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Abstract
In this paper, we present a method for estimating the

amount of Gaussian noise and Gaussian blur in a dis-
torted image. Our method is based on the MS-SSIM
framework which, although designed to measure image
quality, is used to estimate the amount of blur and noise
in a degraded image given a reference image. Various
search strategies such as Newton, Simplex, and brute
force search are presented and rigorously compared.
Based on quantitative results, we show that the amount
of blur and noise in a distorted image can be recov-
ered with an accuracy up to 0.95% and 5.40%, respec-
tively. To our knowledge, such precision has never been
achieved before.

1 Introduction

In the last decade, various quality metrics have been
designed to measure the visual distance between two
images. Examples of such metrics are Multi-Scale
Structural SIMilarity (MS-SSIM) [11], Wavelet Struc-
tural Similarity (WSSI) [7], Visual Signal-to-Noise Ra-
tio (VSNR) [1], and Visual Information Fidelity (VIF)
[8] indices, to name a few. These metrics are designed
to give a score between a reference imagef and a dis-
torted version of itg. The aim of these metrics is to
provide a score similar to that given by an average hu-
man observer. From that score, one can conclude that
the quality of an image is from excellent to very bad.

Unfortunately, those quality metrics share a com-
mon limitation as they cannot identify the kind (nor the
amount) of degradation that has been applied onf to
obtaing. Furthermore, given a visual score, those meth-
ods cannot determine if one or more degradations has
been applied to the reference image. Although methods
exist to estimate the amount of a single distortion [9],
none is capable of estimating simultaneously the kind
and the amount of multiple distortions.

In this paper, we introduce a new method to esti-
mate the kind and the amount of distortion in an image
g given a reference imagef . We focus on the com-
bination of Gaussian noise (σ) and Gaussian blur (η),
two distortions often considered by denoising and de-
convolution techniques [2]. Our method is based on the
MS-SSIM factors which account for luminance distor-
tion (ld), contrast distortion (cd) and structure distor-

tion (sd) betweenf andg. In the upcoming sections,
we will show that there is a bijective relation between a
pair (σ, η) and a 3D point(ld, cd, sd) in the MS-SSIM
space. Since the transfer function provided by MS-
SSIM is expensive computational wise, we propose a
transfer function based on a bi-cubic patch which maps
any 2D point(σ, η) to its 3D counterpart in the MS-
SSIM space with only 4 matrix multiplications. The
problem of recovering(σ, η) from (f, g) will then be
formalized as a search problem for which four solutions
will be proposed.

2. The MS-SSIM factors
As mentioned previously, the MS-SSIM index [11]

is based on three factors: 1) the luminance distortion
(ld) 2) the contrast distortion (cd) and 3) the structure
distortion (sd) between an imagef and a degraded ver-
sion of it g. The philosophy behind MS-SSIM lies in
its representation of an image: anN × M image is a
point in the IRMxN image space where any distortion is
modeled by a translational vector added to a reference
image (the length of the vector is proportional to the
magnitude of the distortion). The two vectors respon-
sible for luminance and contrast distortion span a plane
on which lies the reference image. The authors mention
that distortions corresponding to a rotation of that plane
are associated to structural changes betweenf andg.

The luminance distortion is defined as

ld(f, g) =
2µfµg + C1

µ2
f + µ2

g + C1

whereµf andµg represent the mean intensity off
andg, andC1 is a constant to avoid instability when
µ2
f + µ2

g ≈ 0. According to Weber’s law [10], the mag-
nitude of a just-noticeable luminance changeδL is pro-
portional to the background luminanceL. In that case,
µf = αµg, whereα represents the ratio of the lumi-
nance ofg versusf . Thus, the luminance distortion can
also be defined as

ld(f, g) =
2αµ2

f + C1

(1 + α2)µ2
f + C1

. (1)

Contrast distortion is defined in a similar wayi.e.:

cd(f, g) =
2σfσg + C2

σ2
f + σ2

g + C2
(2)
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Figure 1. Three MS-SSIM manifolds obtained from three images. Each point in the (LD,CD,SD) space corresponds to a specific
(σ, η) distortion.

whereC2 is a non negative constant andσf (resp.σg)
represents the standard deviation off (andg).

As for structure distortion, it is measured after sub-
tracting the average luminance and normalizing the con-
trast of bothf andg. This leads to :

sd(f, g) =
2σf,g + C3

σ2
fσ

2
g + C3

(3)

whereσf,g = 1
N−1

∑N
i=1(fi − µf )(gi − µg), andC3

is a small constant. Note thatsd(f, g) takes negative
values whenever the local image structure is inverted.

According to Eq. (1), (2), and (3), a pair(f, g)
(whereg is a degraded version off ) is associated to
a 3D point(ld, cd, sd) ∈ [(0, 0, 0), (1, 1, 1)]. A sim-
ple but yet fundamental observation can be made here :
the distance betweenf andg has a geometric meaning
which states that the closer(ld, cd, sd) is to(1, 1, 1), the
more similarf andg will be.

3. Noise and Blur Distortions
A degradation process frequently accounted for is

the one associated to most digital cameras [2]. Accord-
ing to this process, the lens of the camera induces blur
and the digitizer adds random noise. It is well known
that if the degradation process is linear and position in-
variant, and that the 3D scene is made of objects located
roughly at the same distance from the camera, then the
degraded imageg is obtained as follows

g = h ∗ f +N (4)

whereh is a low-pass filter,N is white noise and∗ indi-
cates convolution. In this paper,h is a zero-mean Gaus-
sian filter andN is zero-mean Gaussian white noise.
According to this model, distortion depends on two
standard deviation values namely(σ, η).

By combining Eq. (1), (2), (3), and (4), one can as-
sociate a distortion(σ, η) to a 3D MS-SSIM point as

follows

(σ, η) → (ld(f, hσ ∗ f +Nη), cd(f, hσ ∗ f +Nη),

sd(f, hσ ∗ f +Nη). (5)

Interestingly, as shown in Fig. 1, the 3D points as-
sociated to(σ, η) form a smooth manifold in the 3D
MS-SSIM space. The manifolds in Fig. 1 were ob-
tained with676 distortions ranging between(0, 0) and
(σMAX , ηMAX ). Out of these plots, we empirically ob-
served that

1. there is a one-to-one mapping between each(σ, η)
pair and its 3D correspondence(ld, cd, sd);

2. the manifolds have two principal directions corre-
sponding to variations ofσ andη.

4. 2D to 3D Mapping
Since the position on the MS-SSIM manifold is de-

termined by the magnitude ofσ andη, they can be seen
as parameters allowing to navigate on the 3D manifold.
This is very close to the definition of a 3D paramet-
ric patch which relates two parameterss ∈ [0, 1] and
t ∈ [0, 1] to 3D points(x, y, z)[5] :

(x(s, t) y(s, t) z(s, t))
T
= S.M.G.M T.T T (6)

where, in the case of a bi-cubic patch,S = (1 s s2 s3),
T = (1 t t2 t3), G is a 4 × 4 matrix containing16
control points, andM is the4 × 4 basis matrix defin-
ing the nature of the patch (a Bezier, an Hermite, a
Catmull-Rom or any other patch). The manifolds in the
(LD,CD, SD) space being smooth, one can fit a patch
on it with a Vandermonde matrix1 and with 16 con-
trol points obtained after uniformly sampling the(σ, η)

1 M =









1 0 0 0
1 1/3 1/9 1/27
1 2/3 4/9 8/27
1 1 1 1









-1

.
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Figure 2. Error function E for the Bikes image in Fig. 1.
The minimum is at (σMAX

2
, ηMAX

2
).

space with a4 × 4 lattice. This allows to map a distor-
tion pair (σ, η) to its associated(ld, cd, sd) point with
very little computational effort.

5. Distortion Estimation
As mentioned previously, our goal is to estimate the

amount of blurσ∗ and noiseη∗ there is in imageg given
imagef . Knowing that the pair(f, g = f ∗hσ∗+Nη∗))
corresponds to a unique 3D point(lc∗, cd∗, sd∗) in
the MS-SSIM space, the goal is to find a pair(σ̂, η̂)
such that(f, f ∗ hσ̂ + Nη̂) corresponds to a 3D point
(l̂c, ĉd, ŝd) close to(lc∗, cd∗, sd∗). The estimation of
(σ∗, η∗) thus becomes a search problem that we formal-
ize as follows

(σ̂, η̂) = argmin
σ ∈ [0, σMAX ]
η ∈ [0, ηMAX ]

E(f, g, σ, η)

whereE(.) =
√

(lc− lc∗)2 + (cd− cd∗)2 + (sd− sd∗)2.
In order to illustrate the shape of this error function, we
computed its value over 10000 samples given that the
solution(σ∗, η∗) is (σMAX

2 , ηMAX

2 ). As shown in Fig. 2,
the error function is smooth and has only one minimum
which is global. In the upcoming subsections, we will
introduce four strategies to find that minimum.

5.1 Brute Force Search (BFS)

The simplest way to find(σ̂, η̂) given (f, g) is by
considering a large number of(σ, η) values and keep
the one whose 3D point(lc, cd, sd) is the closest to
(lc∗, cd∗, sd∗) (i.e. the one with the lowest errorE(.)).
In this paper, we uniformly sample the(σ, η) space with
a26× 26 lattice ranging from(0, 0) to (σMAX , ηMAX ).

5.2 Simplex Search (SS)

As one would expect, considering a large number
of (σ, η) values (here676) is prohibitive computational
wise. The reason being that computing(lc, cd, sd) with
f ∗ hσ + Nη followed by Eq.(1), (2), and (3) is a time
consuming procedure. To reduce the computational ef-
fort of the search, one needs to visit a smaller number of

(σ, η) values before to reach the global minimum. Un-
fortunately, since the 3D shape ofE(f, g, σ, η) is un-
known a priori, gradient descent strategies are not ap-
plicable here. In fact, such problem is an unconstrained
optimization problem without derivatives for which the
simplex search is a typical solution [4]. Simplex starts
with 3 solutions calledvertices which form a triangle in
the(σ, η) space. New positions are then iteratively iden-
tified inside and outside the triangle. The error value at
these new positions is compared with the error values
at the vertices of the triangle and, usually, one of the
vertices is replaced by the new point, leading to a new
triangle. This is repeated until the diameter of the trian-
gle is below a specified tolerance or when the number
of points visited has reached a pre-defined threshold. In
this paper, the initial triangle is centered at the middle
of the (σ, η) space,i.e. at position(σMAX

2 , ηMAX

2 ) and the
algorithm stops when50 points have been visited.

5.3 Simplex Search with Patch (SBS)
Although the simplex search is drastically faster than

the brute force search, its processing time can be further
reduced. This can be done by using the bicubic patch
introduced in section 4 to map any 2D point(σ, η) to
its related 3D position(lc, cd, sd). Such a patch needs
16 3D control points that can only be obtained after
computingg = f ∗ hσ + Nη followed by Eq.(1), (2),
and (3). However, once these control points have been
computed, the 2D-to-3D mapping requires very little
computational effort (only 4 matrix multiplications) and
thus speeds up the search procedure. Here the simplex
search has been modified to account for this 2D-to-3D
mapping procedure.

5.4 Newton-Raphson Search (NRS)
The use of a parametric patch allows for another

formulation of the problem that is : given a 3D point
A = (lc, cd, sd) associated to(f, g), find its projection
(s, t) on the patch such that the distances betweenA

andB(s, t) = (x(s, t), y(s, t), z(s, t)) is minimum. In
other words, find the best(s, t) such that the Euclidean
distance betweenA andB(s, t) ( namely||A−B(s, t)||)
is minimum. Unfortunately, when dealing with bicubic
patches, there is no known deterministic solution to that
problem as it requires to find the roots of a fifth-degree
polynomial. As explained by Plass and Stone [6], a so-
lution is to assign an initial approximation ofs andt and
solve it using a conventional fixed-point scheme. Since
we want to minimize||A−B(s, t)|| we assume that the
best(s, t) is the one for which∂

∂s
||A − B(s, t)|| = 0

and ∂
∂t
||A − B(s, t)|| = 0. According to the Newton-

Raphson formula

s[k+1] = s[k] −
Fs

F ′

s

t[k+1] = t[k] −
Ft

F ′

t

wherek is an iterator,Fs = ∂
∂s
||A − B|| andFt =

∂
∂t
||A − B||. In our implementation, Newton-Raphson
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Figure 3. Typical result obtained by a search strategy.
Given an imagef (here Bikes) and a degraded imageg
whose degradation parameters are(7.0, 16.0), the recov-
ered parameters (7.4, 16.7) give a new figure ĝ (on the
right) that is very similar to g (on the left).

stops when both|s[k+1] − s[k] | and|t[k+1] − t[k] | are below
0.0001. Note that in our implementation, the initial ap-
proximation ofs and t is obtained by averaging thes
andt values of the 4 nearest control points. At conver-
gence,̂σ andη̂ are recovered by multiplyings andt by
σMAX andηMAX .

6. Results
In order to gauge performances, we tested the four

search strategies on the 29 real-life images of the LIVE
database [3]. These images, whose size is between
610 × 488 and768 × 512, are applied a total of225
distortions(σ, η) linearly distributed between(0, 0) and
(σMAX =20, ηMAX =25). This leads to a total of6525 de-
graded images. For every degraded image, the esti-
mated amount of degradation(σ̂, η̂) is compared to the
actual amount(σ∗, η∗). The overall results are pre-
sented in Fig. 4 in which the mean and standard devia-
tion of errors for every algorithm is presented.

As far as precision is concerned, the brute force al-
gorithm produces the best results withσ̂ = 0.95% error
for blur andη̂ = 5.40% error for noise. Note that those
results can be slightly improved by using more samples.
Fig. 4 also underscores the fact that smart search strate-
gies can retrieve (̂σ,η̂) values close to that obtained by
brute force but with less CPU effort. As shown in the
third graphic of Fig. 4, simplex search (SS), simplex
over bicubic patch search (SBS), and Newton-Raphson
search (NRS) are an order of magnitude faster than the
brute force search (BFS). In particular, NRS exhibits a
43-fold speed improvement with respect to BFS, yet at-
tainingσ̂ = 6.35%, η̂ = 11.55%.

We observed that it is somewhat difficult to recover
the noise levelη with high precision. The reason being
that the manifold is usually cramped on this axis near
the origin (1, 1, 1) as shown in Fig. 1. High proxim-
ity of values in these areas hinder even the brute force
algorithm’s performance: comparêσ = 0.95% versus
η̂ = 5.40%.

7. Conclusion
In this paper, we presented a method to simultane-

ously estimate the amount of Gaussian blur and Gaus-
sian noise in a distorted imageg given a reference image
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Figure 4. Performance and accuracy comparison of
four search algorithms.

f . We have shown that, provided a multi-dimensional
quality metric (MS-SSIM), distortion values(σ, η) are
associated to 3D points which form a manifold in the
MS-SSIM space. We formalized the estimation prob-
lem as a search problem for which4 different search
algorithms have been proposed. The simple brute force
search algorithm is the slowest approach but returns the
most precise solutions. The fastest methods are those
involving a bi-cubic patch whose shape is close to the
manifold. Interestingly, although a patch is an approxi-
mation of the real manifold, its nonetheless reduces the
noise error when compared to simplex search.
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