
ID.me Verify SDK (iOS)
A. General
Release Information

SDK Version: 1.1.1 (November 22, 2013)
Documentation Version: 1.1.1 (v1) (November 22, 2013)
Maintained By: Arthur Sabintsev

For more information please email us at mobile@id.me or visit us at http://developer.id.me.

Changelog

Renamed CredentialType typedef to IDmeVerifyCredentialType
Renamed CredentialType typedef elements as well
Addressed potential issue with dismisisng scanner

General Information
The ID.me Verify SDK for iOS is a library that adds the following functionality to your mobile iOS
application:

Verify your user's group affiliation
Military Verification with TroopID
Student Verification with StudentID
First Responder Verification with FirstResponderID

Scan your user's physical credential
All U.S. State Licenses (incl. Washington, D.C.)
Common Access Cards (a.k.a. CACs)
Uniformed Services Cards

Cards held by Active Military Personnel
Cards held by Retired Military Personnel
Cards held by Family Members and Dependents of Military Personnel

Sample Project
A sample project has been added to the SDK for your convenience. A few #warning macros
have been added to notify you where you should edit the code before running the project.

http://github.com/ArtSabintsev
file:///Users/arthur/Documents/projects/idme/ID.me-Verify-SDK-iOS/mobile@id.me
http://developer.id.me/

iOS Version and iDevice Compatibility

iOS Compativility: iOS 6, iOS 7
Device Compatibility

iPhone: 4, 4S, 5, 5C, 5S
iPad: 3, 4, Mini
iPod Touch: 5th Gen

Even though iOS 6 supports the iphone 3GS and the iPad 2, the SDK does not support these
devices. This is due to the lack of an auto-focusing camera lens, which is needed for the
credential scanner.

Referencing SDK Documentation within Xcode
For your convenience, Doxygen style comments have been added into the public headers of the
SDK. If you're using Xcode 5+, simply ALT + Left Click on any method or variable found in
the SDK to get a tooltip describing said method. An example of one of the tooltips can be found
in the image below:

B. Installation
Before you begin, please consider using utilizing this SDK as a submodule in your application.

1. Drag the ID.me Verify SDK file into your project. This includes the following files
libIDmeVerify.a
IDmeVerify.bundle
IDmeVerify.h
The Classes folder, which contains a some public headers for reference during
development.

2. Make the following changes in the Xcode Project
Go to your Xcode Project's Build Settings tab
Search for the following setting: Architecture

Change it to the following option: Standard Architectures (armv7,
armv7s)

Search for the following setting: Other Linker Flags
Add two flags: -ObjC and -all_load

3. Make the following changes in the Xcode Target
Go to your Xcode Target's Build Settings tab
Search for the following setting: Architecture

Change it to the following option: Standard Architectures (armv7,
armv7s)

Search for the following setting: Other Linker Flags
Add two flags: -ObjC and -all_load

4. Import IDmeVerify.h in the classes that you plan
5. Added the following Apple Frameworks to your project:

AVFoundation
CFNetwork
CoreMedia
CoreVideo
Foundation
UIKit

Please make sure to include them in your project.

C. Activiation
The SDK must be activated using a serial-key provided by ID.me. As the IDmeVerify class is a
singleton, activation can occur at any point in time. It is our recommendation that activation
occur in the AppDelegate during the application's startup.

To activate the SDK, simply run the following command with the provided serial-key:

[[IDmeVerify sharedInstance] startWithSerialKey:@"YOUR_SERIAL_KEY"];

If activation was successful, you'll see the following message in your console:

SDK Activation Succeeded!

If activation failed, you'll see the following message in your console:

SDK Activation Failed! The provided serial number is incorrect. Please make sure
you entered it in correctly and try again. If you need a new serial number,
please contact mobile@id.me.

If you have a problem activating the SDK, please contact us at mobile@id.me.

file:///Users/arthur/Documents/projects/idme/ID.me-Verify-SDK-iOS/mobile@id.me

D. Group Affiliation Verification
Background
The Group Affiliation Verification aspect of the SDK occurs through a modal view controller.
The modal view controller is a navigation controller initialized with a web-view. The entire OAuth
flow occurs through the web-view. Upon successful completion, the modal will automatically be
dismissed, and a JSON object in the form of an NSDictionary object containing your user's
verificaiton information will be returned to you.

Important Note on Modal Orientation
The modal navigation controller is a subclass of UINavigationController, named
IDmeWebVerificationNavigationController . This navigation controller has only two
methods in its implementation, allowing for a portrait-only orientation:

- (NSUInteger)supportedInterfaceOrientations
{
 return UIInterfaceOrientationMaskPortrait;
}

- (BOOL)shouldAutorotate
{
 return YES;
}

The public header for this class has been provided in the Classes folder of the SDK, in case your
project has some various rules regarding orientation in your project's AppDelegate, specifically
the following method: application:supportedInterfaceOrientationsForWindow: .

Execution
To launch the modal, the following method must be called in the view controller class that will
be presenting the modal:

- (void)verifyUserInViewController:(UIViewController *)externalViewController
 withClientID:(NSString *)clientID
 redirectURI:(NSString *)redirectURI
 affiliationType:(IDmeVerifyAffiliationType)affiliationType
 inSandboxMode:(BOOL)sandboxMode
 withResults:
(IDmeVerifyVerificationResults)verificationResults;

The params in that method are as follows:

externalViewController : The viewController which will present the modal
navigationController.
clientID : The clientID provided by ID.me when registering the app at
http://developer.sandbox.id.me or http://developer.www.id.me.
redirectURI : The redirectURI provided to ID.me when registering your app at
http://developer.sandbox.id.me or http://developer.id.me
affiliationType : The type of group verficiation that should be presented. Check the
IDmeVerifyAffiliationType typedef for more details.
sandboxMode : While developing the app, set this value to YES. The test data values
provided by ID.me will be accessible via the sandbox API routes. Before pushing your
application live and setting this value to NO, make sure your app is first registered with
ID.me's live/production server by filling out a request at http://developer.id.me.
verificationResults : A block that returns an NSDictionary object and an NSError
object. The verified user's profile is stored in an NSDictionary object as JSON data. If no
data was returned, or an error occured, NSDictionary is nil and NSError returns an error
code and localized description of the specific error that occured.

In your code, the implementation of this method should yield an expanded form of the
verificationResults block. It is our recommendation that the full implementation of this
method look as follows:

[[IDmeVerify sharedInstance] verifyUserInViewController:
<your_presenting_view_controller>
 withClientID:<your_clientID>
 redirectURI:<your_redirectURI>
 affiliationType:<your_affiliationType>
 inSandboxMode:<BOOLEAN>
 withResults:^(NSDictionary
*userProfile, NSError *error) {

 if (error) { // Error

 } else { // Verification was
successful

 }

 }];

For the sake of convenience, the constants below, which are keys for the JSON (NSDictionary)

http://developer.sandbox.id.me/
http://developer.www.id.me/
http://developer.sandbox.id.me/
http://developer.id.me/
http://developer.id.me/

object, have been made avaialable:

kIDmeVerifyKeyAffiliation , references the affiliation key in the JSON object.
kIDmeVerifyKeyID , references the id key in the JSON object.
kIDmeVerifyKeyVerified , references the verified key in the JSON object.

NOTE: Other attributes (e.g., email, first name, last name, etc…) can be returned in the JSON
results upon special request. Please email mobile@id.me if your app needs to gain access to
more attributes.

All potential errors that could occur are explained in the next section.

Error Handling
There are four potential outcomes during the group affiliation verification process, three of which
are errors. All of the errors are returned in the IDmeVerifyVerificationResults block, which
is the last parameter in verification method described above. Each error will return a non-nil
NSError object, and a nil NSDictionary object. The three verification related errors can be found
in the IDmeVerifyErrorCode typedef, which deals with all errors in the SDK. The three
verification related errors are as follows:

IDmeVerifyErrorCodeVerificationDidFailToFetchUserProfile
Error occurs if user succesfully verified their group affiliation, but there was a
problem with the user's profile being returned.
This should never occur, but this error was added to handle a rare situation
involving the inability to reach ID.me's server.

IDmeVerifyErrorCodeVerificationWasDeniedByUser
Erorr occurs if user succesfully verified their group affiliation, but decided to deny
access to your app at the end of the OAuth flow.

IDmeVerifyErrorCodeVerificationWasCanceledByUser
Error occurs if user exits modal navigation controller before OAuth flow could
complete.

The following properties of the NSError object should be referenced by your app if you're
looking to employ error-specific methods:

code : The error code of the specific issue. The value is defined in the
IDmeVerifyErrorCode typedef, and should be in the 100s.
localizedDescription : A detailed description of the error.

Internet Connectivity
Internet connectivity is required, as the verificaiton occurs through a webView.

file:///Users/arthur/Documents/projects/idme/ID.me-Verify-SDK-iOS/mobile@id.me

E. Credential Scanning
Background
The second aspect of the ID.me Verify SDK is the Credential Scanner and Parser. The scanner
works with the following credentials:

All U.S. State Licenses (incl. Washington, D.C.)
Common Access Cards (a.k.a. CACs)
Uniformed Services Cards

Cards held by Active Military Personnel
Cards held by Retired Military Personnel
Cards held by Family Members and Dependents of Military Personnel

The following barcode is found the above-mentioned credentials. The scanner is fine-tuned to
scan this specific barcode:

The user is taught to scan this type of barcode on the first launch of the credential scanner. A
help button is added to the main screen of the scanner, allowing the user to reference this
information on subsequent launches of the scanner.

Important Note on Modal Orientation
The modal view controller is a subclass of UIViewController, named
IDmeCredentialScannerViewController . This view controller has only two methods in its
implementation, allowing for landscape-only orientation:

- (NSUInteger)supportedInterfaceOrientations
{
 return UIInterfaceOrientationMaskLandscape;
}

- (BOOL)shouldAutorotate
{
 return YES;
}

The public header for this class has been provided in the Classes folder of the SDK, in case your
project has some various rules regarding orientation in your project's AppDelegate, specifically
the following method: application:supportedInterfaceOrientationsForWindow: .

Execution
The credential scanner is presented as a modal view controller. Once a credential is scanned, it
is parsed in the background and data is returned in an Objective-C block.

The scanner is activated with the following method:

- (void)scanCredentialInViewController:(UIViewController
*)externalViewController
 forCredentialTypes:
(IDmeVerifyDetectCredentialTypes)credentialTypes
 withResults:(IDmeVerifyScanResults)scanResults;

The params in this method are as follows:

externalViewController The viewController which will present the credential scanner
model viewController.
*credentialTypes One or more credential types defined in the
IDmeVerifyDetectCredentialTypes options enumerator.

For example: If you want to only scan US State Licenses and Common Access
Cards, use the following flags:
IDmeVerifyDetectCredentialTypeStateLicense |
IDmeVerifyDetectCredentialTypeCommonAccessCard

scanResults An Objective-C block that returns the parsed results of the scanned
credential and an NSError object.

The scanner should be implemented in the following manner:

 [[IDmeVerify sharedInstance] scanCredentialInViewController:self
 forCredentialTypes:
<IDmeVerifyDetectCredentialType Option>
 withResults:^(IDmeCredential
*credential, NSError *error) {

 if (error) { // Error

 } else { // Credential
was scanned and parsed successfully

 }
 }];

If there are no errors, the following snippet of code may be helpful in your else statement:

 switch ([credential credentialType]) {

 case IDmeVerifyCredentialTypeStateLicense:{
 IDmeStateLicense *stateLicense = (IDmeStateLicense *)credential;
 // Extract data from stateLicense
 } break;

 case IDmeVerifyCredentialTypeCommonAccessCard:{
 IDmeCommonAccessCard *commonAccessCard = (IDmeCommonAccessCard
*)credential;
 // Extract data from commonAccessCard
 } break;

 case IDmeVerifyCredentialTypeUniformedServicesCard:{
 IDmeUniformedServicesCard *uniformedServicesCard =
(IDmeUniformedServicesCard *)credential;
 // Extract data from uniformedServicesCard
 } break;

 case IDmeVerifyCredentialTypeUniformedServicesDependentCard:{
 IDmeUniformedServicesDependentCard *uniformedServicesDependentCard =
(IDmeUniformedServicesDependentCard *)credential;
 // Extract data from uniformedServicesDependentCard
 } break;

 case IDmeVerifyCredentialTypeUnknown:{
 // Occurs when scanned credential is unknown
 // An error is also thrown, so this conditional should never be entered
if you use the if-else block in the aformenetioned code snippet.
 } break;
 }

All potential errors that could occur are explained at a later step in this section.

Credentials

Hierarchy
The data returned in the Objective-C block in the aforementioned method are all instances or
subclassed instances of the IDmeCredential class. The headers for this class, and its
subclasses are made public in this library. For your reference, the class hierarchy is as follows:

IDmeCredential
IDmeStateLicense subclasses IDmeCredential
IDmeDefenseCredential subclasses IDmeCredential

IDmeCommonAccessCard subclasses IDmeDefenseCredential
IDmeUniformedServicesCard subclasses IDmeDefenseCredential

IDmeUniformedServicesDependentCard subclasses
IDmeUniformedServicesCard

Parsed Data
For easy reference, each IDmeCredential instance (and subclassed instance) is made to
respond to an overwritten instance of the description method, which returns back all the
stored data in the IDmeCredential class of interest.

For example, let's assume we have an object named stateLicense , (e.g.,
IDmeStateLicense *stateLicense;). When calling [stateLicense description] , the
following key : value result wil be outputted:

==[PARSED DATA]==
Credential Type : US State License
firstName : JOHN
lastName : SMITH
address : 123 MAIN ST
city : WILMINGTON
state : DE
zipCode : 19801
birthdate : 02/01/1970
birthMonth : 01
birthDay : 02
birthYear : 1970
age : 43 years old

Each key in the list above is also the the name of a property on the IDmeStateLicense object
that can be used to extract the data/values on the right side of the colon. To reiterate, each
IDmeCredential subclass instance has their own set of properties. The easiest way of finding
our what those properties are, is by accessing the description method. Another way of
finding out this informaiton is by checking the header files in the Classes folder of the SDK for
each IDmeCredential subclass and traversing the class hierarchy for the properties that are
inherited.

Error Handling
There are fives potential outcomes during the credential scanning and parsing process. Four of
these outcomes are errors. All of the errors are returned in the IDmeVerifyScanResults block,
which is the last parameter in credential scanner method described above. Each error will return
a non-nil NSError object, and a nil Credential object. The four verification related errors can be
found in the IDmeVerifyErrorCode typedef, which deals with all errors in the SDK. The four

scanning and parsing related errors are as follows:

IDmeVerifyErrorCodeScannerAccessForbidden
Error occurs if developer attempts to access scanner, but is not given access to it.
To gain access to scanner, send an email to mobile@id.me.

IDmeVerifyErrorCodeNoScanPerformed
Error occurs if user exits scanner without scanning a credential.

IDmeVerifyErrorCodeCouldNotParseCredential
Error occurs if scanned credential could not be parsed.

IDmeVerifyErrorCodeCredentialOwnerIsUnderLegalAge
Error occurs if owner of scanned credential is under age (e.g., under 13).

Known Exceptions

Illinois: Licenses from this state only encode the first-name, last-name and birthdate on
the barcode.
Iowa: License may not scan properly. We are working to address this issue.
North Dakota: License may not scan properly. We are working to address this issue.
South Dakota: License may not scan properly. We are working to address this issue.
Vermont: License may not scan properly. We are working to address this issue.

Analytics
The ID.me SDK will call home only after a credential scan is performed. The following
information will be sent back for analytics purposes:

ID.me Verify SDK Version
iOS Version
iDevice
Scanned Credential Type (only the type, and not the information on the credential).
Your App's Name
Your App's Version

User Acquisiton
Certain portions of the scanned credential will be sent home in the analytics API request, IF
AND ONLY IF you are a partner who has entered into a user-acquisiton agreement with ID.me.
For more information, please contact us at mobile@id.me.

Internet Connectivity
As credential scanning occurs client-side (e.g. on the iDevice), it is understood that internet
connectivity may not be available. However, internet connectivity is required for the analytics

file:///Users/arthur/Documents/projects/idme/ID.me-Verify-SDK-iOS/mobile@id.me
file:///Users/arthur/Documents/projects/idme/ID.me-Verify-SDK-iOS/mobile@id.me

API route to be reached. As analytics comes secondary to scanning and parsing, the SDK will
handle the lack-of-connectivity situation gracefully without affecting the scanning and parsing of
the credential.

F. Convenience Macros and Constants
The following macros and constants were made public in the SDK for your convenience:

IDmeLog(fmt, …) :This is an NSLog that prefixes every statement with [ID.me Verify]:,
which can be used for debugging SDK related errors when you implement the SDK into
your project.
IDME_VERIFY_ERROR_DOMAIN : All NSError objects in this SDK utilize this Error Domain.
kIDmeVerifySDKVersion : An NSString constant that yields the current version of the
SDK.

G. Terms of Use
By using this SDK, you agree to ID.me's Terms of Use.

https://www.id.me/partner-terms

