
!d hand
developer guide

version 1.1 - june 2011

Table of contents

...1. Introduction 4

...Features 4

..Manual 6

...Support 6

..2. Choosing your development platform 7

..iOS platform (Apple inc.) 7

...Windows CE/Mobile (Microsoft) 8

...Android (Google as leading partner) 8

..Other platforms 8

..3. Structure of the API 9

..Tag Data Translation 9

..The layers of the API 9

...Choosing the right layer 9

...Data objects 9

..4. Tag Data Translation 11

..5. Presentation layer 12

..Objects 14

..General 15

..User interaction 17

...RFID 19

...Barcode 23

...NFC cards 25

..6. Session layer 26

...Management 26

..General 26

..User interaction 29

...RFID 30

...Barcode 35

Page 2

..NFC 36

...7. Transport layer 38

..Packet structure 38

..Commands to !D Hand 39

...Responses from !D Hand 51

...8. Getting started with development 58

..iOS (in Xcode 4.0) 58

...Windows (in Visual Studio) 62

..A. Frequently Asked Questions 66

...B. Update firmware 67

...C. Licensing 72

...D. Change notes 73

Page 3

1. Introduction

The !D Hand is the first next-generation RFID handheld reader. Design and easy of use are the most important properties of the
device - not only for the end user, but also for the developer. Regarding features, we provide excellent RFID reading facilities,
optional barcode reading and NFC card reading for security purposes. A long battery life and easy user interaction is also
guaranteed.

This guide will explain you how to make software that works together with the !D Hand, to make the best integrated RFID
solutions possible. This guide will assume basic knowledge of RFID if you use the presentation layer API, but if you use the
session layer API you’d probably need more knowledge. An excellent book on UHF passive RFID is “The RF in RFID: Passive
UHF RFID in Practice”, from Daniel M. Dobkin - available on Amazon1.

Features
rfid UHF RFID: EPC Class 1 Generation 2

support all common operations (read, write, lock, kill)

cross-dipole antenna

output power around 25 dBm (reader output power 25 dBm)

reading distance 1 - 1.5m, with typical retail tags

barcode (optional) 1D laser barcode scanner

reads all standard barcode types

near field communication reader/writer functionality compatible to ISO/IEC 14443 A&B, MIFARE, FeliCa
and NFC Forum tag types (MIFARE Ultralight, Topaz, FeliCa, MIFARE DESFire)

user interaction one button, one status led

accelerometer, shake detect

vibration motor

beeper

bluetooth bluetooth 2.1+EDR, Class 2

supports Secure Simple Pairing

API high-level API for iOS and Windows CE/Mobile (supporting inventory, write and
verify, monitoring, etc.) - other platforms can be added on special request

communication protocol documentation for any Bluetooth-enabled device

battery re-chargeable Li-ion battery with 2600 mAh capacity

battery lasts for around 4-6 hours during inventory

standby-time is four weeks

charge connector is micro USB-B

charge with 5V DC, between 500 mA and 1.5A, both PC-USB and charger-USB

weight 250 gram

size 11 cm (width)

5 cm (height)

32 cm (length)

Page 4

1 http://www.amazon.com/RF-RFID-Passive-UHF-Practice/dp/0750682094/

http://www.amazon.com/RF-RFID-Passive-UHF-Practice/dp/0750682094/ref=sr_1_1?ie=UTF8&qid=1294435176&sr=8-1
http://www.amazon.com/RF-RFID-Passive-UHF-Practice/dp/0750682094/ref=sr_1_1?ie=UTF8&qid=1294435176&sr=8-1

barcode
reader (optional)

button and
status led

rfid antenna

nfc card reader

charging
connector, leds for battery

and bluetooth

RFID reading

RFID reading is implemented according to the EPC Global Class 1 Generation 2 standard (ISO 18000-6C). All standard
operations are implemented (read, write, lock, kill). Upon request, chip-vendor specific commands (like NXP’s EAS bit) can be
implemented . Furthermore, it’s possible to set most of the parameters that are defined in the specification.

For now, only the European ETSI frequency range (EN 302 208) is supported, but in the near future all other regions will be
added (North America, China, Korea, Japan, Australia, etc.) - depending on market demand.

The included antenna is a cross-dipole antenna, automatically switching between both orientations while reading and writing to
tags.

Barcode reading (optional component)

The barcode reader is an optional component. All standard types of barcodes are recognized, furthermore it’s possible to set the
length of the barcodes that the reader will decode.

NFC card reading

There is a NFC card reader in the grip of the !D Hand that’s capable of reading ISO/IEC 14443 type A cards. For now, it’s only
possible to read the card serial number - which should be enough for most basic authentication procedures. Advanced
operations (reading sector data) and other types of cards (ISO/IEC 14443 type B) are supported in hardware, and will be
implemented in software on request.

User interaction

There are several methods to interact with the user. These are:

• LED. It’s possible to have the LED blinking or not.

• Button. The user can press the button on the !D Hand to start an action
• Sound. The !D Hand can produce several pre-defined sounds.
• Vibration. The !D Hand has a vibration motor inside.
• Accelerometer. By shaking the !D Hand, the user can generate an action.

Page 5

Bluetooth

The !D Hand is equipped with Bluetooth version 2.1+EDR. It supports Secure Simple Pairing (for pairing without any pin codes
or user interaction), and is a class 1 device (approximately 10 meters range).

Charging

Charging can be done using the micro USB connector. It is recommend to charge using the accompanied multi-head micro
USB charger, but it’s also possible to use an standard USB outlet on any computer around. Please note that charging with a
dedicated charger is a lot faster than charging on a standard USB outlet of a computer.

Manual
This section is a brief overview of how the !D Hand operates in a normal situation. A graphical version of this manual is included
in the box.

Powering on and off

To enable the !D Hand, press the button. The status LED will turn on. After five minutes of no activity (meaning, no bluetooth
connection), the !D Hand will automatically turn off.

If the button is pressed, and the !D Hand beeps, the battery is empty. Please charge the !D Hand before using it.

To reset the !D Hand, hold the button for more than ten seconds. This can also be used to force a disconnect from a device.

Status LED

The status LED indicates if the !D Hand is currently doing something. If the LED is blinking, it’s operating. If it’s just on, the !D
Hand is on, but doing nothing. If the LED is off, the !D Hand is off.

Bluetooth LED

The Bluetooth LED indicates whether there is a Bluetooth connection or not. If the LED is off, there is no connection. If the LED
is blinking, the connection is in ‘progress’ and if the LED is on, there is a Bluetooth connection.

Battery LED

If the battery LED is off, the status is normal. It’ll be orange when it’s charging, and green when the charging is done. The LED
will blink red if the battery is almost empty (<10 %) and will burn continuously red when the battery is empty.

Support
To provide you with the optimal support for the !D Hand, there are two basic methods to get started:

1. For all questions from end-users about the operation of the device, RMA’s, ordering, etc. please contact the Nedap Retail
business partner where you’ve obtained the device. If you’ve received the device directly from us, please find the business
partner that operates in your country at www.nedap-retail.com. If there’s no business partner in your country, please use
option 2 to contact Nedap.

2. For all questions regarding development, bugs, etc. you can contact the headquarters of Nedap Retail directly. You can e-
mail the Store !D team at rfidretail@nedap.com, or call at +31544471111. A ticket will be filed, and you’ll be kept posted
about updates.

Page 6

http://www.nedap-retail.com
http://www.nedap-retail.com
mailto:rfidretail@nedap.com
mailto:rfidretail@nedap.com

2. Choosing your development platform

The development platform is one of the most important decisions you’ve to make. This choice determines for a part how easy the
end user can work with your device (and thus the amount of support requests you’ll get), but also how easy it is to make a roll-
out and manage all the devices. For each of the platforms we’ve thought about, I’ll list some things you can think about to make
an informed choice and decision.

Please remember that in principal the !D Hand is platform agnostic. It’s possible to use it with any mobile device (or fixed device)
that has a Bluetooth interface.

iOS platform (Apple inc.)
iOS started as a new mobile platform when the first iPhone was introduced in 2007, but
came into real play with the introduction of version 2.0 - supporting the iPhone 3G and
enabling app development by 3rd parties. iOS is known for its very simple user
interface and interaction (capacitive touchscreen, no need for stylus) and stability (Unix
basis).

Initially, the effort was focussed on the consumer market, but with the introductions of
versions 3.0 and 4.0 (and accompanying devices), more and more business-needed
features were implemented. These features include device encryption, feature
lockdown, remote wipe, mobile device management, etc. etc. For more information on
these business features, please see http://www.apple.com/iphone/business/ and http://
www.apple.com/ipad/business/.

The fact that iOS is a closed and locked environment both offers advantages and
disadvantages. We strongly believe the advantages (sand-boxed and signed apps, no
viruses or tampering possible) outweigh the disadvantages (less straightforward
app distribution). For more information see http://www.apple.com/iphone/
business/integration/.

The devices that run iOS (iPod, iPhone, iPad) have a very predictable release cycle (one
version each year) and have shown very good backwards capabilities (new apps still run on the original iPhone). They’re also very
cheap, with an iPod starting from EUR 229,- (including VAT, and excluding possible volume discounts).

For the distribution of applications, there are basically two options:

1. App Store. The App Store is the most known way to distribute app. Apple has to approve your app, and afterwards it’s
available for everyone to download. Either for free, or for a fixed price (of which Apple takes 30% for distribution). Please see
http://developer.apple.com/programs/ios/ for information.

2. In-house distribution. For in-house, proprietary apps it’s possible to distribute them without approval from Apple and
without paying Apple for distribution. You’ve to set up your own distribution server, or can use a service from a 3rd party to
do that. Please see http://developer.apple.com/programs/ios/enterprise/ for information.

Page 7

http://www.apple.com/iphone/business/
http://www.apple.com/iphone/business/
http://www.apple.com/ipad/business/
http://www.apple.com/ipad/business/
http://www.apple.com/ipad/business/
http://www.apple.com/ipad/business/
http://www.apple.com/iphone/business/integration/
http://www.apple.com/iphone/business/integration/
http://www.apple.com/iphone/business/integration/
http://www.apple.com/iphone/business/integration/
http://developer.apple.com/programs/ios/
http://developer.apple.com/programs/ios/
http://developer.apple.com/programs/ios/enterprise/
http://developer.apple.com/programs/ios/enterprise/

Windows CE/Mobile (Microsoft)
Windows CE/Mobile is the oldest mobile platform supported by the !D Hand’s API.
(Windows Phone 7 is for the moment not taken into account here, since there is no
documented accessory program at the moment). Windows CE/Mobile has a quite large
installed base in business mobile devices, and a large range of devices that run it, but it has
some big disadvantages:

• The user interface is out of the 90’s era. Devices still use resistive touch screens that need
a stylus to operate. Furthermore, interface elements are not clear to users and screens
tend to be overcrowded. Furthermore, changing a simple setting is too difficult for users.

• The devices itself are rugged and complicated, most devices tend to have a lot of buttons.
Users are not well used to these kind of devices (in contrary to iOS devices), so they’ll
need a lot of expensive training to get to understand them.

• Making apps is more difficult than for other platforms. API’s are less sophisticated and
there is no standard way of distributing apps.

• There is no standard way to connect with an accessory. Each device maker (and
sometimes each device) has a different Bluetooth stack requiring a different
implementation on how to connect with an external device.

But, because the usage of Windows CE/Phone is quite widespread, we still decided we wanted to support in in our API. Because
of the not-unified way of connecting and pairing with Bluetooth accessories, that part is left out for the developer. The following
devices were tested during development (and are at least guaranteed to work).

• Motorola ES400 (Windows Mobile 6.5)

• Motorola MC55 (Windows Mobile 6.1)

• NordicID Morphic (Windows CE 6.0)

If you’ve any other device that you’ll want to use, and if you face any issues: please let us know. We’re here to help you.

Android (Google as leading partner)
Android is a relatively new and - although very promising - not recommend to use in a business
environment at the moment. There are basically two reasons for that:

• Android is not always Android. There is a common base, but there are a lot of variations
(because the base is open source) and versions around.

• Devices are not released in a timely and predictable way and available for a longer time.
Furthermore, there are mostly just phones, not devices without a cellular modem. The phones
are mostly more expensive.

But, some other things are really interesting:

• It is possible to use an hardware accessory connected via Bluetooth; although it is not as
advanced as with the iOS accessory protocol.

• App distribution is a lot more straightforward; it is easier to set up your own app store.

We expect the disadvantages to fade in 2011 and companies will introduce some first Android
business devices. At the moment, there is no API for Android, but we’ll watch it closely. If you
want, you can use the Transport Layer documentation to build your own API. We’d be happy to
help you with that, even with providing the source of our iOS/Windows API’s.

Other platforms
Like we said before, every platform with a Bluetooth adaptor that supports the serial port protocol can use the !D Hand. You can
then think about legacy devices, but also Blackberry’s (maybe even the new Playbook?).

Page 8

3. Structure of the API

This chapter will explain how the API is constructed, and how to choose which layer to use for your applications’ development.

Tag Data Translation
Tag Data Translation is used to convert the possible data representations in the EPC standard from one to another (for example,
from binary to pure identity URI). This library also contains objects for EPC tags and EPC observations.

The layers of the API

Bluetooth

The Bluetooth layer is as in the Bluetooth 2.1+EDR standard, the serial port protocol. The name of the device is ‘!D Hand XXX’,
where XXX denotes the last three characters of the serial number, that are depicted on the bottom of the !D Hand. This number
can be used to verify which !D Hand to connect to; if you’ve multiple.

Transport layer

The transport layer implements a binary protocol that flows over the Bluetooth serial port. You’ll never have to touch this layer,
unless you want to develop on an OS that’s not supported by the session or presentation layer.

Session layer

The session layer acts as a wrapper around the transport layer. It provides the same functionality, but enables simple function
calls to do the communication. You can for example set all the parameters for RFID reading (session, power, Q, M-value, etc.),
and do a single RFID read cycle. Also, it’s possible to set the LED to blinking or have the !D Hand vibrate for a while.

The session layer can be used for more advanced, custom and complex operations that are not currently supported by the
presentation layer.

Presentation layer

The presentation layer is the most sophisticated layer, building on top of the session layer. This layer provides more sophisticated
functionality, like ‘inventory’ (that does continuous reading, automatically drives the led and beeps when a ‘new’ tag is detected)
or ‘write EPC’ (checking if there’s only one tag in the field, writes to it and then verifies what’s written... sounding a beep if
everything was successful).

Choosing the right layer
The developer has to make a decision which layer to use to connect to the !D Hand: the transport layer, the session layer or the
presentation layer.

We recommend to use the presentation layer as much as possible, but it might be that you’d like to have an advanced feature
that’s not possible with the presentation layer. Since it’s not possible at the moment to use the session API and the presentation
API at the same time, a decision has to be made.

We plan to add more features to the presentation layer in the coming months, so if you feel there’s something missing that
should be there, please let us know. Thing that we’re currently considering are:

• Password management (locking a tag while writing)

• Read and write data from the user memory

Data objects
In iOS and Windows CE data objects are defined differently. The following table lists the naming differences.

Page 9

named here type on iOS type on Windows CE

String NSString String

Data NSData byte[], accompanied by a length in int

Bool BOOL bool

Integer NSUInteger or NSNumber int

Select NHSelect Select

Date NSDate DateTime

Array NSArray Collection<...>

EPC observation EPCObservation EpcObservation

EPC code EPCCode EpcCode

Page 10

4. Tag Data Translation

Tag Data Translation is based on the official specifications from EPC global2 (GS1), and implemented roughly based on Fosstrak’s
implementation3. The translation capabilities can be directly accessed by using the EPCTDTEngine object, or indirectly (and in
most cases more convenient) by using the properties of the EPCCode object.

The concept behind the EPCCode object, is that it’s initialized either with binary data from an RFID tag, with a string
representing hexadecimal characters or one of the other representations or with a GTIN14, a serial number and company prefix
lengths. Other representations then can be obtained by using the right property.

Objects

EPC code

The EPC code is used to represent an EPC code.

property type description

binaryData Data data containing the EPC code in byte format

binaryString String string containing the BINARY representation

hexString String string containing the BINARY representation, in hexadecimal format

tagEncoding String string containing the TAG_ENCODING representation

pureIdentityURI String string containing the PURE_IDENTITY_URI representation

legacy String string containing the LEGACY representation

onsHostname String string containing the ONS_HOSTNAME representation

Page 11

2 http://www.gs1.org/gsmp/kc/epcglobal/tdt/

3 http://www.fosstrak.org/

http://www.gs1.org/gsmp/kc/epcglobal/tdt/
http://www.gs1.org/gsmp/kc/epcglobal/tdt/
http://www.fosstrak.org
http://www.fosstrak.org

5. Presentation layer

The presentation layer is implemented a-synchronously. A called function is immediately returned. The actual information is
passed back via NSNotificationCenter (iOS) or events (Windows).

In the presentation layer, there are two type of operations:

1. Continuing operation, for example inventory. The user presses the button to start the operation, and has to push the button
again to stop the operation. During this time, the status LED is blinking, and continue and pause notifications are sent to
indicate when the !D Hand is actually operating, or waiting for the user to press the button (again).

2. One time operations, for example writing an RFID tag or reading detailed information from a single tag. This is an
operation where the user presses the button, and then the action will be executed in a short timeframe. The status LED will
not blink, and no pause/continue notifications are sent. Sounds will indicate the result of this action.

For now, the !D Hand is only able to work in Europe. In the future, when we’ll support other regions, we’ll add functionality to
retrieve the regions the !D Hand is capable of, and setting the right region. This is currently not implemented in the presentation
layer.

iOS

NSNotificationCenter4 is the generic class for receiving and sending one-to-many events within iOS. Subscribing to events can
be done with the addObserver: method. For example, to subscribe to the NHPresentationDidConnectNotification, use the following
code:

[[NSNotificationCenter defaultCenter] addObserver:self
	 selector:@selector(didConnect:)
	 name:@"NHPresentationDidConnectNotification"
	 object:nil];

The observer is set to the current object, most probably the current view. This code assumes there is a method called didConnect:
(which is called when the notification fires) and can be implemented like:

- (void)didConnect:(NSNotification *)notification
{
	 // implement code here...
}

Inside each NSNotification, there is a NSDictionary, containing zero or more key-value pairs that contain information about the
notification. For, example inside the NHPresentationDidConnectNotification there is a key that contains the serial number of the !D
Hand. You can obtain these keys according to the following snippet:

NSString *serialNumber = [[notification userInfo] valueForKey:@"serialNumber"];
NSLog(@"Serial number: %@", serialNumber)

To unsubscribe from a certain event (for example, when switching to a different view), use the removeObserver: method. This
method removes all notifications that are tied to this specific observer.

[[NSNotificationCenter defaultCenter] removeObserver:self];

For more examples and in-line explanation, please see the NedapHandheldAPIDemo application.

Page 12

4 See “Notification Programming Topics” in the iOS documentation at http://developer.apple.com/ios.

http://developer.apple.com/ios
http://developer.apple.com/ios

Windows

Presentation is a high-level communication layer used to communicate with handheld reader. If is built on top of the session
layer and provides more sophisticated functionality. This layer functions asynchronously calling functions in session layer
immediately. Once and answer is obtained from the device, presentation layer is notified via event. This layer contains public
events and methods for all implemented functionality and it is accessed from GUI application. Use of presentation layer is
recommended for connecting to device.

When developing application based up on this API there are few things you have to take care of in order to get full functionality.
To properly use API, first you need to create SerialCommunicationPort:

public SerialCommunicationPortPort = new SerialCommunicationPort(portName, 9600,
Parity.None, 8, StopBits.One);

Port name is name of the System.IO.Ports.SerialPort available on the device (example: “COM1”). Port is then used to create
Session:

public Session session = new Session(Port, true);

PresentationFacade is then created with that Session.

public PresentationFacade Facade = new PresentationFacade(session);

Communication with device is easily done through PresentationFacade and all device responses and result data is returned
through events. Subscribing to event and calling method via presentation:

Program.Controller.Facade.OnReadRfidTag += new System.EventHandler<ReadRfidTagEventArgs>
(facade_OnReadRfidTag);
Program.Controller.Facade.RfidInventoryStart();

When updating GUI on triggered event developer must take care of asynchronous GUI update because of the thread security.
Example of solving this problem with BeginInvoke method:

private void facade_OnReadRfidTag(object sender, ReadRfidTagEventArgs e)
{
	 lbInventoryItemsList.BeginInvoke(new UpdateUIDelegate(FormUpdateMethod),
	 	 e.EpcObservation);
}

private void FormUpdateMethod(EpcObservation epcObservation)
{
	 lbInventoryItemsList.Items.Add(epcObservation.EpcCode.PureIdentityURI);
}

Page 13

Objects

Memory bank

This enumeration defines the memory banks for RFID operations.

enumeration iOS enumeration Windows description

NHRFIDMemoryBankReserved RfidMemoryBank.Reserved reserved memory bank

NHRFIDMemoryBankEPC RfidMemoryBank.Epc EPC memory bank

NHRFIDMemoryBankTID RfidMemoryBank.Tid TID memory bank

NHRFIDMemoryBankUserMemory RfidMemoryBank.UserMemory user memory bank

Select

The select object an be used to represent a select statement, that can be used for filtering in the air interface protocol. The select
object can be set manually with the properties mentioned, or directly with an EPC code (which automatically sets the right
properties).

property type description

memoryBank Memory bank memory bank used in select

addressInBits Integer address for start of select

dataLengthInBits Integer data length in bits for select

data Data actual data

invert Bool invert the select statement

Password

The password object can be used to represent any password in the air interface protocol.

property type description

hexString String password as a hexadecimal string

EPC observation

The EPC observation object is used to represent an actual observation of an EPC tag, also including the Received Signal
Strength Indication (RSSI), read count and the timestamp when the tag has been read.

property type description

epcCode EPCCode EPC code that was read

timestamp Date timestamp of the reading

rssi Integer received signal strength indication

readCount Integer read count in current read cycle - will only be larger than one for Session 0

Page 14

General
This section describes the general functionality to communicate with the !D Hand. There are also some events that appear
without any specific request, i.e. events about the battery status and connection/disconnection. Furthermore, there are also
notifications that can appear after any method call.

Methods

Check connection

Check if the handheld is connected.

iOS + (BOOL)handheldIsConnected

Windows bool HandheldIsConnected()

Disconnect

Let the handheld disconnect from the device it is connected to.

iOS + (void)handheldDisconnect

Windows void HandheldDisconnect()

Battery status

Retrieves the percentage of battery capacity that is remaining in the !D Hand.

iOS + (void)handheldGetBatteryPercentage

Windows void HandheldGetBatteryPercentage()

Stop current operation

Stop the current operation, e.g. inventory or monitoring. Can be used when switching from one view to another.

iOS + (void)handheldStop

Windows void HandheldStop()

Get information

Get information about the model number of the handheld, the hardware and firmware revision and the serial number.

iOS + (NSDictionary *)handheldGetInformation

Windows DeviceInfo HandheldGetInformation()

The data in the dictionary is defined as follows:

parameter type description

modelNumber String model number

serialNumber String serial number

firmwareRevision String firmware revision (x.x.x)

hardwareRevision String hardware revision (x.x.x)

Page 15

Notifications

Connect

The !D Hand connected in the background.

iOS NHPresentationHandheldDidConnectNotification

Windows EventHandler<EventArgs> OnConnect

key value type description

modelNumber String model number

serialNumber String serial number

firmwareRevision String firmware revision (x.x.x)

hardwareRevision String hardware revision (x.x.x)

Please note that the Windows implementation of the API doesn’t carry these values for this event. These values should be obtained separately using the
‘HandheldGetInformation()’ method.

Disconnect

The !D Hand disconnected.

iOS NHPresentationHandheldDidDisconnectNotification

Windows EventHandler<EventArgs> OnDisconnect

Continue

The user pressed the button to let an action continue (e.g. inventory). This notification can be used to start a ‘reading’
indication on the screen (e.g. a spinner).

iOS NHPresentationHandheldDidContinueNotification

Windows EventHandler<EventArgs> OnContinue

Pause

The user pressed the button to let an action pause (e.g. inventory). This notification can be used to stop a ‘reading’ indication
on the screen (e.g. a spinner).

iOS NHPresentationHandheldDidPauseNotification

Windows EventHandler<EventArgs> OnPause

Low battery

The battery of the !D Hand has only 10% of its capacity remaining. Charge as soon as possible.

iOS NHPresentationHandheldDidReceiveLowBatteryNotification

Windows EventHandler<EventArgs> OnLowBatteryWarning

Empty battery

The battery is empty now, and the !D Hand will shutdown.

Page 16

iOS NHPresentationHandheldDidReceiveEmptyBatteryNotification

Windows EventHandler<EventArgs> OnEmptyBatteryStatus

Battery percentage left

This notification contains the percentage of energy that’s left in the battery.

iOS NHPresentationHandheldDidReceiveBatteryPercentageNotification

Windows EventHandler <ReceiveBatteryPercentageEventArgs> OnReceiveBatteryPercentage

key value type description

percentage Integer percentage of battery capacity left

User interaction

Enumerations

Tune

Enumeration for the possible tunes the beeper can generate. If you’d need more tunes for specific situations, please let us
know.

enumeration iOS enumeration Windows description

NHUITuneShort UITune.Short short beep (used for ‘new tag found’)

NHUITuneSuccess UITune.Success beep indicating a successful action (used
for ‘write tag successful’)

NHUITuneFailure UITune.Failure indicating a failure (used for ‘write tag
failed’)

Methods

Play tune

Plays a tune at the !D Hand. Tunes are defined in the Tune enumeration.

iOS + (void)uiPlayTune:(NHUITune)tune

Windows void UIPlay(UITune tune)

Vibrate

Vibrate the !D Hand.

iOS + (void)uiVibrate

Windows void UIVibrate()

Vibrate tune

Vibrates a tune at the !D Hand. Tunes are defined in the Tune enumeration.

iOS + (void)uiVibrateTune:(NHUITune)tune

Page 17

Windows void UIVibrateTune(UITune tune)

Notifications

Push button

The user did press the button. This notification is only sent when there is no operation ongoing or waiting for user action.

iOS NHPresentationUIDidPushAButtonNotification

Windows EventHandler <EventArgs> OnPushButton

Shake

The user did shake the device.

iOS NHPresentationUIDidShakeNotification

Windows EventHandler <EventArgs> OnShake

Page 18

RFID

Enumerations

MDID value

Enumeration for the possible MDID values (chip manufacturer identification).

enumeration iOS enumeration Windows description

NHRFIDMDIDImpinj RfidEpcMdid.Impinj Impinj

NHRFIDMDIDTexasInstruments RfidEpcMdid.TexasInstruments Texas Instruments

NHRFIDMDIDAlienTechnology RfidEpcMdid.AlienTechnology Alien Technology

NHRFIDMDIDIntelleflex RfidEpcMdid.Intelleflex Intelleflex

NHRFIDMDIDAtmel RfidEpcMdid.Atmel Atmel

NHRFIDMDIDNXP RfidEpcMdid.NXP NXP

NHRFIDMDIDSTMicroelectronics RfidEpcMdid.STMicroelectronics ST Microelectronics

NHRFIDMDIDEPMicroelectronics RfidEpcMdid.EPMicroelectronics EP Microelectronics

NHRFIDMDIDMotorola RfidEpcMdid.Motorola Motorola

NHRFIDMDIDSentechSndBhd RfidEpcMdid.SentechSndBhd Sentech Snd. Bhd.

NHRFIDMDIDEMMicroelectronics RfidEpcMdid.EMMicroelectronics EM Microelectronics

NHRFIDMDIDRenesasTechnology RfidEpcMdid.RenesasTechnology Renesas Technology

NHRFIDMDIDMstar RfidEpcMdid.Mstar Mstar

NHRFIDMDIDTycoInternational RfidEpcMdid.TycoInternational Tyco International

NHRFIDMDIDQuanrayElectronics RfidEpcMdid.QuanrayElectronics Quanray Electronics

NHRFIDMDIDFujitsu RfidEpcMdid.Fujitsu Fujitsu

NHRFIDMDIDLSIS RfidEpcMdid.LSIS LSIS

NHRFIDMDIDCaenRFID RfidEpcMdid.CaenRFID Caen RFID

NHRFIDMDIDPEG RfidEpcMdid.PEG PEG

Methods

Inventory

The inventory methods provide an easy way to do inventory. It automatically filters ‘multiple’ reads in a buffer and generates
a ‘beep’ on new tags. EPC air interface parameters are set automatically to session 1, target A (no switching) and automatic Q.
Register for the notification ‘Did read tag’ to retrieve read tags.

iOS

+ (void)rfidInventoryStart

+ (void)rfidInventoryStartWithSelect:(NHSelect *)select

+ (void)rfidInventoryStartInBuffer:(NSString *)bufferName

+ (void)rfidInventoryStartInBuffer:(NSString *)bufferName withSelect:(NHSelect *)select

Page 19

Windows

void RfidInventoryStart()

void RfidInventoryStart(Select select)

void RfidInventoryStart(String bufferName)

void RfidInventoryStart(String bufferName, Select select)

parameter type description

select Select select object to do filtering of tags in the air interface

bufferName String the name of the buffer to store the RFID tags in - multiple buffers can come in handy if there are
multiple inventory options in an application, e.g. inventory and shelf availability

Inventory high volume

This method basically does the same as the normal inventory method, but with the exception of using session 2 and 3 for
reading; giving better performance in environments with large numbers of tags. When the inventory buffer is cleared,
automatically the session will be switched from 2 to 3, and backwards. Please note that if you’ve read a tag in a session, it will
persist it’s ‘read’ state (normally) for more than a minute - typically up to 30 minutes - depending on the chip used.

iOS

+ (void)rfidInventoryHighVolumeStart

+ (void)rfidInventoryHighVolumeStartWithSelect:(NHSelect *)select

+ (void)rfidInventoryHighVolumeStartInBuffer:(NSString *)bufferName

+ (void)rfidInventoryHighVolumeStartInBuffer:(NSString *)bufferName withSelect:(NHSelect *)
select

Windows

void RfidInventoryHighVolumeStart()

void RfidInventoryHighVolumeStart(Select select)

void RfidInventoryHighVolumeStart(String bufferName)

void RfidInventoryHighVolumeStart(String bufferName, Select select)

parameter type description

select Select select object to do filtering of tags in the air interface

bufferName String the name of the buffer to store the RFID tags in - multiple buffers can come in handy if there are
multiple inventory options in an application, e.g. inventory and shelf availability

Clear inventory buffer

To clear the inventory buffer, use one of the following methods. After the buffer in the API is cleared, the notification ‘Did
reset inventory buffer’ will fire. If the method without the name of the buffer is used, the current active buffer will be reset -
not the ‘default’ buffer! The default buffer can be erased by using “default” as buffer name.

iOS
+ (void)rfidInventoryReset

+ (void)rfidInventoryResetBuffer:(NSString *)bufferName

Windows
void RfidInventoryReset()

void RfidInventoryReset(String bufferName)

parameter type description

bufferName String the name of the buffer to reset

Monitoring

Using the monitoring methods, it’s possible to see which tags are in the current field. These methods can be used to
implement searching functionality, in combination with the returned RSSI (in the EPC observation object) and a select

Page 20

statement. Monitoring uses session 0 in the air interface protocol. For each read cycle, the notification ‘Did read tags’ will
notify the application of the tags read.

iOS
+ (void)rfidMonitorStart

+ (void)rfidMonitorStartWithSelect:(NHSelect *)select

Windows
void RfidMonitorStart()

void RfidMonitorStart(Select select)

parameter type description

select Select select object to do filtering of tags in the air interface

Single read cycle

This method can be used to do a single read cycle, with low power. The goal of this function is to read the EPC code of a tag
that’s nearby the handheld, for example to obtain information about a specific product. For the response, see the notification
‘Did read tags’.

iOS
+ (void)rfidReadSingle

+ (void)rfidReadSingleWithSelect:(NHSelect *)select

Windows
void RfidReadSingle()

void RfidReadSingle(Select select)

parameter type description

select Select select object to do filtering of tags in the air interface

Read detailed tag information

To obtain the tag manufacturer ID (MDID), the tag model number, or the tag’s extended identifier field (XTID), use this
method. The response is provided in a NHPresentationRFIDDidReadDetailedTagInformationNotification.

iOS
+ (void)rfidReadDetailedTagInformation

+ (void)rfidReadDetailedTagInformationFromTag:(EPCCode *)code

Windows
void RfidReadTag()

void RfidReadTag(EpcCode code)

parameter type description

code EPC code specific tag to read data from (used to create a select statement in the air interface)

Write EPC

Write a new EPC value to a tag, including a verification if there’s just one tag in the field, writing to the tag and verifying
whether the write action was successful by reading the tag again.

iOS + (void)rfidWriteEPC:(EPCCode *)newEPCCode

Windows void RfidWriteEpc(EpcCode newEpcCode)

parameter type description

newEPCCode EPC code the new EPC value to write to a tag

Page 21

Notifications

Read tag

A new tag has been found during inventory.

iOS NHPresentationRFIDDidReadTagNotification

Windows EventHandler <ReadRfidTagEventArgs> OnReadRfidTag

key value type description

epcObservation EPC observation observation object that contains the new tag

Read tags

All tags of one read cycle. This can be used to speed up the processing, to process updates in the screen in batch-wise,
instead of tag by tag as with the ‘read tag’ event.

iOS NHPresentationRFIDDidReadTagsNotification

Windows EventHandler <ReadRfidTagsEventArgs> OnReadRfidTags

key value type description

epcObservations Array array of EPC Observation

Reset inventory buffer

This notification is sent after the buffer is reset. Use this to synchronize the buffer in your application with the buffer in the
API. For a typical example on how to use this, please see the NedapHandheldAPIDemo application.

iOS NHPresentationRFIDDidResetInventoryNotification

Windows EventHandler <EventArgs> OnClearInventory

Read detailed tag information

Detailed information about an RFID tag.

iOS NHPresentationRFIDDidReadDetailedTagInformationNotification

Windows EventHandler <ReadDetailedTagInformationEventArgs> OnReadDetailedTagInformation

key value type description

tagMDID Integer MDID value, corresponding to the MDID value enumeration

tagModelNumber Integer model number of the tag

tagXTID Integer XTID value

Write of EPC successful

Writing the EPC code did succeed; everything went fine, including verification.

iOS NHPresentationRFIDDidSucceedWriteEPCNotification

Windows EventHandler <EventArgs> OnSucceedWriteEpc

Page 22

Write of EPC failed: no tags in the field

Writing the EPC code did fail, because there are no tags in the field, or no tags comply to the issued select statement.

iOS NHPresentationRFIDDidFailWriteEPCZeroReadNotification

Windows EventHandler <EventArgs> OnFailWriteEpcZeroRead

Write of EPC failed: more than one tag in the field

Writing the EPC code did fail, because there are more tags than one in the field. This is an error, because otherwise it’s
unsure which tags should be written. The solution is to move the !D Hand and the tag that needs to be written out of the
area of other surrounding tags. A distance of about 20cm should work fine for typical retail tags.

iOS NHPresentationRFIDDidFailWriteEPCMultipleReadNotification

Windows EventHandler <EventArgs> OnFailWriteEpcMultipleRead

Write of EPC failed: write itself failed

Writing the EPC code did fail. This error is returned by the RFID reader, there was an error in the air interface protocol while
trying to write to a tag.

iOS NHPresentationRFIDDidFailWriteEPCWriteFailedNotification

Windows EventHandler <EventArgs> OnFailWriteEpcWriteFailed

Write of EPC failed: verification failed

Writing the EPC code did fail, because the verification failed. After a tag has been written successfully, the written value will
be verified with an additional read action - to make sure the writing was successful.

iOS NHPresentationRFIDDidFailWriteEPCVerificationFailedNotification

Windows EventHandler <EventArgs> OnFailWriteEpcVerificationFailed

Barcode
Since the barcode reader is an optional component, it’s always a good idea to check if it’s available, before requesting to read a
barcode. Things won’t break if you don’t, but it’s better for the user interaction to do so. On how to do that, please see the
example applications.

Enumerations

Barcode type

This enumeration defines the available types of barcodes.

enumeration iOS enumeration Windows description

NHBarcodeTypeAll BarcodeType.All All supported barcode types

NHBarcodeTypeEAN8 BarcodeType.Ean8 EAN 8

NHBarcodeTypeEAN13 BarcodeType.Ean13 EAN 13

NHBarcodeTypeUPCA BarcodeType.Upca UPC-A

NHBarcodeTypeUPCE BarcodeType.Upce UPC-E

Page 23

enumeration iOS enumeration Windows description

NHBarcodeTypeEAN128 BarcodeType.Ean128 EAN 128

NHBarcodeTypeCodabar BarcodeType.Codabar Codabar

NHBarcodeTypeCode11 BarcodeType.Code11 Code 11

NHBarcodeTypeCode39 BarcodeType.Code39 Code 39

NHBarcodeTypeCode93 BarcodeType.Code93 Code 93

NHBarcodeTypeEANBookland BarcodeType.Eanbookland EAN Bookland

NHBarcodeTypeDiscrete2of5 BarcodeType.Discrete2of5 Discrete 2 of 5

NHBarcodeTypeInterleaved2of5 BarcodeType.Interleaved2of5 Interleaved 2 of 5

NHBarcodeTypeCode128 BarcodeType.Code128 Code 128

NHBarcodeTypeMSI BarcodeType.Msi MSI

NHBarcodeTypeGS1Databar BarcodeType.Gs1databar GS1 Databar

NHBarcodeTypeUnknown BarcodeType.Unknown Unknown barcode type

Methods

Barcode reader present check

To check if the barcode reader is present, use the following method.

iOS + (BOOL)barcodeHasReader

Windows bool BarcodeHasReader()

Read barcode

This method reads a barcode. It waits until the user presses the button, then the barcode reader will be enabled for the
duration specified in the method call. The duration is specified in seconds, maximum value is 20 seconds. Typical value is 3
seconds. If the ‘read types’ method is used, the array should consist Barcode type values (for iOS, inside a NSNumber).

iOS
+ (void)barcodeReadType:(NHBarcodeType)barcodeType duringSeconds:(NSUInteger)duration

+ (void)barcodeReadTypes:(NSArray *)barcodeTypes duringSeconds:(NSUInteger)duration

Windows
void BarcodeRead(BarcodeType barcodeType, int duration)

void BarcodeRead(Collection<BarcodeType> barcodeTypes, int duration)

Notifications

Read a barcode

Notification received when a barcode has been read.

iOS NHPresentationBarcodeDidReadABarcodeNotification

Windows EventHandler <ReadBarcodeEventArgs> OnReadBarcode

Page 24

key value type description

barcode String contains the barcode

type Barcode type type of barcode

In iOS, the type is a NSNumber containing an unsigned int with the barcode type.

Not read a barcode

No barcode has been read during the specified duration. If this occurs while you try to scan a real, undamaged barcode,
make sure the right type of barcode has been specified in the method call.

iOS NHPresentationBarcodeDidNotReadABarcodeNotification

Windows EventHandler <EventArgs> OnNotReadBarcode

NFC cards

Methods

Read NFC card

This method can be used to try to read NFC cards. It’ll enable the field, and continuously try to read cards in the field. By
default, it’ll only read A-type cards.

iOS + (void)nfcReadStart

Windows void NfcReadStart()

Notifications

Read card

Notification received when a NFC card has been read.

iOS NHPresentationNFCDidReadCardNotification

Windows EventHandler <ReadNfcCardEventArgs> OnReadNfcCard

key value type description

cardNumber Integer card serial number

Page 25

6. Session layer

This chapter describes the session layer: a wrapper around the transport layer.

iOS

This layer works asynchronous, like the presentation layer, but with the difference that the responses do not consist of multicast
events, but simple callbacks.

Windows

Session layer is a threaded layer that deals with binary protocol communication over Bluetooth serial port, sending commands
using communication queue, parsing received data and notifying through events. It is used to communicate with handheld
reader and to provide simple function calls for device commands. It contains public methods exposed for usage if needed but it
is mainly accessed through presentation layer. This layer uses interfaces for Communication Port, Communication Queue and
Connection State.

For connecting and pairing of !D Hand and the phone without user interaction (automatically) BluetoothCommunicationPort
class can be used. This class implements ICommunicationPort and uses 32feet.net library that provides support for Microsoft and
Broadcom (Widcomm) Bluetooth stacks.

Other option is to use SerialCommunicationPort class which wraps SerialPort class and also implements ICommunicationPort
interface. This implementation is Bluetooth stack independent, but requires a user to manually pair and connect phone to !D
Hand Bluetooth Serial Port.

Communication Queue defines 2-way threaded communication queue which interacts with communication port and
implements ICommunicationPort interface, so that BluetoothCommunicationPort or SerialCommunicationPort class can be
used as port implementation.

ConnectionState class is used by the Session for connect/disconnect detection. It implements IConnectionState interface, and
runs in separate thread that periodically sends/receives a message.

Management

Methods

Set delegate

Sets the callback delegate for the session layer. The delegate has to conform to the NHSessionDelegateProtocol protocol.

iOS + (void)setDelegate:(id <NHSessionDelegateProtocol>)delegate

Windows not available yet

parameter type description

delegate id delegate object for callbacks

General

Methods

Check if connected

Checks if the !D Hand is currently connected. Returns a boolean with the connection status.

iOS + (BOOL)handheldIsConnected

Page 26

Windows not available yet

Battery status

Retrieves the percentage that the battery has remaining from the !D Hand.

iOS + (void)handheldGetBatteryPercentage

Windows not available yet

Disconnect

Let the handheld disconnect from the device it is connected to.

iOS + (void)handheldDisconnect

Windows not available yet

Get information

Get information about the model number of the handheld, the hardware and firmware revision and the serial number.

iOS + (NSDictionary *)handheldGetInformation

Windows not available yet

The data in the dictionary is defined as follows:

parameter type description

modelNumber String model number

serialNumber String serial number

firmwareRevision String firmware revision (x.x.x)

hardwareRevision String hardware revision (x.x.x)

Callbacks

Connection established

The !D Hand connected in the background.

iOS
- (void)sessionHandheldDidConnect:(NSString *)modelNumber serialNumber:(NSString *)
serialNumber firmwareRevision:(NSString *)firmwareRevision hardwareRevision:(NSString *)
hardwareRevision

Windows not available yet

parameter type description

modelNumber String model number

serialNumber String serial number

firmwareRevision String firmware revision (x.x.x)

hardwareRevisio
n

String hardware revision (x.x.x)

Page 27

Disconnection

The !D Hand disconnected.

iOS - (void)sessionHandheldDidDisconnect

Windows not available yet

Low battery

The battery has only 10% remaining. Charge as soon as possible.

iOS - (void)sessionHandheldDidReceiveLowBatteryWarning

Windows not available yet

Empty battery

The battery is empty now, and the device will shutdown.

iOS - (void)sessionHandheldDidReceiveEmptyBatteryStatus

Windows not available yet

!D Hand started charging

The user started charging the device - no further actions are possible until charging is done.

iOS - (void)sessionHandheldDidReceiveChargingStatus

Windows not available yet

Battery percentage received

This notification contains the percentage of energy that’s left in the battery.

iOS - (void)sessionHandheldDidReceiveBatteryPercentage:(NSNumber *)percentage

Windows not available yet

parameter type description

percentage NSNumber percentage of battery capacity left

Error received

This callback will arise when the user shakes the !D Hand.

iOS - (void)sessionHandheldDidReceiveError:(NSString *)error

Windows not available yet

parameter type description

error String string containing an error message

Page 28

User interaction

Methods

Play tune

Plays a tune at the !D Hand. Tunes are defined in the NHUITune enumeration.

iOS + (void)uiPlayTune:(NHUITune)tune

Windows not available yet

Vibrate

Vibrate the !D Hand.

iOS
+ (void)uiVibrate

+ (void)uiVibrate:(NSUInteger)timeout

Windows not available yet

parameter type description

timeout Integer timeout for vibration in tenths of a second (e.g. 3 equals 0.3 second of vibration)

Vibrate tune

Vibrates a tune at the !D Hand. Tunes are defined in the NHUITune enumeration.

iOS + (void)uiVibrateTune:(NHUITune)tune

Windows not available yet

Status LED

Set the status LED to blinking or not.

iOS + (void)uiSetStatusLedBlinking:(BOOL)blinking

Windows not available yet

parameter type description

blinking BOOL sets the blinking: true is enabled, false is disabled

Callbacks

Button

This callback will arise when the user presses the button.

iOS - (void)sessionUIDidPushButton

Windows not available yet

Page 29

Shake

This callback will arise when the user shakes the !D Hand.

iOS - (void)sessionUIDidShake

Windows not available yet

RFID

Enumerations

NHRFIDRegion

This enumeration defines the regions for RFID operations5.

enumeration description

NHRFIDRegionUndefined Undefined region

NHRFIDRegionEurope Europe, according to ETSI EN 302 208

NHRFIDRegionNorthAmerica North America, according to FCC (not supported at the moment)

NHRFIDRegionKorea Korea (not supported at the moment)

NHRFIDRegionChina China (not supported at the moment)

NHRFIDFrequency

This enumeration defines the frequencies that can be used to set the frequency hop table.

enumeration description

NHRFIDFrequencyEurope865700 865.7 MHz

NHRFIDFrequencyEurope866300 866.3 MHz

NHRFIDFrequencyEurope866900 866.9 MHz

NHRFIDFrequencyEurope867500 867.5 MHz

NHRFIDSession

This enumeration defines the session to be used in the EPC air interface protocol.

enumeration description

NHRFIDSession0 Session 0 (no persistence)

NHRFIDSession1 Session 1 (persistence of about 1 second)

NHRFIDSession2 Session 2 (persistence of more than 60 seconds)

NHRFIDSession3 Session 3 (persistence of more than 60 seconds)

Page 30

5 The reason these regions are not supported at the moment, is because of the antenna design. The included reader supports all of the
mentioned regions. Over time we’ll support additional frequency regions by means of an adopted antenna as well.

NHRFIDTarget

This enumeration defines the target to be used in the EPC air interface protocol.

enumeration description

NHRFIDTargetA target A

NHRFIDTargetB target B

NHRFIDMValue

This enumeration defines the M-value to be used in the EPC air interface protocol.

enumeration description

NHRFIDMValue0 M-value of 0

NHRFIDMValue2 M-value of 2

NHRFIDMValue4 M-value of 4

NHRFIDMValue8 M-value of 8

Methods

Get supported regions

Asks the !D Hand which regions are supported.

iOS + (void)rfidGetSupportedRegions

Windows not available yet

Set region

Sets the region for RFID reading.

iOS + (void)rfidSetRegion:(NHRFIDRegion)region

Windows not available yet

parameter type description

region NHRFIDRegi
on

region to be used for rfid operations

Set frequency hop table

By default, all channels in a region are used for hopping. Using this method it’s possible to set a specific hop table, thus use
only the frequencies that you want to use.

iOS + (void)rfidSetFrequencyHopTable:(NSArray *)frequencies

Windows not available yet

parameter type description

frequencies NSArray array of frequencies (NSNumber containing NHRFIDFrequency)

Page 31

Set session

Sets the session for the air interface protocol.

iOS + (void)rfidSetSession:(NHRFIDSession)session

Windows not available yet

parameter type description

session NHRFIDSessi
on

the session to use

Set target

Sets the target for the air interface protocol.

iOS + (void)rfidSetTarget:(NHRFIDTarget)target toggle:(BOOL)toggle

Windows not available yet

parameter type description

target NHRFIDTarg
et

the target to use

toggle BOOL switch between target A and B

Set M-value

Sets the M-value for the air interface protocol.

iOS + (void)rfidSetMValue:(NHRFIDMValue)mValue

Windows not available yet

parameter type description

mValue NHRFIDMVa
lue

the M-value to use

Set Q-value

Sets the Q-value for the air interface protocol.

iOS + (void)rfidSetQValue:(NSUInteger)qValue dynamic:(BOOL)dynamic

Windows not available yet

parameter type description

qValue Integer the Q-value to use (between 0 and 16)

dynamic BOOL whether the Q-value is dynamically adjusted

Read EPC

Read EPC tags in the field for a specified duration and with a specified power.

Page 32

iOS
+ (void)rfidReadEPCsWithTimeout:(NSUInteger)timeout power:(NSUInteger)power select:(NHSelect
*)select

Windows not available yet

parameter type description

timeout Integer timeout in milliseconds

power Integer the power, possible values range from 10 to 23 dBm

select Select select statement, can also be set to nil

Read data

Read data from an EPC tag in the field.

iOS
+ (void)rfidReadData:(NHRFIDMemoryBank)memoryBank addressInWords:(NSUInteger)addressInWords
lengthInWords:(NSUInteger)lengthInWords timeout:(NSUInteger)timeout power:(NSUInteger)power
select:(NHSelect *)select password:(NHPassword *)password

Windows not available yet

parameter type description

memoryBank NHRFIDMe
moryBank

the memory bank to read from

addressInWords Integer start address in words

lengthInWords Select length of to be read data in words

timeout Integer timeout in milliseconds

power Integer the power, possible values range from 10 to 23 dBm

select Select select statement, can also be set to nil

password NHPassword optional password, can also be set to nil

Write EPC

Write a new EPC value to a tag. The handheld first verifies if there’s just one tag in the field. It then writes the new EPC to the
tag (and automatically corrects the PC word if necessary). Finally, it verifies what’s written.

iOS + (void)rfidWriteEPC:(EPCCode *)epc;

Windows not available yet

parameter type description

epc EPCCode the epc to be written

Write data

Write data to an EPC tag in the field.

iOS
+ (void)rfidWriteData:(NSData *)someData memoryBank:(NHRFIDEPCMemoryBank)memoryBank
addressInWords:(NSUInteger)addressInWords timeout:(NSUInteger)timeout power:(NSUInteger)power
select:(NHSelect *)select password:(NHPassword *)password;

Page 33

Windows not available yet

parameter type description

someData Data the data to be written

memoryBank NHRFIDEPC
MemoryBank

the memory bank to write to

addressInWords Integer start address in words

timeout Integer timeout in milliseconds

power Integer the power, possible values range from 10 to 23 dBm

select Select select statement, can also be set to nil

password NHPassword optional password, can also be set to nil

Callbacks

Receive supported regions

The list of supported regions is received.

iOS - (void)sessionRFIDDidReceiveSupportedRegions:(NHRFIDRegion)regionFlags

Windows not available yet

parameter type description

regionFlags NHRFIDRegi
on

flags of all supported regions

Tag read

A RFID tag has been read.

iOS - (void)sessionRFIDDidReadTag:(NHEPCObservation *)epcObservation

Windows not available yet

parameter type description

epcObservation NHEPCObse
rvation

observation of the read EPC code of the tag

Read cycle finished

The current read cycle is finished and all read RFID tags are downloaded.

iOS - (void)sessionRFIDDidFinishReadCycle

Windows not available yet

Data read

Data has been read from a RFID tag. An indication is included to indicate whether there are more tags in the field.

Page 34

iOS - (void)sessionRFIDDidReadData:(NSData *)data moreTagsAvailable:(BOOL)available

Windows not available yet

parameter type description

data Data the data that has been read from the tag

available BOOL indication to indicate whether more tags were available in the field than the one that data was
read from

Data written

Data has been written to a RFID tag. An indication is included to indicate whether there are more tags in the field.

iOS - (void)sessionRFIDDidWriteDataMoreTagsAvailable:(BOOL)available

Windows not available yet

parameter type description

available BOOL indication to indicate whether more tags were available in the field than the one that data was
written to

Action failed

Indication that a specific action (read data, write, lock, kill) to a RFID tag has failed. An indication is included to indicate
whether there are more tags in the field.

iOS - (void)sessionRFIDDidFailButTagsAvailable:(BOOL)available

Windows not available yet

parameter type description

available BOOL indication to indicate whether more tags were available in the field than the one that was tried
the action on

Barcode

Methods

Barcode reader present

To check if the barcode reader is present, use the following method.

iOS + (BOOL)barcodeHasReader

Windows not available yet

Set barcode type

Set whether a specific barcode type is enabled or not for scanning.

iOS + (void)barcodeSetStatusForType:(NHBarcodeType)barcodeType enabled:(BOOL)enabled

Windows not available yet

Page 35

parameter type description

barcodeType NHBarcodeT
ype

type of barcode

enabled BOOL enabled or disabled

Read barcode

Try to read a barcode for a specified duration.

iOS + (void)barcodeTryDecode:(NSUInteger)duration

Windows not available yet

parameter type description

timeout Integer duration in seconds

Callbacks

Barcode read

A barcode has been read.

iOS - (void)sessionBarcodeDidReadABarcode:(NSString *)barcode barcodeType:(NHBarcodeType)type

Windows not available yet

parameter type description

barcode String the barcode that was read

type NHBarcodeT
ype

type of barcode that was read

Barcode not read

A barcode has not been read during the specified duration.

iOS - (void)sessionBarcodeDidNotReadABarcode

Windows not available yet

NFC

Methods

Try to read card

Try to read a card using this method.

iOS + (void)nfcTryToReadCard

Windows not available yet

Page 36

Callbacks

NFC card read

A NFC card has been read.

iOS - (void)sessionNFCDidReadCard:(NSUInteger)cardNumber

Windows not available yet

parameter type description

cardNumber Integer card serial number of the NFC card that was read

NFC card not found

A NFC card has not been found.

iOS - (void)sessionNFCDidNotFoundACard

Windows not available yet

Page 37

7. Transport layer

For communication with the !D Hand there is a protocol used. For this protocol there is a message use as described below. If
you use the presentation layer you don't need to use this messages. A message to the !D Hand needs to be implemented as
shown in the example. In this manual you can find the descriptions of the Data ID's used in the communication.

The communication between the device and the !D Hand is asynchronous.

Packet structure
There are two valid packet structures. Those are described in the next sections.

‘Big’ packet structure (0x07)

This new packet structure was defined to support larger payload lengths (longer than 256 bytes), and does replace the ‘old’
packet structure from firmware 1.1 of the !D Hand. This packet structure is only valid for responses from the !D Hand. !D Hand’s
with older firmware (< 1.1) still use the ‘small’ packet structure.

byte number value description

0 0x07 start of packet

1 0xNN length of packet payload (MSB)

2 0xNN length of packet payload (LSB)

3 0xNN command ID

4 0xNN data bytes (optional)

last byte 0xNN checksum

‘Small’ packet structure (0x06)

The ‘small’ packet structure is still the only valid packet structure for commands to the !D Hand. It remains to be supported for
responses from the !D Hand as well, to support !D Hand’s with firmware < 1.1.

byte number value description

0 0x06 start of packet

1 0xNN length of packet payload

2 0xNN command ID

3 0xNN data bytes (optional)

last byte 0xNN checksum

The length of the payload is defined as the sum of the data length plus three (bytes for length, command ID and CRC). So, if
there are no data bytes, the length is three. For one data byte, the length is four, etc.

length = length(data) + 3

To calculate the checksum, the following steps need to be taken:

1. Take the sum of the length byte, the command ID and all the data bytes.

2. Of the sum, take the two least-significant bytes. (uint8_t lsb = sum & 0xFF)

3. The checksum is the difference between 0x100 and this value.

Page 38

For examples, see the command description later on.

Commands to !D Hand
This section describes the commands from an external device, to the !D Hand.

General

0x01 - get battery percentage

Obtain the remaining battery capacity of the !D Hand.

byte number value description

0 0x06 start of packet

1 0x03 length of packet payload

2 0x01 command ID

3 0xFC checksum

0x02 - get device details

Obtain information from the !D Hand (serial number, etc.).

byte number value description

0 0x06 start of packet

1 0x03 length of packet payload

2 0x02 command ID

3 0xFB checksum

0x03 - disconnect

Disconnect the Bluetooth connection.

byte number value description

0 0x06 start of packet

1 0x03 length of packet payload

2 0x03 command ID

3 0xFA checksum

User interaction

0x41 - set status LED

Set the status LED.

byte number value description

0 0x06 start of packet

1 0x04 length of packet payload

Page 39

byte number value description

2 0x41 command ID

3 0xNN turn off (0x00), turn on (0x01) or start blinking (0x02)

last byte 0xNN checksum

0x42 - play tune

Play a tune on the beeper of the !D Hand.

byte number value description

0 0x06 start of packet

1 0x04 length of packet payload

2 0x42 command ID

3 0xNN tune

last byte 0xNN checksum

Available tunes

value description

0x00 short beep (used for ‘new tag found’)

0x01 beep indicating a successful action (used for ‘write tag successful’)

0x02 indicating a failure (used for ‘write tag failed’)

0x43 - vibrate

Vibrate the !D Hand. There are two options; vibration with a fixed length or vibration with a defined length. In the first
option, there is no data byte, for the latter option there is one data byte.

Without duration

byte number value description

0 0x06 start of packet

1 0x03 length of packet payload

2 0x43 command ID

3 0xNN checksum

With duration

byte number value description

0 0x06 start of packet

1 0x04 length of packet payload

2 0x43 command ID

3 0xNN duration in tenth of a second (e.g. 3 means 0.3 seconds)

Page 40

byte number value description

4 0xNN checksum

0x44 - vibrate tune

Play a tune on the vibration motor of the !D Hand.

byte number value description

0 0x06 start of packet

1 0x04 length of packet payload

2 0x44 command ID

3 0xNN tune (see available tunes in command 0x42)

last byte 0xNN checksum

RFID

0x23 - read EPC

Reads EPC tags for a specified duration.

byte number value description

0 0x06 start of packet

1 0xNN length of packet payload

2 0x23 command ID

3 0xNN flags

NN 0xNN select statements (optional, only if indicated in flags)

NN+1 0xNN timeout in milliseconds (MSB)

NN+2 0xNN timeout in milliseconds (LSB)

NN+3 0xNN power in dBm (minimum: 10, maximum: 23)

NN+4 0xNN checksum

Flags

value description

0x01 packet contains select

0x02 select inverted

0x10 packet contains password (not valid for EPC reading, command ID 0x23)

Select statement

byte number value description

0 0xNN length of select statement (excluding this byte)

Page 41

byte number value description

1 0xNN memory bank

2 0xNN start address in bits (MSB)

3 0xNN start address in bits (LSB)

4 0xNN data length in bits (MSB)

5 0xNN data length in bits (LSB)

NN 0xNN select data bytes

Password

byte number value description

0 0xNN password (MSB)

1 0xNN password

2 0xNN password

3 0xNN password (LSB)

Example

byte number value description

0 0x06 start of packet

1 0x07 length of packet payload

2 0x23 command ID

3 0x00 flags: no select, no password

4 0x01 timeout in milliseconds (MSB): 400ms

5 0x90 timeout in milliseconds (LSB)

6 0x17 power in dBm: 23 dBm

7 0x2E checksum: (0x07+0x23+0x00+0x01+0x90+0x17+0x2E) & 0xFF = 0x00

0x24 - read data

Read data from a RFID tag.

byte number value description

0 0x06 start of packet

1 0xNN length of packet payload

2 0x24 command ID

3 0xNN flags

NN 0xNN select statements (optional, only if indicated in flags)

Page 42

byte number value description

NN+1 0xNN password (optional, only if indicated in flags, MSB)

NN+2 0xNN password (optional, only if indicated in flags)

NN+3 0xNN password (optional, only if indicated in flags)

NN+4 0xNN password (optional, only if indicated in flags, LSB)

NN+5 0xNN timeout in milliseconds (MSB)

NN+6 0xNN timeout in milliseconds (LSB)

NN+7 0xNN power in dBm (minimum: 10, maximum: 23)

NN+8 0xNN memory bank to read data from

NN+9 0xNN start address in words (MSB)

NN+10 0xNN start address in words (LSB)

NN+11 0xNN length in words

NN+12 0xNN checksum

Memory bank

value description

0x00 reserved memory bank

0x01 EPC memory bank

0x02 TID memory bank

0x03 user memory bank

Example

byte number value description

0 0x06 start of packet

1 0x0B length of packet payload

2 0x24 command ID

3 0x00 flags: no select, no password

4 0x00 timeout in milliseconds (MSB): 100ms

5 0x64 timeout in milliseconds (LSB)

6 0x0A power in dBm: 10 dBm

7 0x02 memory bank to read data from: TID memory

8 0x00 start address in words (MSB): 0

9 0x00 start address in words (LSB)

10 0x02 length in words: 2

Page 43

byte number value description

11 0x5F checksum: (0x0B+0x24+0x00+0x00+0x64+0x0A+0x02+0x00+0x00+0x02+0x5F) & 0xFF = 0x00

0x25 - write data

Write data to a RFID tag.

byte number value description

0 0x06 start of packet

1 0xNN length of packet payload

2 0x25 command ID

3 0xNN flags

NN 0xNN select statements (optional, only if indicated in flags)

NN+1 0xNN password (optional, only if indicated in flags, MSB)

NN+2 0xNN password (optional, only if indicated in flags)

NN+3 0xNN password (optional, only if indicated in flags)

NN+4 0xNN password (optional, only if indicated in flags, LSB)

NN+5 0xNN timeout in milliseconds (MSB)

NN+6 0xNN timeout in milliseconds (LSB)

NN+7 0xNN power in dBm (minimum: 10, maximum: 23)

NN+8 0xNN memory bank to write to

NN+9 0xNN start address in words (MSB)

NN+10 0xNN start address in words (LSB)

NN+11 0xNN data length in words

NN+12 0xMM data

NN+MM+1 0xMM checksum

0x26 - lock tag

Lock a RFID tag.

byte number value description

0 0x06 start of packet

1 0xNN length of packet payload

2 0x26 command ID

3 0xNN flags

NN 0xNN select statements (optional, only if indicated in flags)

NN+1 0xNN password (optional, only if indicated in flags, MSB)

Page 44

byte number value description

NN+2 0xNN password (optional, only if indicated in flags)

NN+3 0xNN password (optional, only if indicated in flags)

NN+4 0xNN password (optional, only if indicated in flags, LSB)

NN+5 0xNN timeout in milliseconds (MSB)

NN+6 0xNN timeout in milliseconds (LSB)

NN+7 0xNN power in dBm (minimum: 10, maximum: 23)

NN+8 0xNN mask bits (MSB)

NN+9 0xNN mask bits (LSB)

NN+10 0xNN lock bits (MSB)

NN+11 0xNN lock bits (LSB)

NN+12 0xMM checksum

Lock bits, mask bits

value description

0x0000 lock user memory permanent

0x0001 lock user memory read/write

0x0002 lock TID memory permanent

0x0004 lock TID memory read/write

0x0010 lock EPC memory permanent

0x0020 lock EPC memory read/write

0x0040 lock access password permanent

0x0080 lock access password read/write

0x0100 lock kill password permanent

0x0200 lock kill password read/write

0x27 - kill tag

Kill a RFID tag.

byte number value description

0 0x06 start of packet

1 0xNN length of packet payload

2 0x27 command ID

3 0xNN flags

NN 0xNN select statements (optional, only if indicated in flags)

Page 45

byte number value description

NN+1 0xNN password (optional, only if indicated in flags, MSB)

NN+2 0xNN password (optional, only if indicated in flags)

NN+3 0xNN password (optional, only if indicated in flags)

NN+4 0xNN password (optional, only if indicated in flags, LSB)

NN+5 0xNN timeout in milliseconds (MSB)

NN+6 0xNN timeout in milliseconds (LSB)

NN+7 0xNN power in dBm (minimum: 10, maximum: 23)

NN+8 0xNN checksum

0x28 - set region
Sets the region for RFID reading.

byte number value description

0 0x06 start of packet

1 0x04 length of packet payload

2 0x28 command ID

3 0xNN region

4 0xNN checksum

Region

value description

0x00 undefined

0x01 Europe

0x02 North America

0x04 Korea

0x08 China

0x29 - set EPC parameter

Set one of the EPC parameters for reading.

byte number value description

0 0x06 start of packet

1 0xNN length of packet payload

2 0x29 command ID

3 0xNN EPC parameter key

4 0xNN EPC parameter value first

Page 46

byte number value description

5 0xNN EPC parameter value second (only for target, Q value)

6 0xNN checksum

EPC parameter key

value description

0x00 session

0x01 target

0x02 M value

0x03 Q value

Session

value description

0x00 session 0

0x01 session 1

0x02 session 2

0x04 session 3

Target - first value

value description

0x00 target A

0x01 target B

Target - second value

value description

0x00 non toggling

0x01 toggling

M value

value description

0x00 0

0x01 2

0x02 4

0x03 8

Q value - first value

value description

0x00 non dynamic

Page 47

value description

0x01 dynamic (first value is irrelevant)

Q value - second value

value description

0x00 0

0x01 1

0x02 2

... ...

0x2A - set CW signal

Enable or disable continuous wave signal.

byte number value description

0 0x06 start of packet

1 0x05 length of packet payload

2 0x2A command ID

3 0xNN enable CW (0x01) or not (0x00)

4 0xNN use antenna one (0x00) or antenna two (0x01)

5 0xNN checksum

0x2B - set frequency hop table

Sets the frequency hop table - a minimum of one frequency should be set, using four bytes. The length of the data bytes
should be a multiple of four. Please make sure that the frequencies that are set are compliant with the region for RFID operations.

byte number value description

0 0x06 start of packet

1 0xNN length of packet payload

2 0x2B command ID

3 0xNN frequency 1 (MSB)

4 0xNN frequency 1

5 0xNN frequency 1

6 0xNN frequency 1 (LSB)

NN 0xNN frequency 2 (optional, MSB)

NN 0xNN frequency 2 (optional)

NN 0xNN frequency 2 (optional)

NN 0xNN frequency 2 (optional, LSB)

Page 48

byte number value description

NN+1 0xNN checksum

0x2C - get supported regions

Retrieve all the supported regions from the !D Hand.

byte number value description

0 0x06 start of packet

1 0x03 length of packet payload

2 0x2C command ID

3 0xD1 checksum

0x2D - write EPC

Write a new EPC value to a tag. The handheld first verifies if there’s just one tag in the field. It then writes the new EPC to the
tag (and automatically corrects the PC word if necessary). Finally, it verifies what’s written.

byte number value description

0 0x06 start of packet

1 0xNN length of packet payload

2 0x2D command ID

3 0x00 RFU (reserved for future use, set to 0x00)

4 0x00 RFU (reserved for future use, set to 0x00)

5 0xNN new EPC

NN+1 0xNN checksum

Barcode

0x31 - set barcode type

Enable or disable a certain barcode type.

byte number value description

0 0x06 start of packet

1 0x05 length of packet payload

2 0x31 command ID

3 0xNN barcode type

4 0xNN enable (0x01) or disable (0x00)

5 0xNN checksum

Barcode type

Page 49

value description

0x00 all supported barcode types

0x01 EAN 8

0x02 EAN 13

0x03 UPC-A

0x04 UPC-E

0x05 EAN 128

0x06 Codabar

0x07 Code 11

0x08 Code 39

0x09 Code 93

0x0A EAN Bookland

0x0B Discrete 2 of 5

0x0C Interleaved 2 of 5

0x0D Code 128

0x0E MSI

0x0F GS1 Databar

0xFF unknown barcode type

0x32 - try to read a barcode

Enable the laser and try to read a barcode for the specified duration

byte number value description

0 0x06 start of packet

1 0x04 length of packet payload

2 0x32 command ID

3 0xNN duration in tenth of a second (e.g. 3 means 0.3 seconds)

4 0xNN checksum

NFC

0x51 - try to read card

Tries to read an NFC card.

byte number value description

0 0x06 start of packet

1 0x03 length of packet payload

Page 50

byte number value description

2 0x51 command ID

3 0xAC checksum

Responses from !D Hand

Errors

0xFF - error

An error has occurred.

byte number value description

0 0x06 start of packet

1 0x04 length of packet payload

2 0xFF command ID

3 0xNN error code

4 0xNN checksum

Error code

value description

0x00 CRC error in command sent to !D Hand

0x01 wrong number of bytes in command sent to !D Hand

0x21 rfid: analog frontend not enabled - error should not occur

0x22 rfid: temperature exceed limits - error should not occur

0x23 rfid: high return loss in antenna - hardware error, return for service

0x24 rfid: busy - error should not occur

0x25 rfid: invalid opcode - error should not occur

0x31 barcode: not available - can occur if no barcode reader is present, and a barcode command is sent

General

0x81 - battery percentage

Percentage of battery capacity remaining.

byte number value description

0 0x06 start of packet

1 0x04 length of packet payload

2 0x81 command ID

3 0xNN percentage remaining (between 0 and 100)

Page 51

byte number value description

4 0xNN checksum

0x82 - device details

Details about the !D Hand. Serial number, firmware and hardware versions. The firmware and hardware version are defined
as, for example version 2.1.3, where:

• 2 is first digit,

• 1 is middle digit,

• 3 is last digit.

byte number value description

0 0x06 start of packet

1 0x13 length of packet payload

2 0x82 command ID

3 0xNN Nedap production code: year

4 0xNN Nedap production code: month

5 0xNN Nedap production code: day - left char

6 0xNN Nedap production code: day - right char

7 0xNN Nedap production code: modification char

8 0xNN Nedap production code: serial - left char

9 0xNN Nedap production code: serial

10 0xNN Nedap production code: serial - right char

11 0xNN SKU (MSB)

12 0xNN SKU

13 0xNN SKU

14 0xNN SKU (LSB)

15 0xNN firmware version (first digit)

16 0xNN firmware version (middle digit)

17 0xNN firmware version (last digit)

18 0xNN hardware version (first digit)

19 0xNN hardware version (middle digit)

20 0xNN hardware version (last digit)

21 0xNN checksum

0x83 - low battery

The battery has just 10% of its capacity left.

Page 52

byte number value description

0 0x06 start of packet

1 0x03 length of packet payload

2 0x83 command ID

3 0x7A checksum

0x84 - empty battery

The battery is empty: the !D Hand will shutdown now.

byte number value description

0 0x06 start of packet

1 0x03 length of packet payload

2 0x84 command ID

3 0x79 checksum

0x85 - start charging

A charger is connected and the !D Hand will start charging.

byte number value description

0 0x06 start of packet

1 0x03 length of packet payload

2 0x85 command ID

3 0x78 checksum

User interaction

0xC1 - button pushed

The user pushed the button.

byte number value description

0 0x06 start of packet

1 0x03 length of packet payload

2 0xC1 command ID

3 0x3C checksum

0xC2 - shake

The user shook the !D Hand.

byte number value description

0 0x06 start of packet

Page 53

byte number value description

1 0x03 length of packet payload

2 0xC2 command ID

3 0x3B checksum

RFID

0xA1 - no tags read

Sent only when no tags were read during a read cycle.

byte number value description

0 0x06 start of packet

1 0x04 length of packet payload

2 0xA1 command ID

3 0x00 no tags read

4 0x5B checksum

0xA2 - tags

Tags that were read during a read cycle. There can be multiple of these packets right behind each other. The last packet flag
indicates whether one is the last of the current read cycle or not.

byte number value description

0 0x06 start of packet

1 0xNN length of packet payload

2 0xA2 command ID

3 0xNN last packet (0x01) or more packets are coming (0x00)

4 0xNN number of tags in this packet

5 0xNN tag 1: read count

6 0xNN tag 1: RSSI

7 0xNN tag 1: EPC length in bits (MSB)

8 0xNN tag 1: EPC length in bits (LSB)

9 0xNN tag 1: PC word (MSB)

10 0xNN tag 1: PC word (LSB)

NN 0xNN tag 1: EPC data (MSB), length is according to the EPC length

NN 0xNN ...

NN 0xNN tag 1: EPC data (LSB)

NN+1 0xNN tag 1: CRC (MSB)

Page 54

byte number value description

NN+2 0xNN tag 1: CRC (LSB)

NN+3 0xNN tag 2: ...

NN+MM+1 0xNN checksum

0xA3 - read data

Sent when it was tried to read data from a tag. The tag data bytes are only present if the action was a success.

byte number value description

0 0x06 start of packet

1 0xNN length of packet payload

2 0xA3 command ID

3 0xNN number of tags in the field

4 0xNN action was a success (0x01) or not (0x00)

NN 0xNN tag data (MSB)

NN 0xNN ...

NN 0xNN tag data (LSB)

NN 0xNN checksum

0xA4 - write data

Sent when it was tried to write data to a tag.

byte number value description

0 0x06 start of packet

1 0x05 length of packet payload

2 0xA4 command ID

3 0xNN number of tags in the field

4 0xNN action was a success (0x01) or not (0x00)

5 0xNN checksum

0xA5 - supported regions

The regions the !D Hand supports.

byte number value description

0 0x06 start of packet

1 0x04 length of packet payload

2 0xA5 command ID

3 0xNN region flags that are supported

Page 55

byte number value description

4 0xNN checksum

0xA6 - write EPC

Send when it was tried to write a new EPC to a tag

byte number value description

0 0x06 start of packet

1 0x04 length of packet payload

2 0xA6 command ID

3 0xNN status

4 0xNN checksum

Status

value description

0x00 write failed: no tags in the field

0x01 write failed: too much tags in the field (more than one)

0x02 write failed: other reason

0x03 write successful

Barcode

0xB1 - barcode read

A barcode was read. The length of the barcode can be evaluated by looking at the packet payload length. The barcode is
encoded as ASCII characters.

byte number value description

0 0x06 start of packet

1 0xNN length of packet payload

2 0xB1 command ID

3 0xNN barcode type

NN 0xNN barcode contents (MSB)

NN 0xNN ...

NN 0xNN barcode contents (LSB)

NN+1 0xNN checksum

0xB2 - no barcode read

No barcode was read during the specified period.

Page 56

byte number value description

0 0x06 start of packet

1 0x03 length of packet payload

2 0xB2 command ID

3 0x4B checksum

NFC

0xD1 - no card found

No card was found while trying to read.

byte number value description

0 0x06 start of packet

1 0x03 length of packet payload

2 0xD1 command ID

3 0x2C checksum

0xD2 - card found

A card was found while trying to read.

byte number value description

0 0x06 start of packet

1 0x07 length of packet payload

2 0xD2 command ID

3 0xNN card serial number (MSB)

4 0xNN card serial number

5 0xNN card serial number

6 0xNN card serial number (LSB)

7 0xNN checksum

Page 57

8. Getting started with development

This chapter will present the steps that need to be done to equip an empty project with the necessary libraries and links to get
started on !D Hand application development.

iOS (in Xcode 4.0)
Make sure to target iOS 4.0 as minimum, due to use of functions in the API only available in iOS > 4.0. Please note that working
with external accessories is not supported from within the simulator.

Create a new project

Create a new project inside Xcode; the exact type of project doesn’t matter.

Add API files

Create new groups inside your project (EPCGlobalTDS, NedapHandheldAPI, RegexKitLite) for our API and 3rd party libraries/
files. The RegexKitLite library6 is used for regular expressions inside the EPCGlobalTDS library.

Page 58

6 http://regexkit.sourceforge.net/RegexKitLite/

Drag and drop all files (like below) in the project. For the library binaries (.a) files - use the release versions. Also include the
relevant Tag Data Translation XML files.

Select ‘Copy items into destination group’s folder (if needed)’ to make sure the files are copied to the project folder.

Page 59

Add framework

Navigate to the project settings, select the right target and in ‘Build Settings’, add the ‘ExternalAccessory.framework’.

Change settings in .plist file

To make sure that the app is recognized as cooperating with the !D Hand, it needs to be added as a ‘supported external
accessory protocol’ in the .plist file of the project. The name of the protocol is ‘com.nedap.retail.handheld’. Please see the
screenshot for more details.

Add linker flag

For the RegexKitLite library, it is necessary to add a linker flag. Go to the project Build Settings, select ‘All’, and look for ‘Other
Linker Flags’. Enter here ‘-licucore’.

Page 60

Attribute Open-Source project ‘RegexKitLite’ in your application [1] - see their website for more information. It uses a
permissive BSD license.

For an example, see the NedapHandheldAPIDemo application.

Page 61

Windows (in Visual Studio)
When developing application based up on this API there are few things you have to take care of in order to get started. Please
note that since there is no standard way in dealing with Bluetooth connecting and pairing under Windows CE or Mobile; this has
to be implemented by the software developer. This API assumes a SerialPort that’s already paired to the !D Hand.

First you need to add libraries to you project. Libraries that should be added are: InTheHand.Net.Personal.dll, log4net.dll,
Nedap.EPC.TDT.dll, Nedap.HandheldApi.dll, statemap.dll. InTheHand.Net.Personal.dll library requires native library
32feetWidcom.dll for Widcomm (Broadcom) Bluetooth stack support, and this library should be added as a file to project and in
properties of this file ‘Copy to Output Directory’ should be set to ‘Copy always’, and ‘Build Action’ to ‘Content’.

Page 62

The next step is to create TDTEngine and initialize it. It can be initialized without parameters or with parameters of
XMLDefinitions type which is public enumerator in TDTEngine. This list represents translation definitions XML files.

When loading all definitions call Initialize without parameters:

Nedap.EPC.TDT.TDTEngine engine = new Nedap.EPC.TDT.TDTEngine();
engine.Initialize();

When loading only wanted definitions call Initialize with parameters:

Nedap.EPC.TDT.TDTEngine engine = new Nedap.EPC.TDT.TDTEngine();
XmlDefinitions[] definitionsList = { XmlDefinitions.SGLN_96,
	 XmlDefinitions.SGTIN_96 };
engine.Initialize(definitionsList);

Then to use the API, create a SerialCommunicationPort, Session and PresentationFacade:

public ICommunicationPort Port { get; private set; }
public Session Session { get; private set; }
public PresentationFacade Facade { get; private set; }

To connect with the !D Hand, there are two options: use the 32feet.net library to automatically detect and connect to the !D
Hand. If that’s not possible, a fallback scenario for using a Bluetooth serial port is also possible. A universal solution would be to
try to instantiate BluetoothCommunicationPort, and if platform is not supported an exception would be thrown. This exception
can be catch, and fallback to SerialPort class can be done. With this approach more robust solution can be created.

Page 63

32feet.net library

If the phone uses Microsoft or Widcomm (Broadcom) Bluetooth stack (32feet.net library), device discovery, pairing and
connecting (implemented in BluetoothCommunicationPort) can be done without user interaction:

Port = new BluetoothCommunicationPort();
Session = new Session(Port, true);
Facade = new PresentationFacade(Session);

Serial port fallback

If the phone does not support mentioned Bluetooth stacks, SerialCommunicationPort class can be used. This approach requires
the user to use target phone Bluetooth software to manually discover, pair and connect to the !D Hand Bluetooth Serial Port.
Port name (portName) is the name of the System.IO.Ports.SerialPort that is used to connect to the handheld reader (e.g.
“COM1”). Note that port name can be provided from UI and that user should select COM port used to connect to the !D Hand.

Port = new SerialCommunicationPort(portName, 9600, Parity.None, 8, StopBits.One);
Session = new Session(Port, true);
Facade = new PresentationFacade(Session);

Port name is name of the System.IO.Ports.SerialPort available on the device (example: “COM1”),
public SerialCommunicationPortPort = new SerialCommunicationPort(portName, 9600, Parity.None, 8, StopBits.One);

Port is then used to create Session:

public Session Session = new Session(Port, true);

PresentationFacade is then created with that Session.

public PresentationFacade Facade = new PresentationFacade(Session);

Communication with device is easily done through PresentationFacade and all device responses and result data is returned
through events. Subscribing to event and calling method via presentation:
Program.Controller.Facade.OnReadRfidTag += new System.EventHandler<ReadRfidTagEventArgs>(facade_OnReadRfidTag);

Program.Controller.Facade.RfidInventoryStart();

When updating GUI on triggered event developer must take care of asynchronous GUI update because of the thread security.
Example of solving this problem with BeginInvoke method:

private void facade_OnReadRfidTag(object sender, ReadRfidTagEventArgs e)
{
	 lbInventoryItemsList.BeginInvoke(new UpdateUIDelegate(FormUpdateMethod),
	 	 e.EpcObservation);
}

private void FormUpdateMethod(EpcObservation epcObservation)
{
	 lbInventoryItemsList.Items.Add(epcObservation.EpcCode.PureIdentityURI);
}

On application exit, a dispose of classes used for interaction should be done in this order:

Page 64

public void Dispose()
{
	 if (Session != null)
	 {
	 	 Facade.Dispose();
	 	 Port.Dispose();
	 	 Session.Dispose();
	 }
}

This sums up basic information and code examples for beginning development with this API. More details can be found in the
example application (RetailDemoApp).

Page 65

A. Frequently Asked Questions

Using Bluetooth and Wi-Fi together used to cause a lot of problems. Isn’t that the case as well with the !D Hand,
when used together with a mobile device?

This indeed used to be a problem in the past, but it’s not anymore. Bluetooth 2.1+EDR introduced some sophisticated algorithms
to cope with these issues. Furthermore, most mobile device are able to intelligently use both Bluetooth and Wi-Fi at the same
time, by using time multiplexing. In our applications, we didn’t see any issues related to this. Consider it a thing of the past.

Page 66

B. Update firmware

These chapter contains instructions to update the firmware on the !D Hand to the newest version.

What you need:

• !D Hand

• Micro USB cable

• Firmware (!D Hand firmware x.x.x.hex)

• AVRprog.exe (Windows) or avrdude (Mac OS X) - see archive with firmware

• Computer with Windows or Mac OS X (Linux is available upon request)

1. Install the driver for the !D Hand

The driver is available at the following URL:

http://www.ftdichip.com/Drivers/VCP.htm

2. Connect the !D Hand to the computer

The right LED lights up orange, to indicate normal charging.

3. Hold down the button for more then 8 seconds

The !D Hand will reboot and go into the bootloader. Both LED’s lights up red. The !D Hand will remain 10 seconds in this state.

From now on there is a difference in steps between Windows or Mac OS X. The instructions for Windows are first, followed by
the instructions for Mac OS X.

Page 67

Windows 4. Start AVRProg.exe while the !D Hand is in the bootloader (not before, and not after)

Windows 5. Select the new firmware file

Click on browse and select the firmware file. Click on open.

Windows 6. Click on ‘Program’ in the ‘Flash’ section

The program will start erasing, upload and verify the new firmware. After the upload is finished the program shows that
everything is done OK.

Page 68

Windows 7. Click on exit to quit the boot loader on the !D Hand

The options get inactive and the !D Hand reboots. After that, it’s safe to close the application.

Page 69

Mac OS X 4. Execute the following command while the !D Hand is in the bootloader (not before, and not after)

avrdude -pm1280 -cavr109 -P/dev/tty.usbserial-<serial> -b115200 -Uflash:w:\!D\ Hand\
firmware\ <version>.hex:a

Replace <serial> and <version> with the appropriate variables. The version depends on the file in the firmware archive. The serial
number can be found by executing the following command:

ls /dev/tty.usbserial*

The result is then:

/dev/tty.usbserial-1012

For example for serial 1012 and version 0.9.1:

avrdude -pm1280 -cavr109 -P/dev/tty.usbserial-1012 -b115200 -Uflash:w:\!D\ Hand\ firmware
\ 0.9.1.hex:a

The result should be:

Connecting to programmer: .
Found programmer: Id = "AVRBOOT"; type = S
Software Version = 0.8; No Hardware Version given.
Programmer supports auto addr increment.
Programmer supports buffered memory access with buffersize=256 bytes.

Programmer supports the following devices:
	 Device code: 0x43

avrdude: AVR device initialized and ready to accept instructions

Reading | ## | 100% 0.00s

avrdude: Device signature = 0x1e9703
avrdude: NOTE: FLASH memory has been specified, an erase cycle will be performed

 To disable this feature, specify the -D option.

avrdude: erasing chip
avrdude: reading input file "!D Hand firmware 0.9.1.hex"
avrdude: input file !D Hand firmware 0.9.1.hex auto detected as Intel Hex
avrdude: writing flash (49568 bytes):

Writing | ## | 100% 5.81s

avrdude: 49568 bytes of flash written
avrdude: verifying flash memory against !D Hand firmware 0.9.1.hex:
avrdude: load data flash data from input file !D Hand firmware 0.9.1.hex:

Page 70

avrdude: input file !D Hand firmware 0.9.1.hex auto detected as Intel Hex
avrdude: input file !D Hand firmware 0.9.1.hex contains 49568 bytes
avrdude: reading on-chip flash data:

Reading | ## | 100% 4.66s

avrdude: verifying ...
avrdude: 49568 bytes of flash verified

avrdude done. Thank you.

If the !D Hand is not in bootloader mode (both red LEDs are not on), the error will be:

Connecting to programmer: .avrdude: butterfly_recv(): programmer is not responding

Hold the button for more than ten seconds and try again.

Page 71

C. Licensing
The embedded software in the !D Hand uses code from the Arduino project - LGPL licensed code. To comply with the license
agreement, we provide you with the following:

• Release changes to the libraries covered by the LGPL. This code is available at https://github.com/nedap/arduino. Upon
request, we can sent this code on a physical device. Shipping and handling cost may apply.

• On request, we provide binary object files that allow for the relinking of the firmware against updated versions of the LGPL
code. Please sent this request to rfidretail@nedap.com.

GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional
permissions listed below.

0. Additional Definitions.
As used herein, “this License” refers to version 3 of the GNU Lesser General Public License, and the “GNU GPL” refers to version 3 of the GNU General Public License.
“The Library” refers to a covered work governed by this License, other than an Application or a Combined Work as defined below.
An “Application” is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library. Defining a subclass of a class defined by the
Library is deemed a mode of using an interface provided by the Library.
A “Combined Work” is a work produced by combining or linking an Application with the Library. The particular version of the Library with which the Combined Work was made is
also called the “Linked Version”.
The “Minimal Corresponding Source” for a Combined Work means the Corresponding Source for the Combined Work, excluding any source code for portions of the Combined
Work that, considered in isolation, are based on the Application, and not on the Linked Version.
The “Corresponding Application Code” for a Combined Work means the object code and/or source code for the Application, including any data and utility programs needed for
reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.
You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.
If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that uses the facility (other than as an
argument passed when the facility is invoked), then you may convey a copy of the modified version:
a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does not supply the function or data, the facility still operates, and
performs whatever part of its purpose remains meaningful, or
b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.
The object code form of an Application may incorporate material from a header file that is part of the Library. You may convey such object code under terms of your choice,
provided that, if the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or
fewer lines in length), you do both of the following:
a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its use are covered by this License.
b) Accompany the object code with a copy of the GNU GPL and this license document.
4. Combined Works.
You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library contained in the
Combined Work and reverse engineering for debugging such modifications, if you also do each of the following:
a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are covered by this License.
b) Accompany the Combined Work with a copy of the GNU GPL and this license document.
c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a reference directing the
user to the copies of the GNU GPL and this license document.
d) Do one of the following:
0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form suitable for, and under terms that permit, the
user to recombine or relink the Application with a modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the
GNU GPL for conveying Corresponding Source.
1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library already present on the user's
computer system, and (b) will operate properly with a modified version of the Library that is interface-compatible with the Linked Version.
e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of the GNU GPL, and only to the extent that such
information is necessary to install and execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the
Linked Version. (If you use option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application Code. If you use option
4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.)

5. Combined Libraries.
You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that are not Applications and are not
covered by this License, and convey such a combined library under terms of your choice, if you do both of the following:
a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed under the terms of this License.
b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same
work.

6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License “or
any later version” applies to it, you have the option of following the terms and conditions either of that published version or of any later version published by the Free Software
Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.
If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall apply, that proxy's public statement of
acceptance of any version is permanent authorization for you to choose that version for the Library.

Page 72

https://github.com/nedap/arduino
https://github.com/nedap/arduino
mailto:rfidretail@nedap.com
mailto:rfidretail@nedap.com
http://fsf.org/
http://fsf.org/

D. Change notes

version date changes

0.9 january 10, 2011 [DH] First public release.

0.9.1 february 13, 2011 [DH] Added Windows function calls and description

[DH] Added information on how to get started with Windows development

[DH] Added function to retrieve device information

[DH] Updated device information command in transport layer to add model number (SKU)

[DH] Fixed command ‘SetEPCParameters’ in transport layer; values for settings were wrong

[DH] Removed all references to set the maximum EPC length; now defaults to read maximum lengths

of 496 bits

[DH] Added functionality to do high-volume inventory (using Session 2 and Session 3)

[DH] Added instructions on how to update the firmware of the !D Hand

[DH] Added license information on the software used on the !D Hand

[DH] Fixed length error in the transport layer ‘Vibration’ command example

[DH] Fixed error in the transport layer ‘SetEPCParameters’ command: the order in the set Q value

message was not right

0.9.2 february 25, 2011 [DH] Added information on how to update the firmware.

[DH] Added vibration tune command in all layers.

[DH] Added new write EPC command in the transport layer that checks if just one tag is in the field,
writes the new EPC to a tag (automatically adjusting PC words) and verifies what’s written

[DH] Added information on how to update the firmware on Mac OS X

1.0 march 22, 2011 [DH] Changed documentation for Xcode 4

[DH] Fixed small errors

1.1 june 17, 2011 [DH] Add ‘large packet’ with type 0x07

[DH] Change naming of Windows events OnDidDisconnect and OnDidConnect to new names
OnDisconnect and OnConnect

[DH] Changed naming of some Windows methods to be more consistent with what is ‘normal’

[DH] Added documentation for using the 32feet.net Bluetooth library

Page 73

