
PDF Reader/Viewer V2.5 for iOS

GitHub: https://github.com/vfr/Reader

Website: http://www.vfr.org/

Introduction

I've crafted this open source PDF reader/viewer for fellow iOS developers struggling 
with wrangling PDF files onto iOS device screens.

The code is universal and does not require any XIBs (as all UI elements are code 
generated, allowing for greatest flexibility). It runs on iPad, iPhone and iPod touch with 
iOS 4.0 and up. Also supported are the Retina displays in all new devices and is ready
to be fully internationalized. The idea was to provide a complete project template that 
you could start building from, or, just pull the required files into an existing project to 
enable PDF reading/viewing in your app(s).

After launching the sample app, tap on the left hand side of the screen to go back a page. 
Tap on the right hand side to go to the next page. You can also swipe left and right to 
change pages. Tap on the screen to fade in the toolbar and page slider. Double-tap with 
one finger (or pinch out) to zoom in. Double tap with two fingers (or pinch in) to zoom 
out.

This implementation has been tested with large PDF files (over 250MB in size and over 
2800 pages in length) and with PDF files of all flavors (from text only documents to 
graphics heavy magazines). It also works rather well on older devices (such as the iPod 
touch 2nd generation and iPhone 3G) and takes advantage of the dual-core processor (via 
CATiledLayer and multi-threading) in new devices.

Features

Multithreaded: The UI is always quite smooth and responsive.

Supports:

 - iBooks-like document navigation.
 - Device rotation and all orientations.¹
 - Encrypted (password protected) PDFs.
 - PDF links (URI and go to page).
 - PDFs with rotated pages.

http://www.vfr.org/
https://github.com/vfr/Reader


Notes

Version 2.x of the PDF reader/viewer code was originally developed and tested under 
Xcode 3.2.6, LLVM 1.7, iOS 4.3.5, iOS 4.2.1 with current development and testing under 
Xcode 4.3.2, LLVM 3.1, iOS 5. The code uses manual memory management and will 
continue to do so.

The overall PDF reader/viewer functionality is encapsulated in the ReaderViewController 
class. To present a document with this class, you first need to create a ReaderDocument 
object with the file path to the PDF document and then initialize a new 
ReaderViewController with this ReaderDocument object. The ReaderViewController 
class uses a ReaderDocument object to store information about the document and to keep 
track of document properties (thumb cache directory path, bookmarks and the current 
page number for example).

An initialized ReaderViewController can then be presented modally, pushed onto a 
UINavigationController stack, placed in a UITabBarController tab, or be used as a root 
view controller. Please note that since ReaderViewController implements its own toolbar, 
you need to hide the UINavigationController navigation bar before pushing it and then 
show the navigation bar after popping it. The ReaderDemoController class shows how 
this is done with a bundled PDF file. To create a ‘book as an app’, please see the 
ReaderBookDelegate class.

Required Files

The following files are required to incorporate the PDF reader/viewer into one of your 
projects:

 CGPDFDocument.h CGPDFDocument.m
 ReaderDocument.h ReaderDocument.m
 ReaderConstants.h ReaderConstants.m
 ReaderViewController.h ReaderViewController.m
 ReaderMainToolbar.h ReaderMainToolbar.m
 ReaderMainPagebar.h ReaderMainPagebar.m
 ReaderContentView.h ReaderContentView.m
 ReaderContentPage.h ReaderContentPage.m
 ReaderContentTile.h ReaderContentTile.m
 ReaderThumbCache.h ReaderThumbCache.m
 ReaderThumbRequest.h ReaderThumbRequest.m
 ReaderThumbQueue.h ReaderThumbQueue.m
 ReaderThumbFetch.h ReaderThumbFetch.m
 ReaderThumbRender.h ReaderThumbRender.m
 ReaderThumbView.h ReaderThumbView.m
 ReaderThumbsView.h ReaderThumbsView.m
 ThumbsViewController.h ThumbsViewController.m
 ThumbsMainToolbar.h ThumbsMainToolbar.m
 UIXToolbarView.h UIXToolbarView.m

 Reader-Button-H.png Reader-Button-H@2x.png
 Reader-Button-N.png Reader-Button-N@2x.png
 Reader-Email.png Reader-Email@2x.png



 Reader-Mark-N.png Reader-Mark-N@2x.png
 Reader-Mark-Y.png Reader-Mark-Y@2x.png
 Reader-Print.png Reader-Print@2x.png
 Reader-Thumbs.png Reader-Thumbs@2x.png

Required iOS Frameworks

To incorporate the PDF reader/viewer into one of your projects, all of the following iOS 
frameworks are required by the code:

 UIKit Foundation
 CoreGraphics QuartzCore
 ImageIO MessageUI

Compile Time Options

In ReaderConstants.h the following #define options are available:

READER_BOOKMARKS - If TRUE, enables page bookmark support.

READER_ENABLE_MAIL - If TRUE, an email button is added to the toolbar (if the 
device is properly configured for email support).

READER_ENABLE_PRINT - If TRUE, a print button is added to the toolbar (if printing 
is supported and available on the device).

READER_ENABLE_THUMBS - If TRUE, a thumbs button is added to the toolbar 
(enabling page thumbnail document navigation).

READER_DISABLE_IDLE - If TRUE, the iOS idle timer is disabled while viewing a 
document (beware of battery drain).

READER_SHOW_SHADOWS - If TRUE, a shadow is shown around each page and the 
page content is inset by a couple of extra points.

READER_STANDALONE - If FALSE, a "Done" button is added to the toolbar and the 
-dismissReaderViewController: delegate method is messaged when it is tapped.

READER_DISABLE_RETINA - If TRUE, sets the CATiledLayer contentScale to 1.0f. 
This effectively disables retina support and results in non-retina device rendering speeds 
on retina display devices at the loss of retina display quality.

ReaderDocument Archiving

To change where the property list for ReaderDocument objects is stored 
(~/Library/Application Support/ by default), see the +archiveFilePath: method in the 
ReaderDocument.m source file. Archiving and unarchiving of the ReaderDocument 
object for a document is mandatory since this is where the current page number, 
bookmarks and directory of the document page thumb cache is kept.



Caveats

¹ There appears to be a bug in iOS 4 with its view controller rotation handling when a 
modal view controller is presented in landscape from a modal view controller when the 
status bar is visible on iPhone and iPod touch. The good news is that iOS 5 appears to 
have this bug fixed.

History

2011-07-29: Version 2.0.0

- Released v2.0 into the wild for general use.

2011-08-25: Version 2.1.0

- Added PDF link (URI and document page) support.
- Assorted code cleanup, optimizations and bug fixes.

2011-08-27: Version 2.1.1

- Fixed rotation handling when in a UITabBarController.

2011-09-09: Version 2.2.0

- A medium resolution page preview image is now shown first.
- The page bar now uses small page thumbs instead of a slider.

2011-09-10: Version 2.2.1

- Added password handling to ReaderDocument plist unarchive.

2011-09-14: Version 2.3.0

- Added page thumbnail document navigation.
- Added support for page bookmarks.

2011-09-20: Version 2.4.0

- Replaced UIToolbars with custom UIView-based toolbars.

2011-10-05: Version 2.5.0

- Critical bug fixes and various assorted tweaks.

2011-10-06: Version 2.5.1

- Fixed content view centering under iOS 5.



2011-10-15: Version 2.5.2

- One (crashing) bug fix and one minor UI tweak.

2011-11-08: Version 2.5.3

- Various refinements and minor bug fixes.

2012-01-14: Version 2.5.4

- Bug fix to PDF link handling in older format PDFs.
- Changed from CC BY 3.0 License to MIT License.

2012-04-10: Version 2.5.5

- Handles PDF web links without http:// as the prefix.
- Bug fix to PDF link handling with cropboxed PDF files.
- Some performance improvements on iPad 3rd generation.

2012-04-16: Version 2.5.6

- Now loads and decodes thumbnail PNGs on a background thread.
- Added READER_DISABLE_RETINA #define performance option.

Acknowledgements

The PDF link support code in the ReaderContentPage class is based on the links 
navigation code by Sorin Nistor from http://ipdfdev.com/.

http://ipdfdev.com/

