Flurry Analytics

@ FLURRY i0OS SDK Instructions

SDK version 4.2.3
Updated: 08/07/2013

Welcome to Flurry Analytics!
This file contains:

1. Introduction

2. Integration Instructions
3. Optional Features

4. Recommendations

5. FAQ

1. Introduction

The Flurry iOS Analytics Agent allows you to track the usage and behavior of your iOS application
on users' phones for viewing in the Flurry Analytics system. It is designed to be as easy as possible
with a basic setup complete in under 5 minutes.

Please note that this SDK will only work with Xcode 4.5 or above. If you need an SDK for an older Xcode version
please email support.

Flurry Agent does not require CoreLocation framework and will not collect GPS location by default. Developers who
use their own CLLocationManager can set GPS location information in the Flurry Agent (see Optional Features for
more information).

We also recommend calling Flurry Analytics from the main thread. Flurry Analytics is not supported when called
from other threads.

There are additional folders for use with Flurry Ads. These optional libraries provide alternate streams of revenue for
your apps. If you would like to use Flurry Ads please refer to FlurryAds-iOS-README.pdf.

2. Integration

1. In the finder, drag Flurry/ into project's file folder. (NOTE: If you are upgrading the Flurry iOS SDK, be sure to
remove any existing Flurry library folders from your project's file folder before proceeding.)

2. i0S Security framework is required to build Flurry Analyitcs. Flurry library will throw a linking error
during build process without it.

3. Now add it to your project:

File > Add Files to “Your Project” ... > Flurry

- Destination: select Copy items into destination group’s folder (if needed)
- Folders: Choose 'Create groups for any added folders'



- Add to targets: select all targets that the lib will be used for

4. Add SystemConfiguration.framework to your app. This is required for Reachability to manage network
operations efficiently.

5. In your Application Delegate:
- Import Flurry and inside "applicationDidFinishLaunching:" add: [Flurry startSession:@"YOUR_API_KEY"];

#import "Flurry.h"

- (void)applicationDidFinishLaunching: (UIApplication *)application {
[Flurry startSession:@"YOUR API KEY"];

//your code

}

You're done! That's all you need to do to begin receiving basic metric data.

3. Optional / Advanced Features

You can use the following methods to report additional data.

Tracking User Behavior

[Flurry logEvent:Q@"EVENT NAME"];

Use logEvent to count the number of times certain events happen during a session of your application. This can be
useful for measuring how often users perform various actions, for example. Your application is currently limited to
counting occurrences for 300 different event ids (maximum length 255 characters).

[Flurry logEvent:@"EVENT NAME" withParameters:YOUR NSDictionary];

Use this version of logEvent to count the number of times certain events happen during a session of your application
and to pass dynamic parameters to be recorded with that event. Event parameters can be passed in as a
NSDictionary object where the key and value objects must be NSString objects. For example, you could record that
a user used your search box tool and also dynamically record which search terms the user entered. Your
application is currently limited to counting occurrences for 100 different event ids (maximum length 255 characters).
Maximum of 10 event parameters per event is supported.

An example NSDictionary to use with this method could be:

NSDictionary *dictionary =

[NSDictionary dictionaryWithObjectsAndKeys:@"your dynamic parameter value",
@"your dynamic parameter name",
nil];

[Flurry logEvent:@"EVENT NAME" timed:YES];
Use this version of logEvent to start timed event.

[Flurry logEvent:Q@"EVENT NAME" withParameters:YOUR NSDictionary timed:YES];
Use this version of logEvent to start timed event with event parameters.

[Flurry endTimedEvent:@"EVENT NAME" withParameters:YOUR NSDictionary];

Use endTimedEvent to end timed event before app exits, otherwise timed events automatically end when app exits.
When ending the timed event, a new event parameters NSDictionary object can be used to update event parameters.
To keep event parameters the same, pass in nil for the event parameters NSDictionary object.

[Flurry logAllPageViews:navigationController];
To enable Flurry agent to automatically detect and log page view, pass in an instance of UINavigationController or
UlTabBarController to countPageViews. Flurry agent will create a delegate on your object to detect user interactions.



Each detected user interaction will automatically be logged as a page view. Each instance needs to only be passed
to Flurry agent once. Multiple UINavi ggationController or UITabBarController instances can be passed to Flurry
agent.

[Flurry logPageView];
In the absence of UINavigationController and UlTabBarController, you can manually detect user interactions. For
each user interaction you want to manually log, you can use logPageView to log the page view.

Tracking Application Errors

[Flurry logError:@"ERROR NAME" message:@"ERROR MESSAGE" exception:e];

Use this to log exceptions and/or errors that occur in your app. Flurry will report the first 10 errors that occur in each
session. The message parameter has been deprecated as of release 4.2.2 and the passed in message will not be
viewable on the Flurry developer portal.

For the following features, please call these APIs before calling startsSession:
Tracking Demographics

[Flurry setUserID:@"USER ID"];

Use this to log the user's assigned ID or username in your system after identifying the user.

[Flurry setAge:21];
Use this to log the user's age after identifying the user. Valid inputs are 0 or greater.

[Flurry setGender:@"m"];
Use this to log the user's gender after identifying the user. Valid inputs are m (male) or £ (female)

Tracking Location
CLLocationManager *locationManager = [[CLLocationManager alloc] init];
[locationManager startUpdatingLocation];

CLLocation *location = locationManager.location;

[Flurry setLatitude:location.coordinate.latitude
longitude:location.coordinate.longitude
horizontalAccuracy:location.horizontalAccuracy
verticalAccuracy:location.verticalAccuracy];

This allows you to set the current GPS location of the user. Flurry will keep only the last location information. If your
app does not use location services in a meaningful way, using CLLocationManager can result in Apple rejecting the
app submission.

Controlling Data Reporting

[Flurry setSessionReportsOnCloseEnabled: (BOOL) sendSessionReportsOnClose];

This option is on by default. When enabled, Flurry will attempt to send session data when the app is exited as well
as it normally does when the app is started. This will improve the speed at which your application analytics are
updated but can prolong the app termination process due to network latency.

[Flurry setSessionReportsOnPauseEnabled: (BOOL) sendSessionReportsOnPause];

This option is on by default. When enabled, Flurry will attempt to send session data when the app is paused as well
as it normally does when the app is started. This will improve the speed at which your application analytics are
updated but can prolong the app pause process due to network latency.

[Flurry setSecureTransportEnabled: (BOOL) secureTransport];

This option is off by default. When enabled, Flurry will send session data over SSL when the app is paused as well
as it normally does when the app is started. This has the potential to prolong the app pause process due to added
network latency from secure handshaking and encryption.



[Flurry setBackgroundSessionEnabled: (BOOL)backgroundSessionEkEnabled];

This option is off by default. When enabled, Flurry will not finish the session if the app is paused for longer than the
session expiration timeout. The session report will not be sent when the application is paused and will only be sent
when the application is terminated.

[Flurry pauseBackgroundSession];

This method is useful if setBackgroundSessionEnabled: is set to YES. It can be called when application
finishes all background tasks (such as playing music) to pause the session. A session report is sent if
setSessionReportsOnPauseEnabled is setto YES. If the app is resumed before the session expiration
timeout, the session will continue, otherwise a new session will begin.

Crash Reporting

[Flurry setCrashReportingEnabled: (BOOL) crashReportingEnabled];

This option is off by default. Flurry has disabled the Crash Reporting functionality to ensure that Flurry Crash
Analytics feature does not affect the use of other crash reporting tools that might be in use by the application. When
enabled, Flurry will collect crash reports and send it in the session data. The errors that are logged using the Flurry
library will include stack traces that are captured at the point when the error is logged. Note that when this feature is
enabled Flurry installs an uncaught exception handler and registers for signals. We strongly recommend that
developers do not install any uncaught exception handlers in their app if they enable this feature. More information
about the feature is available here.

Crash reporting is only supported on armv?7 architectures (armv7s inclusive). If an application is built using both
armv6 and armv7 then crash reporting will work while running on armv7 devices but will be disabled while running on
armvé devices.

Debug and Diagnostics

[Flurry setLogLevel: (BOOL) loglLevel];

This is an optional method that can be used to set the level of Flurry SDK logs to be displayed on the console. The
default log level is FlurryLogLevelCriticalOnly.

[Flurry setDebuglogEnabled: (BOOL) debugLogEnabled];
This option is off by default. When disabled the log level is set to FlurryLogLevelCriticalOnly. When enabled the log
level is set to FlurryLogLevelDebug. This routine invokes setlLogLevel.

[Flurry getFlurryAgentVersion];
This routine retrieves a string that contains the Flurry SDK agent version number and release version and is useful
information that the developers can use for investigations.

5. FAQ

How much does the Flurry Analytics SDK add to my app size?

The Flurry SDK will typically add 150 KB to the final app size.

When does the Flurry Agent send data?

By default, the Flurry Agent will send the stored metrics data to Flurry servers when the app starts, pauses,
resumes, and terminates. To override default Agent behavior, you can turn off sending data on termination by adding

the following call before you call startSession:
[Flurry setSessionReportsOnCloseEnabled:NO]J;

You can turn off sending data on pause by adding the following call before you call startSession:
[Flurry setSessionReportsOnPauseEnabled:NO]J;


http://www.google.com/url?q=http%3A%2F%2Fsupport.flurry.com%2Findex.php%3Ftitle%3DAnalytics%2FOverview%2FLexicon%2FCrashAnalytics&sa=D&sntz=1&usg=AFQjCNEeFe3LEr_2R6GTCHy3ClnFVA4kug

How much data does the Agent send each session?

All data sent by the Flurry Agent is sent in a compact binary format. The total amount of data can vary but in most
cases it is around 2Kb per session.

What data does the Agent send?

The data sent by the Flurry Agent includes time stamps, logged events, logged errors, and various device specific
information. This is the same information that can be seen in the custom event logs on in the Event Analytics
section. We do not collect personally identifiable information.

Does the Agent support iOS OS 3.x?

Yes, this version is a fat binary that includes slices for armv6, armv7, armv7s and i386. Support is provided for iOS
3.1t0i0S 6.

What version of XCode is required?

The Flurry SDK will support Xcode 4.0 and above. Please email support if you need to use older versions of the
Flurry SDK.

Does this version collect the iOS UDID?

This version of the Flurry iOS SDK does not collect the iOS UDID.

Please let us know if you have any questions. If you need any help, just email iphonesupport@flurry.com!

Cheers,

The Flurry Team
http://www.flurry.com
iphonesupport@flurry.com



