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Abstract— We present a method for estimating the amount of
noise and blur in a distorted image. Our method is based on
the MS-SSIM framework which, although designed to measure
image quality, is used to estimate the amount of blur and
noise in a degraded image given a reference image. We show
that there exists a bijective mapping between the 2D noise/blur
space and the 3D MS-SSIM space which allows to recover
distortion parameters. That mapping allows to formulate the
multi-distortion estimation problem as a classical optimization
problem. Various search strategies such as Newton, Simplex,
NewUOA, and brute force search are presented and rigorously
compared. We also show that a bicubic patch can be used to
approximate the bijective mapping between the noise/blur space
and the 3D MS-SSIM space. Interestingly, the use of such a patch
reduces the processing time by a factor of 40 without significantly
reducing precision. Based on quantitative results, we showthat
the amount of different types of blur and noise in a distorted
image can be recovered with an accuracy of roughly2% and 8%,
respectively. Our methods are compared to four state-of-the-art
noise and blur estimation techniques.

I. I NTRODUCTION

In the last decade, various quality metrics have been de-
signed to measure the visual distance between two images.
Examples of such metrics are Multi-Scale Structural SIMi-
larity (MS-SSIM) [1], Wavelet Structural Similarity (WSSI)
[2], Visual Signal-to-Noise Ratio (VSNR) [3], and Visual
Information Fidelity (VIF) [4] indices, to name a few. These
metrics are designed to give a score between a reference image
f and a distorted version of itg. From that score, one can
conclude that the quality of imageg is from excellent to very
bad.

Unfortunately, those quality metrics share a common limita-
tion as they cannot identify the kind (nor the amount) of degra-
dation that has been applied onf to obtaing. Furthermore,
given a visual score, those methods cannot determine if one
or more degradations has been applied to the reference image.
In other words, adding noise and/or blur to an image reduces
its visual score, but none of these metrics can identify which
degradation and how much of it has been applied. Although
some methods have been proposed to estimate the amount of
one single distortion [5]–[8], none is capable of estimating
simultaneously the amount of multiple distortions. At most,
multiple distortions are estimated independently [8].

In this paper, we introduce a new method to estimate the
amount of multiple distortions in an imageg given a reference
image f . More specifically, we present how the noise (α)
and blur (β) distortion parameters can be recovered from an
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image pair(f, g), two distortions pivotal for many denoising
and deconvolution techniques [9]. Our method is based on
the MS-SSIM distortion factors which has been designed to
measure image quality. As will be shown below, a slight
extension of MS-SSIM allows to recover the noise and blur
distortion parameters. This extension is based on the MS-SSIM
distortion factors accounting for luminance distortion (ld),
contrast distortion (cd) and structure distortion (sd) between
f and g. These factors were originally used to compute the
MS-SSIM quality metric only [1]1. In this paper,ld, cd and
sd are used for a different purpose : they define the axes of
a 3D space which we call theMS-SSIM space. In that space,
each image pair(f, g) is mapped to a 3D point(ld, cd, sd).
Becauseg is derived from a reference imagef by applying
distortion based on two parameters(α, β), our method focuses
on the relation there is between a pair(α, β) and a 3D point
in the MS-SSIM space. As will be shown below, due to
a bijective transformation between the(α, β) space and the
(ld, cd, sd) MS-SSIM space, one can formalize the problem of
multi-distortion estimation as a classical optimization problem,
i.e. recover the(α, β) pair whose 3D point(ld, cd, sd) is
the closest to(f, g)’s 3D point. Since computing(ld, cd, sd)
from a given (α, β) pair is computationally expensive, we
propose a patch-based transfer function that maps any 2D
point (α, β) to its 3D MS-SSIM counterpart with only 4
matrix multiplications. Different types of blur and noise can
be recovered with our method including Gaussian and average
blur as well as Gaussian and salt-and-pepper noise.

One application for such a method is the calibration of
imaging systems whose distortion process is not subject to
change in time like surveillance cameras or telescopes. Given
a known reference imagef and a picture of it taken by
the system (hereg), our method can recover the amount of
blur (read point spread function) and noise introduced by
the system. Such information is crucial to most restoration
techniques [10], [11]. Our method could also be used in a
similar fashion with lossy compression techniques.

The rest of the paper is organized as follows. We start off
with an overview of the distortion estimation methods in sec-
tion III. The MS-SSIM distortion factors are then introduced in
more details in section IV. The bijective transformation there
is between a distortion pair(α, β) and the MS-SSIM space
is then explained in section V. The optimization problem (to-
gether with various optimization methods) is then formalized

1The MS-SSIM quality metric is obtained by multiplying the three factors
ld, cd and sd.
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in section VI and VII. Section IX and X show results and
draw conclusion.

II. OUR CONTRIBUTIONS

This paper proposes a unique MS-SSIM-based multi-
distortion estimation procedure. The novelty of our method
is sixfold.

1) The noise and blur parameter estimation is formalized
as a search procedure embedded within the MS-SSIM
framework.

2) The distortion parameters(α, β) are estimated simulta-
neously.

3) The simplest optimization procedure (the brute force
search) is trivial to implement and returns surprisingly
accurate results (approximately2% error for blur and
8% for noise).

4) The patch-based transfer function linking the 2D
noise/blur space to the 3D MS-SSIM space reduces the
processing times up to 40 times without significantly
reducing the results’ accuracy.

5) Our method is trivially adapted to different types of blur
and noise.

6) A simple extension of our method can be used to blindly
estimate distortion.

III. PREVIOUS WORK

When addressing the noise or the blur estimation problem,
one has to consider image denoising and debluring methods.
The reason being that distortion estimation has always been
tightly bound to restoration techniques. Although joint denois-
ing and debluring techniques have been proposed [12], these
problems are usually independently studied or, at most, solved
separately [8]. This section presents an overview of existing
noise estimation and the blur estimation methods.

a) Noise estimation:The noise degradation model usu-
ally accounted for by denoising techniques is the follow-
ing [13]

g(x, y) = f(x, y) +Nα(x, y),

wheref(x, y) is the intensity of the original image at pixel
(x, y), g(x, y) is the intensity of the degraded image at pixel
(x, y) andNα(x, y) is additive noise withα parameter. Noise
is often assumed to be Gaussian with zero mean and a variance
α2 constant throughout the image. In this case, varianceα2 is
the “α” parameter of noise we mentioned in section I.

One straightforward way of estimating noise is by separat-
ing the original imagef from g. In this way, noise is estimated
based on the residual image void off . Since f is usually
unknown, it thus needs to be estimated. Recovering noise by
first estimatingf from g is a typical blind noise-estimation
problem. For example, Shin et al. [13] estimatef by simply
filtering g with a low-pass Gaussian filter. More complex
filters have been proposed such as the thin-plate smoothing
spline model [6], [7], [14]. Standard thin-plate spline methods
estimatesf by minimizing a cost function made of a data
term and a smoothness term [14]. The data term contains an
estimated version off made of overlapping patches centered

at each pixel. Another way of removingf from g is by filtering
g with an high-pass filter. In [15], Ranket al. use a cascade
of two l-D high-pass filters.

Of course, separating two images is a fundamentally dif-
ficult task and naive implementations can only lead to poor
results. That is why some methods estimate noise based on
g only. One strategy is to estimate noise in uniform regions
void of edges [16], [17]. Under the assumption that the original
imagef and the noiseNα are independent and thatNα follows
a Gaussian distribution, the variance of the degraded imagecan
be written as follows

α2
g(x,y) = α2

f(x,y) + α2
Nα

,

whereα2
g(x,y) andα2

f(x,y) are local variances. According to
this equation, everywhere the original image is locally constant
and void of edges (i.e. α2

f(x,y) = 0), one can assume that

α2
g(x,y) = α2

Nα
.

In this way, whenever a region ing(x, y) is uniform, the
variance over that region should be close to that of the noise.
Of course, the accuracy of the estimated noise variance is
deeply bound to ones’ ability of localizing uniform regions.
Since such approach is sensitive to outliers in textured areas,
these methods often overestimate the variance of noise.

An alternative way of estimating the variance of noiseα2
Nα

is by taking the minimum, the average or the median of the
local variance estimated at every pixel [17]–[19]

(α2
Nα

)min = min
(x,y)

(α2
g(x,y)),

(α2
Nα

)mean = mean
(x,y)

(α2
g(x,y)),

(α2
Nα

)med = median
(x,y)

(α2
g(x,y)).

However, as reported by Martin-Fernandezet. al [18], the
min operator underestimates the noise variance, the mean
operator overestimates it, and the median operator gives some
intermediate results. They also mention that all three methods
are somewhat ineffective when the noise level is low. The
authors thus proposed an intermediate solution which involves
a free parameter0 ≤ λ ≤ 1:

α2
Nα

= λ(α2
Nα

)mean + (1 − λ)(α2
Nα

)min, (1)

whereλ gives a relative influence to the min and the mean
operators. The authors compared results forλ = 0.25, 0.5, and
0.75.

More complex approaches involving singular value decom-
position [20] and fuzzy logic [21] have been proposed. A
popular method is the one by Donoho and Johnstone [22]
which uses high-frequency wavelet coefficients:

α2
Nα

= α2
MAD =

MAD(yHH
xy )

0.6745
, (2)

where yHH
xy are the coefficients of the finest diagonal sub-

band and MAD stands for the median absolute deviation.
Another wavelet-based method has been proposed by Starck
and Murtagh [23]. Their approach uses anà trous wavelet
transform to locate pixels that do not contain any significant
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signal, i.e. pixels with a background value plus some noise.
The value of a pixel(x, y) is considered to be pure noise
if its corresponding wavelet coefficients are significantlylow.
Since they assume that the background is mostly contained in
the coarsest scale of the wavelet transform, the coarsest scale
is subtracted from the original image. From that new image,
the α2

Nα
is computed by considering the wavelet coefficients

whose value is larger thankαj (they choosek = 3) where
αj is the standard deviation of the noise at each scalej. The
αj values are estimated by taking the wavelet transform of a
Gaussian-noise image withα = 1. The authors show that the
method works well on astronomical images.

b) Blur estimation:Blur identification is another impor-
tant step for image restoration techniques. Here, the degrada-
tion process is represented by a convolutiong = f ∗hβ, where
g is a blurred version off , andhβ is the to-be-estimated point-
spread function (PSF).

A simple way for estimating blur givenf andg is through
the use of an homomorphic filter [9], [24]. Given that a
convolution in the spatial domain corresponds to a point-wise
multiplication in the spectral domaini.e.

={g} = ={f ∗ hβ} = FH.

hβ can be computed as follows :

hβ = =-1 {exp (ln[G]− ln[F ])}

sinceln[G] = ln[F ]+ln[H ]. Note that= stands for the Fourier
transform operator andG,F andH are the spectral versions
of f, g and hβ . Let us mention that although the PSF can
be obtained with a simple division in the spectral domain (a
so-calledinversefiltering):

hβ = =-1

{

G

F

}

.

Such method rarely produces any good results [9]. The
reason being that wheneverF has zeros or very small values
at some frequency(u, v), the ratioG(u,v)

F (u,v) dominates over the
rest of the spectrum. As suggested by Chitale and Padgett [8]
a work around to inverse filtering is the Wiener deconvolution
filter. Although the Wiener filter has been designed to recover
f giveng andhβ, one can deconvoluteg with f to obtain the
PSFhβ.

Numerous blind blur estimation techniques have also been
proposed. Most of these techniques estimate the PSF based on
the location of zeros in the Fourier spectrum ofg [25]–[29].
The PSF can be computed globally or by combining many
local PSFs estimated on small portions of the image [30]. In
this case, the global PSF is obtained by averaging the power
spectrum of each local PSF. The Fourier-based approaches
are computationally efficient and require minimal assumptions
on the input image. However, it is well known that Fourier
techniques requireg to have a large signal-to-noise ratio unless
zeros are difficult to localize. As a solution, Changet al. [31]
detect zero-crossing in the “bispectrum” of theg instead of its
power spectrum. The authors argue that bispectrum suppresses
additive Gaussian noise and thus, facilitates the detection of
zeros in low signal-to-noise ratio images.

A related blind approach based on singular vectors and
singular values was proposed by Devcic and Loncaric [32].
The singular value decomposition (SVD) of the degraded
image is first computed in the spatial domain. Then, the DFT
is applied on the obtained SVD matrix. The PSF is estimated
from the frequential singular vectors, while noise variance
is estimated from the smallest frequential singular values.
Finally, the spectrum of original image singular vectors is
estimated using exponential model of covariance function for
which the spectrum of singular vectors of the degraded image
is computed.

In [33], Elder and Zucker proposed an edge-based method
to estimate blur. They proposed an image compression scheme
based on edge and blur information only. Their method
estimates two quantities: the intensity at edge locations in
the image and the blur at those locations. This estimation is
performed under the assumption that blurred edges can be
characterized by a sigmoidal intensity gradient.

Besides deconvolution, other applications such as shape
from defocus depend on blur estimation. In this case, due to
the limited depth of field of a lens, blur is proportional to the
distance between the camera and the scene [34]–[36]. In this
case, estimating blur amounts to estimating depth. Usually,
the defocusing process is modeled by the convolution of a
perfectly focused image with a PSF whose size is proportional
to depth. Assuming a Gaussian PSF, Pentland introduced a
Fourier-based algorithm working on local patches [37]. Similar
techniques working in spatial and spectral domain have been
proposed [34], [38]–[42].

IV. T HE MS-SSIM FACTORS

As mentioned previously, the MS-SSIM index [43] is based
on three multiscale factors: 1) the luminance distortion (ld)
2) the contrast distortion (cd) and 3) the structure distortion
(sd) between an imagef and a degraded version of itg.
The philosophy behind MS-SSIM lies in its definition of an
image. For MS-SSIM, anN × M image is a point in the
R

MxN space where any distortion is modeled by a translational
vector added to a reference image. In that space, the length
of the translational vector is proportional to the magnitude of
the distortion. The two vectors responsible for luminance and
contrast distortion span a plane on which lies the reference
image. The authors mention that distortions correspondingto
a rotation of that plane are associated to structural changes
betweenf andg.

From its basic formulation, the luminance distortion at scale
i is defined as

LDi(f, g) =
2µfµg + C1

µ2
f + µ2

g + C1
,

whereµf andµg represent the mean intensity off andg at
scalei, andC1 is a constant to avoid instability whenµ2

f +
µ2
g ≈ 0. According to Weber’s law [44], the magnitude of

a just-noticeable luminance changeδL is proportional to the
background luminanceL. In that case,µf = γµg, whereγ
represents the ratio of the luminance ofg versusf . Thus, the
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luminance distortion can also be defined as

LDi(f, g) =
2γµ2

f + C1

(1 + γ2)µ2
f + C1

. (3)

Contrast distortion at scalei is defined in a similar way:

CDi(f, g) =
2αfαg + C2

α2
f + α2

g + C2
, (4)

where C2 is a non negative constant andαf (resp. αg)
represents the standard deviation off (andg) at scalei.

As for structure distortion at scalei, it is measured after
subtracting the average luminance and normalizing the contrast
of both f andg. This leads to:

SDi(f, g) =
2αf,g + C3

α2
fα

2
g + C3

, (5)

whereαf,g = 1
N−1

∑N
i=1(fi−µf)(gi−µg), andC3 is a small

constant.
Finally, the three MS-SSIM features are computed as fol-

lows :

ld(f, g) = [LDM (f, g)]
αM (6)

cd(f, g) =

M
∏

i=1

[CDi(f, g)]
βi (7)

sd(f, g) =

M
∏

i=1

[SDi(f, g)]
γi , (8)

where the luminance comparisonLDM (f, g) is computed only
at the largest scale M. The three exponentsαM , βi andγi are
used to adjust the relative importance of different components.
In this paper,M = 5 corresponds to the maximum scale, while
i = 1 corresponds to the original resolution of the image. In
[43], the authors have definedαM = 1 andβ1 = γ1 = 0.0448,
β2 = γ2 = 0.2856, β3 = γ3 = 0.3001, β4 = γ4 = 0.2363,
andβ5 = γ5 = 0.1333. Also, C1 = 0.01 · L2 andC2 = C3 =
0.03 ·L2 whereL is the maximum image luminance, here 255.

According to Eq. (6), (7), and (8), a pair(f, g) (where
g is a degraded version off ) is associated to a 3D point
(ld, cd, sd) ∈ [0, 1]3.

V. NOISE AND BLUR DISTORTIONS

Reducing the noise and enhancing sharpness in images is
often critical to producing clear, high dynamic range images.
However, good denoising and deconvolution techniques need
to know the distortion process as well as the noise and blur
parameters. A degradation process frequently accounted for
is the one associated to most digital cameras [9]. According
to this process, the lens of the camera induces blur and the
digitizer adds random noise. It is well known that if the
degradation process is linear and position invariant, and that
the 3D scene is made of objects located roughly at the same
distance from the camera, then the degraded imageg(x, y) is
obtained as follows [9]:

g(x, y) = hβ ∗ f(x, y) +Nα, (9)

where hβ is a low-pass filter,Nα is noise and∗ indicates
convolution. It is generally assumed thatNα is an uncorrelated

white noise associated to thermally generated electrons that
build up in the CCD (other types of noise caused by physical
interferences are neglected here). In this paper, we estimate
different types of blur and noise all driven by one parameter.
For the blur, we consider a zero-mean Gaussian filter (defined
by a standard deviation) and a uniform low-pass filter (defined
by its size). As for noise, we consider zero-mean Gaussian
noise (defined by a standard deviation) and salt and pepper
noise (defined by the percentage of corrupted pixels). In this
way, whatever the combination of noise and blur that we ought
to estimate, we end up estimating two parameters:α andβ.

Now that the distortion model betweenf andg has been in-
troduced, the connexion between the (α, β) space and the MS-
SSIM space becomes straightforward. By combining Eq. (6),
(7), (8), and (9), one can associate a pair (α, β) to a 3D MS-
SSIM point as follows:

(α, β)→ (l, c, s), (10)

where

l = ld(f, hβ ∗ f +Nα),

c = cd(f, hβ ∗ f +Nα),

s = sd(f, hβ ∗ f +Nα).

In order to illustrate this relation, we took676 points
arranged on a26× 26 lattice in the (α, β) space and mapped
it to the MS-SSIM space following Eq. (11). These points go
from (0, 0) to (αMAX , βMAX ) and specify the amount of blur and
noise. As shown in figure 1, whatever the content off , the
3D points form a surprisingly smooth manifold. This strongly
suggests that a change in the (α, β) distortion space induces
a predictive change in the MS-SSIM space. More specifically,
we empirically observed that

1) there is a one-to-one mapping between each (α, β) pair
and its 3D correspondence(ld, cd, sd);

2) the manifolds have two principal directions correspond-
ing to variations ofα andβ.

Of course, given the highly non-linear aspect of the MS-
SSIM features, it is difficult (and maybe impossible) to for-
mally prove the one-to-one mapping assertion for all non-
trivial images2

That being said, we conducted a study on 58 images
sampled from the LIVE [45] and the COREL [46] image
databases in order to establish an empirical demonstration
that would support our hypothesis. Our demonstration involves
the smallest distance between two neighbors in the MS-SSIM
space as a function of the number of samples in the parameter
space. We distorted each image using Eq. (9) givenn × n
(α, β) points. Then, following Eq. (11), we projected these
n × n image pairs to the MS-SSIM space. This lead to a
3D scatter plot for each image similar to the ones shown in
Fig. 1. For each projected point, we computed the distance
to the nearest neighbor. Fig. 2 shows this distance averaged
over all images and all sampling resolution asn increases.

2The one-to-one mapping assertion does not hold for perfectly uniform
images sincehβ ∗ f(x, y) = f(x, y) ∀β. However, that situation is very
specific as the distortion process does not modify the content of such image.
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(a) Test imagebikes. (b) Test image:house. (c) Test image:cemetery.
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(d) Manifolds for Gaussian blur and Gaussian noise.
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(e) Manifolds for average blur and Gaussian noise.
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(f) Manifolds for Gaussian blur and salt & pepper noise.

Fig. 1. MS-SSIM manifolds obtained from three different images. Each point in the (ld,cd,sd) space corresponds to a specific(α, β) distortion.
These manifold correspond to a combination of (d) Gaussian blur and Gaussian noise, (e) average blur and Gaussian noise,and (f) Gaussian blur
and salt & pepper noise.

As can be seen from the shape of the curve, the minimum
distance between two neighboring points in the MS-SSIM
space is never zero even for a100 × 100 grid. In fact, the
curve shows an asymptotic shape and never reaches zero. This
clearly shows that, even though collisions may theoretically
occur, the probability that two parameter pairsX1 = (α1, β1)
andX2 = (α2, β2) project at the same location in the MS-
SSIM space decreases asymptotically as the distance between
X1 andX2 increases. This result allows us to conclude that
the one-to-one mapping holds for arbitrary pointsX1 andX2

in the parameter space.

VI. D ISTORTION ESTIMATION AS AN OPTIMIZATION

PROBLEM

As mentioned previously, our goal is to estimate the amount
of noise α∗ and blur β∗ contained ing given f . Given
the bijective transformation between the (α, β) space and the
MS-SSIM space, the distortion estimation procedure can be
formulated as an optimization procedure (the reader can follow
the upcomming exposition through figure 3). Assuming that
the pair(f, g) corresponds to a unique 3D point(lc∗, cd∗, sd∗)
in the MS-SSIM space (the round dot figure 3), the goal is to
find a pair(α̂, β̂) such that(f, f∗h

β̂
+Nα̂) corresponds to a 3D

point(l̂c, ĉd, ŝd) (the square dot in figure 3) located as close as
possible to(lc∗, cd∗, sd∗). Estimating(α∗, β∗) thus becomes
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Fig. 2. Relationship between the distance to nearest neighbors in the
parameter space and the same distance in MS-SSIM space. The horizontal
axis corresponds to the number of points on each axis in the parameter
space. The vertical axis corresponds to the average distance for all images
in our database to the nearest neighbor in the MS-SSIM space.
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Fig. 3. Schematic representation of our optimization procedure.

an optimization problem that we formalize as follows:

(α̂, β̂) = argmin
α,β

E(f, g, α, β), (11)

whereα ∈ [0, αMAX ], β ∈ [0, βMAX ], andE(.) is an Euclidean
distance

√

(lc− lc∗)2 + (cd− cd∗)2 + (sd− sd∗)2. In order
to illustrate the shape of this error function, we computed
its value over10000 samples(α, β) given that the solution
(α∗, β∗) is (αMAX

2 , βMAX

2 ). As shown in figure 4(a), the error
function is globally smooth and has a global minima in the
middle. Unfortunately, since the 3D shape ofE(f, g, α, β) is
unknowna priori, gradient-descent optimizers are not appli-
cable here. In fact, such problem is a so-called unconstrained
optimization problem without derivatives [47]. Three search
strategies adapted to that problem are introduced in the next
subsections.

A. Brute Force Search (BF)

The simplest way to recover(α̂, β̂) given (f, g) is by
considering a large number of(α, β) values and keep the one
whose 3D point(lc, cd, sd) is the closest to(lc∗, cd∗, sd∗)
(i.e. the one with the lowest errorE(.)). Of course, the more

samples considered, the more precise the end result will be.As
one would expect, considering a large number of(α, β) values
(here676) is prohibitive computational wise. The reason being
that computing(lc, cd, sd) with f ∗ hβ + Nα followed by
Eq.(6), (7), and (8) is a time consuming procedure.
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Fig. 4. Error function E for the Bikes image without and with the use
of a bicubic patch. The minimum is at (αMAX

2
, βMAX

2
) = (12.5, 10.0).

B. Simplex Search (SI)

To reduce the computational effort, one needs to visit a
smaller number of(α, β) values before reaching the global
minimum. The simplex search is a typical solution to such
unconstrained derivative-free optimization problems [48]. Sim-
plex starts with 3 solutions calledvertices which form a
triangle in the(α, β) space. New positions are then iteratively
identified inside and outside the triangle. The error value at
these new positions is then compared to the vertices of the
triangle. Then, the vertice with the highest cost is displaced
such that its cost decreases. This leads to a new triangle and
a new iteration. This operation is repeated until one of the
vertices’ cost is below a predefined threshold or when the
number of points visited has reached some maximum value.

C. NewUOA (NU)

Although the Simplex algorithm is a classical solution to
unconstrained optimization without derivatives, more recent
developments aim at faster convergence, better numerical sta-
bility and improved robustness with respect to more complex
objective functions.

Trust-region optimization methods are a family of
derivative-free optimization techniques using an approxima-
tion of the objective function in order to reduce the cost of
evaluations. This is important in applications where evalu-
ating the objective function is costly. A typical trust region
method [49] consists in building a good approximation of the
objective function local to a trusted region, followed by a series
of minimizations over this model. At each iteration, a new
candidate point is generated by minimizing the approximation.
Either the model is good and this minimization predicted a
good candidate, in which case the new point is adopted and
the region of trust grows, or the local approximation is judged
inaccurate, in which case the size of the trusted region is
reduced and the model is updated.

The NewUOA optimization software [50] is a recent devel-
opment using quadratic approximations. The method presents
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implementation tricks for reducing the number of interpo-
lation conditions, further reducing the number of objective
function evaluations, as well as enhancing numerical stability.
Experimental results reported in [50] show that NewUOA
has good performance for functions of up to 160 variables,
yet drastically reducing the number of evaluations of the
objective function when compared to other optimizers based
on quadratic models.

VII. FAST 2D TO 3D MAPPING

So far, we introduced two optimizers (simplex and
NewUOA) whose processing time is drastically faster than
the simple brute force search (benchmarks are provided in
Section IX). This is because simplex and NewUOA pick less
points in the(α, β) space than the brute force search does. In
this section, we introduce approximations of the manifold to
further reduce the processing time.

We showed in figure 1 that the(α, β) space form a smooth
manifold in the MS-SSIM space. This manifold has two
principal directions associated toα and β. As shown in
figure 5, the position of a 3D point on the manifold is tightly
bound to the(α, β) values. Clearly, a 3D point on the MS-
SSIM manifold is determined by the magnitude ofα andβ.
Stated that way,α andβ can be seen as parameters allowing
to navigate on the 3D manifold. In other words, a good
parametrization of the(α, β) ↔ (ld, cd, sd) mapping could
allow to predict where a(α, β) point falls in the MS-SSIM
space. Such parametrization would allow to map a distortion
pair (α, β) to its related(ld, cd, sd) position without having
to compute Eq. (6), (7), (8), and (9). This would reduce quite
significantly the computational effort.
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Fig. 5. MS-SSIM manifold for the cemetery image (third image in
figure 1). The manifold can be seen as a parametric patch on which
every point is defined by a(α, β) value.

Our mapping function is inspired by the shape of the 3D
manifolds. As can be seen in figure 1 and 5, the 3D manifolds
have a shape close to the one of a parametric patch [51]. In a
similar fashion, the(α, β)↔ (ld, cd, sd) mapping is also very
close to the mathematical definition of a parametric patch.
A patch is a mathematical function relating two parameters

(s, t) ∈ [0, 1]2 to a 3D point(x, y, z) ∈ R
3:

(x(s, t) y(s, t) z(s, t))
T
= S.M.G.M T.T T. (12)

For a bi-cubic patch,S = (1 s s2 s3), T = (1 t t2 t3),
G is a 4 × 4 matrix containing16 control points, andM is
the 4 × 4 basis matrixdefining the nature of the patch (a
Bezier, an Hermite, or any other patch). The manifolds in the
(ld, cd, sd) space being smooth, one can fit a patch on it with
a Vandermonde matrix3 and with 16 control points obtained
after uniformly sampling the(α, β) space with a4× 4 lattice
(see Appendix 1 for more details on how matrixG is built).
OnceG has been filled, any pair(α, β) can be mapped to the
MS-SSIM space as follows :

(s, t) = (α/αMAX , β/βMAX )

(ld, cd, sd) = S.M.G.M T.T T. (13)

Such a patch fits surprisingly well on the manifold. As
can be seen in figure 4 (b), the error functionE(f, g, α, β)
obtained with a bicubic patch has a very smooth shape close
to the original error function.

A. Patch-Based Optimization Procedures

The use of a patch allows to map a 2D point(α, β) to its 3D
MS-SSIM position(lc, cd, sd) with little computational effort
(only 4 matrix multiplications). Since it does not change the
optimization function of Eq. (11), the optimization procedures
proposed so far can account for this mapping without having
to change their functionality. Only the(α, β) ↔ (ld, cd, sd)
mapping procedure need to be changed. We tested two such
patch-based optimizers namelyPBF (patch-based brute force
search) andPSI (patch-based simplex search).

B. Newton-Raphson Search (NR)

The use of a parametric patch allows to formulate the prob-
lem in a different way: given a 3D pointA = (lc, cd, sd) asso-
ciated to(f, g), find its projection(s, t) on the patch such that
the distances betweenA andB(s, t) = (x(s, t), y(s, t), z(s, t))
is minimum. In other words, find the best(s, t) such that
the Euclidean distance betweenA andB(s, t) (namelyF =
||A−B(s, t)||) is minimum. Unfortunately, when dealing with
bicubic patches, there is no closed-form solution to that prob-
lem as it requires to find the roots of a fifth-degree polynomial.
A solution [52] is to assign an initial approximation ofs
and t and solve it using a conventional fixed-point scheme.
Since we want to minimize||A − B(s, t)|| we assume that
the best(s, t) is the one for which ∂

∂s
||A − B(s, t)|| = 0

and ∂
∂t
||A−B(s, t)|| = 0. According to the Newton-Raphson

formula:

s[k+1] = s[k] −
Fs

F ′
s

t[k+1] = t[k] −
Ft

F ′
t

,

wherek is an iterator,F ′
s =

∂
∂s
||A−B|| andF ′

t =
∂
∂t
||A−B||.

multiplying s and t by αMAX andβMAX .

3 M =







1 0 0 0
1 1/3 1/9 1/27
1 2/3 4/9 8/27
1 1 1 1







-1

.
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C. Refined Patches

Algorithm 1 Refined Patches

Input: f ,g,αMAX ,βMAX

Output: α̂,β̂
1: α1 = β1 = 0
2: α2 = αMAX , β2 = βMAX .
3: for i = 0 to iterMax do
4: G← 16 MS-SSIM points covering[α1, α2]× [β1, β2].
5: (α̂, β̂)← Optimizer(f ,g,G) /*PBF, PSI, or NR*/
6: α̂ = α̂(α2 − α1) + α1

7: β̂ = β̂(β2 − β1) + β1

8: α1 = max(α̂− αMAX
4i , 0)

9: α2 = min(α̂+ αMAX
4i , αMAX )

10: β1 = max(β̂ − βMAX

4i , 0)

11: β2 = min(β̂ + βMAX
4i , βMAX )

12: end for

Although bicubic parametric patches fit well the MS-SSIM
manifolds, they are nonetheless approximations and can be
slightly inaccurate. One way of reducing these inaccuracies
is through the use of so-calledrefined patches. The concept
behind the refined patches is the same for every patch-
based optimizer. Whenever a patch-based optimization method
converges toward a solution(α̂, β̂) (be it PBF, PSI, or NR),
the goal is to fit a smaller (and therefore more accurate) patch
in the vicinity of (α̂, β̂) and re-start the optimizer on that
localized patch. This procedure iterates a pre-specified number
of times. In our experiments, numerical precision prevents
any gain past 3 iterations. As shown in Algorithm 1, the
search space defined by(α1, β1) and(α2, β2) reduces at each
iteration.

Note that because of the nature of the patch, the(α̂, β̂)
values returned by the optimizer ranges between 0 and 1.
These values thus need to be remapped into the(α, β) space.
This is done at line 6 and 7.

VIII. B LIND DISTORTION ESTIMATION

So far, we presented a method for estimating the amount of
distortion given known distortion types (say, Gaussian noise
and Gaussian blur). But one question arises when the distortion
types are unknowna priori. Fortunately, following Eq.( 11),
the answer to this question is fairly straightforward (the reader
can follow the exposition through Algo.2). LetP be a set of
noise and blur distortion types. For example,P can contain a
combination of Gaussian, average and Butterworth noise, and
Gaussian, average, salt-and-pepper noise. GivenP , the goal
is to find for each distortion pairp ∈ P their associated pa-
rameters(α̂p, β̂p) following one of the optimization procedure
presented so far. Once every(α̂p, β̂p) have been estimated, the
one with the lowest global energyE(f, g, α̂p, β̂p) is retained.
As can be seen in Fig. 6, this algorithm makes the assumption
that the error functionE(.) is lower for the true distortion type
than for any other distortion.
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Fig. 6. Error function E for image bikes given two distortion types:
Gaussian blur & Gaussian noise and average blur and salt-and-pepper
noise. The true distortion parameters (α, β) are pinpointed with the
vertical line. The energy is significantly lower around the red line for the
true distortion type (here Gaussian blur and Gaussian noise) than for
the other one.

Algorithm 2 Blind Distortion Estimation

Input: f ,g,P
Output: αBEST, βBEST,pBEST

1: αBEST = βBEST = 0 ; EMIN =∞
2: for each distortionp ∈ P do
3: (α̂p, β̂p)← find parameters given processp.
4: Ê ← E(f, g, α̂p, β̂p)
5: if Ê < EMIN then
6: EMIN = Ê
7: αBEST = α̂ ; βBEST = β̂
8: pBEST = p
9: end if

10: end for

In order to validate this procedure, we computed a confusion
matrix based on the returned valuepBEST (the chosen distortion
process) compared to the actual distortion process used to
computeg from f . Three noise and blur combinations were
chosen namely:

A: gaussian filter, gaussian noise
B: average filter, salt and pepper noise
C: motion blur, multiplicative noise (speckle)

Tests were performed for a15 × 15 grid in the parameter
space for all of our 58 test images and BFS has been
used as optimization procedure. Table I presents the result-
ing confusion matrix. The results present a clear dominance
on the diagonal indicating that Algo.2 reliably chooses the
appropriate distortion process.

A B C

A 71.3% 14.2% 14.5%
B 9.8% 83.1% 7.1%
C 6.0% 6.2% 87.8%

TABLE I

CONFUSION MATRIX FOR DISTORTION PROCESS SELECTION USINGALGO

2.
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IX. RESULTS

A. Experimental apparatus

In order to gauge performances, we tested our seven opti-
mization methods on 58 real-life images taken from the LIVE
[45] and the COREL databases [46]. These images, whose size
ranges between610× 488 and768× 512, are distorted with
different amount of noise and blur. For every degraded image,
the estimated amount of distortion(α̂, β̂) is compared to the
actual amount(α, β) and the error expressed as a percentage
of the respective intervals[0, αMAX ] and [0, βMAX ]:

E(α̂) =
|α̂− α|

αMAX

, E(β̂) =
|β̂ − β|

βMAX
.

In our experiments,αMAX = 25 and βMAX = 20. The first
method we implemented is the brute force search technique.
In this case, the(α, β) search space is sampled with a regular
26×26 lattice ranging from(0, 0) to (αMAX , βMAX ). The second
method is the simplex search for which we choose the Nelder-
Mead algorithm [48]. The initial triangle is centered in the
middle of the search space at position(αMAX

2 , βMAX

2 ) and the
algorithm stops when50 points have been visited. As for
the NewUOA method, we used the code provided by the
authors [53]. As recommended in the original paper [49],
5 points were used for the quadratic interpolation and the
procedure is initialized at(αMAX

2 , βMAX

2 ). The confidence region
has a radius of1 and the algorithm stops when the distance
to the objective is less than0.1 or when50 evaluations have
been made.

As mentioned in section VII-C, the four other methods
use a bi-cubic patch. The Newton-Raphson search reaches
convergence when both|s[k+1] − s[k] | and |t[k+1] − t[k] | are below
0.0001. The initial approximation ofs and t is obtained by
averaging thes and t values of the 4 nearest control points.
As for PBF and PSI, they use the same parameters as their
non-patch version. We also tested the refined patch strategy
on the PSI technique. We called that method RPSI.

We compared our seven methods to four state-of-the-art
techniques. Two of these methods addresses the noise estima-
tion problem (one blind and one non-blind) and two addresses
the blur estimation problem (one blind and one non-blind).
These four methods recover Gaussian noise and Gaussian blur.

The blind noise estimation method is a fast version [6]
of Buckley’s thin-plate smoothing spline method [7] and is
referred to as theEVARmethod. The method removes fromg
an estimated version off (f̂ ) obtained by fitting patches ong.
The variance of noise is then estimated as follows : var(f̂−g).
The non-blind noise estimation procedure directly removesf
from g and computes variance : var(f − g). We called this
methodVAR.

As for the blind blur estimation method, we used a Lucy-
Richardson [54], [55] maximum likelihood PSF estimation
algorithm which we callLR-PSF [56], [57]. This algorithm
restores the image and estimates the PSF simultaneously
following an iterative procedure. The maximum number of
iterations is set to20. Although this algorithm requires no
knowledge on the shape ofh, it nonetheless requires a size to
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Fig. 7. Comparison between our BF method and four state-of-the-art
techniques for a single distortion. The plots show the average error across
all 58 images for (top) blur estimation and (bottom) noise estimation.

be given. Since the size ofh cannot be estimated based ong
only, it is set to the largest expected PSF. SinceβMAX = 20 and
that the size of a Gaussian filter must be at least6 × β [9],
the PSF size is set to120. Note that thedeconvblind()
function in the Matlab image processing toolbox have been
used for LR-PSF. As for the non-blind blur estimation method,
we retained the homomorphic filter described in section III.
We call this methodHMF. Details regarding the11 methods
are summarized in Table II.

B. Results

c) Single Distortion: The first round of tests involves
single distortions. We first degraded all58 images with various
amounts of Gaussian blur ranging fromβ = 0 to β = βMAX .
Then, for eachβ value, we computed the average error across
all images for our BF method, LR-PSF and HMF. We then
tested BF, VAR and EVAR for various amounts of Gaussian
noise (α = 0.01 to α = αMAX ). Again, the average error for
eachα value across all images has been computed for each
method. Results are shown in figure 7.

Fig. 8. Three PSFs estimated by HMF. These PSF are in the spectral
domain and correspond toα = 2, 5 and 10. The white spikes distributed
in high frequencies are caused by the log of near-zero amplitudes.

As can be seen in the first plot, our method completely
outperforms LR-PSF and HMF as it constantly produces errors
below 5%. Also, LR-PSF performs better on large PSFs than
on smaller ones. This is due to the filter size that we fixed
to 120, a size better suited to large PSFs. As for HMF,
although not blind, it does not perform well. The reason
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Achronym Name Parameters

BF Brute force search (α, β) space sampled with a regular26× 26 lattice.
SI Simplex search Initial triangle centered at(αMAX

2 , βMAX

2 ); 50 points maximum
visited.

NU NewUOA search 5 points used for interpolation; confidence region’s radius equals
0.25; algorithm starts at(αMAX

2 , βMAX

2 ); algorithm stop when dis-
tance to the objective< 0.0001 or when the number of evaluations
reaches50.

NR Newton-Raphson search Initial approximation ofs and t : average of thes and t values
of the 4 nearest control points; Algorithm stops when|s[k+1] − s[k] |
and |t[k+1] − t[k] | < 0.0001.

PBF Patch-based brute force search use of a bi-cubic patche + BF parameters.
PSI Patch-based simplex search use of a bi-cubic patche + SI parameters.

RPSI Refined Patch-based simplex search iterMax = 3; use of a bi-cubic patche + SI parameters.

EVAR Blind noise-estimation method None
VAR Non-blind noise-estimation method None

LR-PSF Lucy-Richardson PSF estimation methodFilter size =120× 120, iterMax = 20.
HMF Homomorphic filter Filter size =120× 120

TABLE II

DISTORTION ESTIMATION ALGORITHMS TESTED IN THIS PAPER.

for this is related to the log operator which is sensitive to
low-amplitude frequencies. This is illustrated in figure 8 in
which three PSFs estimated by HMF are shown in the spectral
domain. As can be seen, bright spikes caused by log of near-
zero values are scattered in high frequencies. Although our
implementation tries to filter out these values, they nonetheless
bias the estimated PSFs.

The second plot shows noise estimation results. Without
any surprise, our method does better than the blind estimation
method EVAR as its performance decreases with noise. This
can be explained by the fact that EVAR relies on its ability of
correctly estimatingf . However, the thin-plane spline strategy
is not good at recoveringf from g wheng contains fine texture
corrupted with a large amount of noise. As for VAR, our
method does better for noise levels above18. This is somehow
contradictory since VAR is mathematically the best possible
estimate and should always be very accurate. But as shown
in the plot, the error increases almost linearly withα. This
unexpected behavior can be explained by the fact that pixel
values in a digital images are limited between0 and 255.
Because of that, the degradation process implicitly implements
the following function:

g(x, y) = min(255,max(0, hβ ∗ f(x, y) +Nα)), (14)

wheremin andmax are clamping operators. In this way, the
noise contained in the residual imagef − g follows a clipped
Gaussian distribution whose standard deviation is different
than that ofNα. As α increases, more and more values
are clipped, inducing more errors in the estimation at higher
levels. Our method does not suffer from this effect because it
implicitely incorporate the clipping distortion operators.

d) Combined Distortions:Here, all 58 images are ap-
plied 225 Gaussian distortions(α, β) linearly distributed be-
tween (0, 0) and (αMAX =25, βMAX =20) for a total of 13050
degraded images. The overall results are presented in figure9
in which the average error (and standard deviation) for every

method is presented.

(a) α∗ = 16, β∗ = 7 (b) α̂ = 16.9, β̂ = 7.4

(c) α∗ = 13, β∗ = 10% (d) α̂ = 13.52, β̂ = 10.46%

Fig. 10. Typical results obtained by a search strategy (here PBF) for
(a),(b) Gaussian noise and Gaussian Blur and (c),(d) salt & pepper noise
and average filter blur. Given an imagef (here Bikes) and a degraded
image g whose degradation parameters are(16.0, 7.0) and (13.0, 10%),
the recovered parameters ((16.7, 7.4) and (13.52, 10.17%)) give a new
figure ĝ that is very similar to g.

As far as precision is concerned, BF produces the best
results among our seven methods with1.9% error for blur
estimation and7.52% error for noise estimation. Note that
those results could be further improved with more samples.
But although precise, BF is very slow as it is18 times slower
than the second slowest method. In fact, all other methods are
significantly faster than BF. Of the four patch-based methods,
NR produces slightly less precise results than the other ones.
A surprising observation is that PSI is more precise than SI.
This can be explained by the fact that patches make the to-be-
minimized error function smoother and void of local minima
(see figure 4). As we expected, the results further improved
with a refined strategy (here RPSI) although at the cost of
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Fig. 9. Global comparison between our seven methods and four state-of-the-art methods for the estimation of Gaussian blur and Gaussian Noise.
The first and second plots show the average (and standard deviation) blur and noise estimation error. The third plot shows the average runtime for
each method. Every method has been executed in Matlab.

a larger computational effort. This clearly underscores the
fact that patches not only reduces processing time, but also
help reducing error rates. As for NewUOA and simplex, they
both produced roughly6% and19% error for noise and blur
estimation which is slighly worst than our other methods.
Overall, when considering all seven methods, PBF offers in
our view the best compromise between speed (58 times faster
than BF), precision and conceptual simplicity.

As for the other four methods, we noticed with little surprise
that HMF, PSF and VAR and not well suited to recover
blur and noise when more than one degradation is applied.
However, EVAR has a low error rate of5.0% which was quite
unexpected for a blind-estimation method. To better under-
stand how EVAR (and the other methods) globally performs,
we plotted the average error for each degradation value(α, β).
This lead to the 3D surfaces shown in figure 11.

As can be seen in figure 11 (d), the performance of EVAR
increases with blur. Although counterintuitive, this behavior
is normal since EVAR aims at estimatingα according to the
following function : g(x, y) = f(x, y) + Nα(x, y). However,
when the input image is degraded with blur,f(x, y) is in fact a
smooth imagef(x, y)∗hβ(x, y). As far as EVAR is concerned,
estimating a smooth imagef(x, y) ∗ hβ(x, y) with a spline-
based method is far easier than estimatingf(x, y) alone. This
explains the high accuracy of EVAR in figure 11.

When considering figure 11 (e) and (f), one can see that
BF is well suited to blur but has a hard time estimating
small amounts of noise. The reason being that the manifold
in the MS-SSIM space is usually cramped on the noise axis
near the origin(1, 1, 1) as shown in figure 1. High proximity
of values in these areas hinder the brute force algorithm’s
performance. To solve that problem, a distance other than
Euclidean should be considered. However, we left to future
work the development of such distance function.

We also tested our method on two other distortions, namely
a salt-and-pepper noise and a box-filter blur. Here again, all 58
images were applied225 distortions(α, β) linearly distributed
between(0, 0) and(αMAX =21, βMAX =20%) for a total of13050
degraded images. In this case,β stands for the size of the box
filter andα for the percentage of corrupted pixels. Results are
presented in figure 12 in which the average error (and standard
deviation) for each method is presented. As can be seen, results
are slightly less precise for blur and roughly the same for noise
estimation than those obtained for the estimation of Gaussian
blur and Gaussian noise. This being said, the processing time
stayed globally the same. The brute force search and its patch-
based version are still the two most precise methods, followed
by RPSI, NR, and PSI. Simplex and NewUOA are still the
two least precise solutions with error rates above10% and
15%. Since PBF is 6 times faster than RPSI, it is still in
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Fig. 11. The average error of Gaussian blur and Gaussian noise
estimation for all images computed over the entire(α, β) search space.

our view the best compromise between speed and accuracy.
Furthermore, such results clearly show that our framework is
general enough to cope with different types of blur and noise
distortions as can be seen in figure 10.

X. CONCLUSION

In this paper, we presented a method to simultaneously
estimate the amount of blur and noise in a distorted image
g given a reference imagef . We have shown that, provided
a multi-dimensional quality metric (MS-SSIM), distortion
values (α, β) are associated to 3D points which form a
manifold in the MS-SSIM space. We formalized the estimation
problem as a search problem for which7 different search
algorithms have been proposed. The simple brute force search
algorithm is the slowest approach but shows high precision.
We also showed that replacing the mapping function by a patch
drastically reduces the computation effort while improving
results. It is the case for the simplex optimizer whose patch-
based version is significantly more precise. This is due to
the patch smoothing out the error function and eliminating
local minima. Refined patch strategy prove to further improve
precision while maintaining a substantial speedup with respect
to brute force search. The NewUOA and Simplex techniques
did not perform well globally although their processing time
are way below BFS’s.

In conclusion, we believe that the patch-based brute-force
technique offers the best compromise between accuracy, speed
and simplicity. Also, results obtained on different types of
distortions shown that our method does well on non-Gaussian
distortions. To our knowledge, this property is unique to our
approach.

In the future, we look forward to test other types of dis-
tortion functions to include multiplicative noise, compression
artifacts and non-linear blur functions.

APPENDIX 1

As mentioned in Section VII, the bicubic patch requires 16
control points stored in the4 × 4 matrix G. Each of these

control points is defined in the MS-SSIM space. In order to
get these 3D control points, one first need to uniformly sample
the (α, β) space as shown in Table III. Then, for each(α, β)
pair, the image pair(f, g = f ∗ hβ +Nα) is computed. These
image pair are then mapped to the MS-SSIM space following
Eq.(6), (7), and (8) and stored in matrixG.
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