depart-
ments can create opportunities for student-led, team-based project work that draws on
students’ interest in video games. The Digital Media Collaboratory at the University
of Texas at Austin has developed a project in which academic AI research was incor-
porated into a video game production process that is repeatable in other universities.
This process has yielded results that advance the field of machine learning as well as the
state of the art in video games. This is a case study of the process and the project that
originated it, outlining methods, results, and benefits in order to encourage the use of
the model elsewhere.

4.13.2 Summary and Notes

Outlines a university-led AI project at University of Texas. NeuroEvolving Robotic
Operatives (NERO) project looks at the evolution of neural networks with a genetic
algorithm. Paper nicely documents the development process (used the spiral method).
The game uses Garage Games’ Torque game engine.

15



NERO has a real-time training stage which is carried out before the actual game.
Player can ’save’ the team, and start the game, when learning is no longer taking place.

4.13.3 Quotations

In NERO, a player trains a group of ignorant robot soldiers by setting
learning objectives for the group through an interface. After the objective is
set, the robots learn in real time to achieve their goal

References

[1] Academic AI and Video games: a case study of incorporating innovative academic
research into a video game prototype, 2005.

[2] B. Auslander, S. Lee-Urban, C. Hogg, and H. Munoz-Avila. Recognizing the enemy:
Combining reinforcement learning with strategy selection using case-based reasoning.
ECCBR ’08 Proceedings of the 9th European conference on Advances in Case-Based
Reasoning, page 15, 2008.

[3] L. Liden. Artificial stupidity: The art of intentional mistakes. AI Game Programming
Wisdom, 2(5):8, 2004.

[4] J. McCarthy. What is artificial intelligence?, November 2007.

[5] R. Miikkulainen. Creating intelligent agents in games. Winter:9, 2006.

16


