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Abstract— We present a method for estimating the amount of image pair(f, g), two distortions pivotal for many denoising
noise and blur in a distorted image. Our method is based on and deconvolution techniques [9]. Our method is based on
the MS-SSIM framework which, although designed to measure o \S-SSIM distortion factors which has been designed to
image quality, is used to estimate the amount of blur and . ity A il b h bel liaht
noise in a degraded image given a reference image. We Showmeasu're Image quality. As will be shown e(_)W' a slg
that there exists a bijective mapping between the 2D noiseltr ~ €xtension of MS-SSIM allows to recover the noise and blur
space and the 3D MS-SSIM space which allows to recover distortion parameters. This extension is based on the M$tSS
distortion parameters. That mapping allows to formulate the distortion factors accounting for luminance distortiokal)(
multi-distortion estimation problem as a classical optimiation contrast distortiondd) and structure distortionsg) between

problem. Various search strategies such as Newton, Simplex do. Th fact iginall dt te th
NewUOA, and brute force search are presented and rigorously fandg. ese factors were originally used to compute the

compared. We also show that a bicubic patch can be used to MS-SSIM quality metric only [1]". In this paper/d, cd and
approximate the bijective mapping between the noise/blurace sd are used for a different purpose : they define the axes of
and the 3D MS-SSIM space. Interestingly, the use of suchapatt  a 3D space which we call tHdS-SSIM spacen that space,
reduces the processing time by a factor of 40 without signifantly each image paitf, g) is mapped to a 3D pointld, cd, sd).

reducing precision. Based on quantitative results, we shouhat B is derived f f . b Ivi
the amount of different types of blur and noise in a distorted BE€CaUSEy is derived from a reference imageby applying

image can be recovered with an accuracy of roughlg% and 8%, distortion based on two parametérs j3), our method focuses
respectively. Our methods are compared to four state-of-te-art  on the relation there is between a péir, ) and a 3D point

noise and blur estimation techniques. in the MS-SSIM space. As will be shown below, due to
a bijective transformation between the, 5) space and the
I. INTRODUCTION (Id, cd, sd) MS-SSIM space, one can formalize the problem of

nglti-distortion estimation as a classical optimizatioalgem,

.In the last decade, various qgallty metrics have bgen I.e. recover the(a, 8) pair whose 3D point(id, cd, sd) is
signed to measure the visual distance between two |magt%s.

: . € closest tq f, g)'s 3D point. Since computingld, cd, sd

Examples of such metrics are Multi-Scale Structural SIMﬁom a giveri((ézgg) pairpis computationaﬁy efpensive )we
larity (MS-SSIM) [1], Wavelet Structural Similarity (WSB! ropose a atch-based transfer function that maps én 2D
2], Visual Signal-to-Noise Ratio (VSNR) [3], and visualP'oP paic nap y
[2], . gna - ' oint (o, 8) to its 3D MS-SSIM counterpart with only 4
Information Fidelity (VIF) [4] indices, to name a few. Thesd oMt (@, 5) 10 T . s
metrics are designed to give a score between a referenceimmamx multiplications. Different types of blur and noisarc

. 9 9 ; gg recovered with our method including Gaussian and average
f and a distorted version O.f . F.rom that score, one Canblur as well as Gaussian and salt-and-pepper noise.
conclude that the quality of imaggis from excellent to very One application for such a method is the calibration of
bad.
émaging systems whose distortion process is not subject to
change in time like surveillance cameras or telescopesrGiv
a known reference imagg¢ and a picture of it taken by
e system (herg), our method can recover the amount of

Unfortunately, those quality metrics share a common limit
tion as they cannot identify the kind (nor the amount) of degr
dation that has been applied ghto obtaing. Furthermore,
given a visual score, those methods cannot determine if o ) ) o
or more degradations has been applied to the reference im g (read point spread fu_nctlc_)n) anq noise introduced _by
In other words, adding noise and/or blur to an image reduc system. Such information is crucial to most restorguon
its visual score, but none of these metrics can identify Whiégchmques _[10]’ ,[11]' Our method _COUld aIsp be used in a
degradation and how much of it has been applied. AIthouﬁHnllar fashion with lossy compression techniques.

some methods have been proposed to estimate the amount di*€ rest of the paper is organized as follows. We start off
one single distortion [5]-[8], none is capable of estirr@tinw'th an overview of the distortion estimation methods in-sec

simultaneously the amount of multiple distortions. At moston !l The MS-SSIM distortion factors are then introddade
multiple distortions are estimated independently [8]. more details in section V. The bijective transformatioerh

In this paper, we introduce a new method to estimate tie Petween a distortion paif, 3) and the MS-SSIM space
amount of multiple distortions in an imagegiven a reference S then explained in section V. The optimization problem (to
image f. More specifically, we present how the noise) ( gether with various optimization methods) is then formediz
and blur (3) distortion parameters can be recovered from an

1The MS-SSIM quality metric is obtained by multiplying therdk factors
This research was supported by the NSERC Discovery Grari5i71 ld, cd and sd.



in section VI and VII. Section IX and X show results andt each pixel. Another way of removinfgfrom g is by filtering
draw conclusion. g with an high-pass filter. In [15], Ran&t al. use a cascade
of two I-D high-pass filters.
Il. OUR CONTRIBUTIONS Of course, separating two images is a fundamentally dif-
. : jcult task and naive implementations can only lead to poor
This paper proposes a unique MS-SSIM-based mulﬂgu . . )
paper prop q results. That is why some methods estimate noise based on

distortion estimation procedure. The novelty of our methd§ . . . . .
is sixfold. g only. One strategy is to estimate noise in uniform regions

) L . void of edges [16], [17]. Under the assumption that the oagi
1) The noise and blur parameter estimation is formahqu;%agef and the noiseV,, are independent and tha, follows

as a search procedure embedded within the MS'SS%aussian distribution, the variance of the degraded iroage

framework. _ _ be written as follows
2) The distortion parametelsy, 5) are estimated simulta-
2 2 2
neously. X(z,y) = Yf(ay) T WNao

3) The simplest optimization procedure (the brute forcehere 5 and a2 are local variances. According to
search) is trivial to implement and returns surprisinglm g(2,) Yf(z,y) he original - locall 9
accurate results (approximateys error for blur and IS eql_Jatlon, everyw e2ret e original image Is locallystant
8% for noise). and void of edgesi.g. Xy =

4) The patch-based transfer function linking the 2D a2 — a2 .
noise/blur space to the 3D MS-SSIM space reduces the g(@y) = e
processing times up to 40 times without significantly In this way, whenever a region ig(z,y) is uniform, the

0), one can assume that

reducing the results’ accuracy. variance over that region should be close to that of the noise
5) Our method is trivially adapted to different types of bluPf course, the accuracy of the estimated noise variance is
and noise. deeply bound to ones’ ability of localizing uniform regions
6) A simple extension of our method can be used to blindf§ince such approach is sensitive to outliers in texturedsare
estimate distortion. these methods often overestimate the variance of noise.
An alternative way of estimating the variance of naigg
1. PREVIOUS WORK is by taking the minimum, the average or the median of the

. . ) ) local variance estimated at every pixel [17]-[19
When addressing the noise or the blur estimation problem, yp [171-19]

one has to consider image denoising and debluring methods. (aifa)mm = min(aﬁ(w)),
The reason being that distortion estimation has always been ) (@) )

tightly bound to restoration techniques. Although joinhdis- (aX, Jmean = f&e%)n(%(m,y))v
ing and debluring techniques have been proposed [12], these 9 o 2
problems are usually independently studied or, at mostesbol (O Jmed = m(e,,r%?n(%(w,y))'

separately [8]. This section presents an overview of exsti However, as reported by Martin-Fernandsiz al [18], the

noise estimation and the blur estimation methods. . . . .
. o . . min operator underestimates the noise variance, the mean
a) Noise estimation:The noise degradation model usu- ; . ; .
- . . operator overestimates it, and the median operator giveg so
ally accounted for by denoising techniques is the follow- . .
ing [13] intermediate res;ults. They also mention .that all three ouh
(2,1) = Flz,y) + Na (1) are somewhat ineffective when the noise level is low. The
9\Y) = Y o\ ) authors thus proposed an intermediate solution which vegol
where f(x,y) is the intensity of the original image at pixela free parametel < A < 1:
(z,y), g(z,y) is the intensity of the degraded image at pixel 2 9 - 2 ‘
(z,y) and N, (x,y) is additive noise withn parameter. Noise N, = My, Jmean + (1= A) (@7, Jmin, @)
is often assumed to be Gaussian with zero mean and a variawbere \ gives a relative influence to the min and the mean
o? constant throughout the image. In this case, variarics operators. The authors compared results\fer 0.25, 0.5, and
the “o” parameter of noise we mentioned in section I. 0.75.

One straightforward way of estimating noise is by separat-More complex approaches involving singular value decom-
ing the original imagegf from g. In this way, noise is estimatedposition [20] and fuzzy logic [21] have been proposed. A
based on the residual image void ¢f Since f is usually popular method is the one by Donoho and Johnstone [22]
unknown, it thus needs to be estimated. Recovering noise Wiiich uses high-frequency wavelet coefficients:
first estimatingf from ¢ is a typical blind noise-estimation

_ : : MAD (y2H)
problem. For example, Shin et al. [13] estimdtdoy simply 0@2\[ =i )= — 2)
filtering ¢ with a low-pass Gaussian filter. More complex - 0.6745

filters have been proposed such as the thin-plate smoothingere yfyH are the coefficients of the finest diagonal sub-
spline model [6], [7], [14]. Standard thin-plate spline m@ds band and MAD stands for the median absolute deviation.
estimatesf by minimizing a cost function made of a dataAnother wavelet-based method has been proposed by Starck
term and a smoothness term [14]. The data term containsaard Murtagh [23]. Their approach uses arntrous wavelet
estimated version of made of overlapping patches centerettansform to locate pixels that do not contain any significan



signal, i.e. pixels with a background value plus some noise. A related blind approach based on singular vectors and
The value of a pixel(z,y) is considered to be pure noisesingular values was proposed by Devcic and Loncaric [32].
if its corresponding wavelet coefficients are significatyy. The singular value decomposition (SVD) of the degraded
Since they assume that the background is mostly containedritage is first computed in the spatial domain. Then, the DFT
the coarsest scale of the wavelet transform, the coarsalst sis applied on the obtained SVD matrix. The PSF is estimated
is subtracted from the original image. From that new imag&pm the frequential singular vectors, while noise var@nc
the o3, is computed by considering the wavelet coefficienis estimated from the smallest frequential singular values
whose value is larger thaho; (they choosek = 3) where Finally, the spectrum of original image singular vectors is
a; is the standard deviation of the noise at each sg¢alkhe estimated using exponential model of covariance functarn f
a; values are estimated by taking the wavelet transform ofwghich the spectrum of singular vectors of the degraded image
Gaussian-noise image withh = 1. The authors show that theis computed.
method works well on astronomical images. In [33], Elder and Zucker proposed an edge-based method
b) Blur estimation: Blur identification is another impor- to estimate blur. They proposed an image compression scheme
tant step for image restoration techniques. Here, the dagrabased on edge and blur information only. Their method
tion process is represented by a convolugon fxhs, where estimates two quantities: the intensity at edge locations i
g is a blurred version of, andh is the to-be-estimated point-the image and the blur at those locations. This estimation is
spread function (PSF). performed under the assumption that blurred edges can be

A simple way for estimating blur giveri andg is through Ccharacterized by a sigmoidal intensity gradient.
the use of an homomorphic filter [9], [24]. Given that a Besides deconvolution, other applications such as shape
convolution in the spatial domain corresponds to a poirsewifrom defocus depend on blur estimation. In this case, due to
multiplication in the spectral domaire. the limited depth of field of a lens, blur is proportional t@th
N N B distance between the camera and the scene [34]—[36]. In this
g} =S{f xhp} = FH. case, estimating blur amounts to estimating depth. Usually
the defocusing process is modeled by the convolution of a
perfectly focused image with a PSF whose size is proportiona
hg = S {exp(In[G] — In[F])} to depth. Assuming a Gaussian PSF, Pentland introduced a

sinceln[G] = In[F]+In[H]. Note that3 stands for the Fourier Fouru_ar-based algont_hm wo_rkmg on local patches _[37].|&m
transform operator and, F and H are the spectral versionsteChmqueS working in spatial and spectral domain have been
of f,¢g and hg. Let us mention that although the PSF Caﬂroposed [34], [38]-[42].

be obtained with a simple division in the spectral domain (a

so-calledinversefiltering): IV. THE MS-SSIMFACTORS

.G
hg = S {f} . As mentioned previously, the MS-SSIM index [43] is based

on three multiscale factors: 1) the luminance distortiéd) (
Such method rarely produces any good results [9]. Th§ the contrast distortioncg) and 3) the structure distortion
reason being that whenevér has zeros or very small valueS(Sd) between an imagef and a degraded version of it
at some frequencyu, v), the ratio ?EZ’? dominates over the The philosophy behind MS-SSIM lies in its definition of an
rest of the spectrum. As suggested by Chitale and Padgettjl@hge. For MS-SSIM, anV x M image is a point in the
a work around to inverse f||ter|ng is the Wiener deCO”VOWtiO}RMXN space Where any distortion is mode'ed by a trans'ationa|
filter. Although the Wiener filter has been deSigned to recovV@ector added to a reference image_ In that space, the |ength
[ giveng andhg, one can deconvolutgwith f to obtain the of the translational vector is proportional to the magnétiwed
PSFhs. the distortion. The two vectors responsible for luminancd a
Numerous blind blur estimation techniques have also beesntrast distortion span a plane on which lies the reference
proposed. Most of these techniques estimate the PSF base¢h@iiye. The authors mention that distortions correspontting
the location of zeros in the Fourier spectrumgof25]-[29]. a rotation of that plane are associated to structural clange
The PSF can be computed globally or by combining mametweenf andg.
local PSFs estimated on small portions of the image [30]. In From its basic formulation, the luminance distortion atlsca
this case, the global PSF is obtained by averaging the powe&g defined as
spectrum of each local PSF. The Fourier-based approaches 2ispg + O
are computationally efficient and require minimal assuoTi LD;(f,9) = Qgiwa
on the input image. However, it is well known that Fourier et Hg G
techniques requirg to have a large signal-to-noise ratio unlesehere .y and u, represent the mean intensity ¢fandg at
zeros are difficult to localize. As a solution, Chaesigal. [31] scaled, andC} is a constant to avoid instability WhQﬂ?c +
detect zero-crossing in the “bispectrum” of thénstead of its . ~ 0. According to Weber's law [44], the magnitude of
power spectrum. The authors argue that bispectrum sugsress just-noticeable luminance changg is proportional to the
additive Gaussian noise and thus, facilitates the detecifo background luminancéd. In that caseyu; = yugy, wherey
zeros in low signal-to-noise ratio images. represents the ratio of the luminancegofersusf. Thus, the

hs can be computed as follows :




luminance distortion can also be defined as
2vu} + Ch

(1+9%)uf +Cr

Contrast distortion at scaleis defined in a similar way:

200 + C
ODi(f,q) = Y T2 4
(£.9) % a2+ Cy )

LDi(f,9) = ®3)

where C, is a non negative constant andgs (resp. ay)
represents the standard deviationfofand ¢) at scalei.

white noise associated to thermally generated electroats th
build up in the CCD (other types of noise caused by physical
interferences are neglected here). In this paper, we dstima
different types of blur and noise all driven by one parameter
For the blur, we consider a zero-mean Gaussian filter (defined
by a standard deviation) and a uniform low-pass filter (define
by its size). As for noise, we consider zero-mean Gaussian
noise (defined by a standard deviation) and salt and pepper
noise (defined by the percentage of corrupted pixels). I& thi
way, whatever the combination of noise and blur that we ought

As for structure distortion at scalg it is measured after to estimate, we end up estimating two parameterand 3.

subtracting the average luminance and normalizing the-asint

of both f andg. This leads to:

_ 2ap4+ Cs

SDU1.9) = 3= )

whereas., = w1 SN (fi — 115)(9i — 1y), andCs is a small
constant.

Now that the distortion model betwegnandg has been in-
troduced, the connexion between the §) space and the MS-
SSIM space becomes straightforward. By combining Eq. (6),
(7), (8), and (9), one can associate a pair) to a 3D MS-
SSIM point as follows:

(o, 8) — (I, ¢,8), (10)

Finally, the three MS-SSIM features are computed as falhere

lows :
ld(f,9) = [LDm(f,9)]™ (6)
cd(f,g) = ]IM[[CDAf,g)]ﬁi (7)
=
sd(f.9) = JIISDF. 90" ®)

&
Il
—

where the luminance comparis@® , ( f, g) is computed only
at the largest scale M. The three exponenis, 5; and~; are

l=ld(f,h5>kf+_/\fa),
c=cd(f hg*f+Na),
s=sd(f, hg* f+Ny).

In order to illustrate this relation, we tooK76 points
arranged on &6 x 26 lattice in the ¢, 3) space and mapped
it to the MS-SSIM space following Eq. (11). These points go
from (0, 0) to (cwax, Buax ) @nd specify the amount of blur and
noise. As shown in figure 1, whatever the contentfofthe
3D points form a surprisingly smooth manifold. This strogngl

used to adjust the relative importance of different comptsie suggests that a change in the, §) distortion space induces

In this paper)M = 5 corresponds to the maximum scale, whilgy predictive change in the MS-SSIM space. More specifically,
i = 1 corresponds to the original resolution of the image. e empirically observed that

[43], the authors have defined,, = 1 and3; = v = 0.0448,
52 = Y2 = 0.2856, 53 = Y3 = 0.3001, 54 = Y4 = 0.2363,
andBs = 5 = 0.1333. Also, C; = 0.01- L? and(C, = C5 =

0.03-L? whereL is the maximum image luminance, here 255.

According to Eg. (6), (7), and (8), a pailf,g) (where

g is a degraded version of) is associated to a 3D point

(Id,cd, sd) € [0,1]3.

V. NOISE AND BLUR DISTORTIONS

1) there is a one-to-one mapping between eaclB) pair
and its 3D correspondencéd, cd, sd);

2) the manifolds have two principal directions correspond-
ing to variations ofo. and .

Of course, given the highly non-linear aspect of the MS-
SSIM features, it is difficult (and maybe impossible) to for-
mally prove the one-to-one mapping assertion for all non-
trivial images$

Reducing the noise and enhancing sharpness in images i§hat being said, we conducted a study on 58 images
often critical to producing clear, high dynamic range inmgeSampled from the LIVE [45] and the COREL [46] image
However, good denoising and deconvolution techniques nedrfabases in order to establish an empirical demonstration
to know the distortion process as well as the noise and bif¥at would support our hypothesis. Our demonstration ire®|
parameters. A degradation process frequently accounted & smallest distance between two neighbors in the MS-SSIM
is the one associated to most digital cameras [9]. Accordifiace as a function of the number of samples in the parameter
to this process, the lens of the camera induces blur and fR@ce. We distorted each image using Eq. (9) giver n
digitizer adds random noise. It is well known that if thé® ) points. Then, following Eq. (11), we projected these
degradation process is linear and position invariant, dad t” * n image pairs to the MS-SSIM space. This lead to a
the 3D scene is made of objects located roughly at the sapfe scatter plot for each image similar to the ones shown in

distance from the camera, then the degraded imdgey) is
obtained as follows [9]:

g(x,y) = hg * f(x,y) + Na, 9)
where hs is a low-pass filter,\,, is noise and« indicates

Fig. 1. For each projected point, we computed the distance
to the nearest neighbor. Fig. 2 shows this distance averaged
over all images and all sampling resolution asncreases.

2The one-to-one mapping assertion does not hold for peyfaatiform
images sincehg * f(z,y) = f(z,y) VB. However, that situation is very

convolution. It is generally assumed thi, is an uncorrelated specific as the distortion process does not modify the comtesuch image.
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(e) Manifolds for average blur and Gaussian noise.
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(f) Manifolds for Gaussian blur and salt & pepper noise.

Fig. 1. MS-SSIM manifolds obtained from three different images. E@h point in the (Id,cd,sd) space corresponds to a specifigy, 3) distortion.
These manifold correspond to a combination of (d) Gaussianlbr and Gaussian noise, (e) average blur and Gaussian noisend (f) Gaussian blur

and salt & pepper noise.

As can be seen from the shape of the curve, the minimum VI. DISTORTION ESTIMATION AS AN OPTIMIZATION
distance between two neighboring points in the MS-SSIM PROBLEM

space is never zero even forl80 x 100 grid. In fact, the

curve shows an asymptotic shape and never reaches zero. Thigs mentioned previously, our goal is to estimate the amount
clearly shows tha.t,_ even though collisions may theordicalys pise o* and blur 5* contained ing given f. Given
occur, the probability that two parameter pak's = (a1,51) the bijective transformation between the, §) space and the
and X, = (a2, 02) project at the same location in the MSqs_551Mm space, the distortion estimation procedure can be
SSIM space decreases asymptotically as the distance betWegmylated as an optimization procedure (the reader céowol
X7 and X, increases. This result aIIo_ws us tq conclude thgte upcomming exposition through figure 3). Assuming that
Fhe one-to-one mapping holds for arbitrary poigts and X he pair(f, g) corresponds to a unique 3D poiiit*, cd*, sd*)

in the parameter space. in the MS-SSIM space (the round dot figure 3), the goal is to

find a pair(&, 8) such that f, f*hB+Nd) corresponds to a 3D

point (ic, cd, sd) (the square dot in figure 3) located as close as
possible to(ic*, cd*, sd*). Estimating(a*, 8*) thus becomes



25X m? ‘ ‘ ‘ ‘ ‘ ‘ ‘ samples considered, the more precise the end result wikde.

[
] . .
% one would expect, considering a large numbefafs) values
‘5 (here676) is prohibitive computational wise. The reason being
; 2’\ 1 that computing(lc, cd, sd)_ with f * h,@_ + N, followed by
= Eq.(6), (7), and (8) is a time consuming procedure.
2 15
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Parameter samples on each axis. (@) Error functionE(f, g, a, 8).  (b) Error functionE(f, g, o, ) with

the use of a bicubic patch.

Fig. 2. Relationship between the distance to nearest neighbors irhé ) ) o . .
parameter space and the same distance in MS-SSIM space. Therfzontal ~ Fig- 4. Error function [ for the Bikes image "g'thOUt and with the use
axis corresponds to the number of points on each axis in the pameter ~ Of & bicubic patch. The minimum is at (*¥4*, 24X ) = (12.5,10.0).
space. The vertical axis corresponds to the average distamdor all images
in our database to the nearest neighbor in the MS-SSIM space.
(ab)

{

Input images B. Simplex Search (SI)

To reduce the computational effort, one needs to visit a
smaller number of(«, 5) values before reaching the global
minimum. The simplex search is a typical solution to such
unconstrained derivative-free optimization problemg [$8m-

§=h; * f+r,
R plex starts with 3 solutions callegertices which form a
triangle in the(a, 8) space. New positions are then iteratively
identified inside and outside the triangle. The error value a
these new positions is then compared to the vertices of the
triangle. Then, the vertice with the highest cost is dispthc
(d* cd* sd*) such that its cost decreases. This leads to a new triangle and
LD \CD a new iteration. This operation is repeated until one of the
vertices’ cost is below a predefined threshold or when the
Fig. 3. Schematic representation of our optimization procedure. number of points visited has reached some maximum value.
an optimization problem that we formalize as follows: C. NewUOA (NU)
A5 . Although the Simplex algorithm is a classical solution to
(& 8) = argrg}élE(f’g’a’B)’ (11) unconstrained optimization without derivatives, moreergc

developments aim at faster convergence, better numetazal s
bility and improved robustness with respect to more complex
e%Pjective functions.

Trust-region optimization methods are a family of
derivative-free optimization techniques using an appra«i
jon of the objective function in order to reduce the cost of

middle. Unfortunately, since the 3D shapeff, g, «, 3) is e\{aluations. 'Thi.s is impprtapt in applicatio'ns where eyalu
unknowna priori, gradient-descent optimizers are not appll‘letlng the ObJeCt'V_e fu_nct|o_n IS costly. A typlcal_ trust reg|
cable here. In fact, such problem is a so-called unconsmiair{ne_tho_d [49] C(_)nS'StS in building a goqd approxmatlon_of the
optimization problem without derivatives [47]. Three ssar objective function local to a trusted region, followed byeaiss

strategies adapted to that problem are introduced in the n8g< m[nlmlzat|pn§ over this model: At.e.ach iteration, a new
subsections. candidate point is generated by minimizing the approxiomati

Either the model is good and this minimization predicted a
good candidate, in which case the new point is adopted and
A. Brute Force Search (BF) the region of trust grows, or the local approximation is jedg
The simplest way to recovefd,3) given (f,g) is by inaccurate, in which case the size of the trusted region is
considering a large number 6, 3) values and keep the onereduced and the model is updated.
whose 3D point(lc, cd, sd) is the closest to(lc*, cd”, sd™) The NewUOA optimization software [50] is a recent devel-
(i.e. the one with the lowest erraf(.)). Of course, the more opment using quadratic approximations. The method present

wherea € [0, ayx], 8 € [0, Buax]), and E(.) is an Euclidean
distance\/(lc — Ic*)2 + (cd — cd*)? + (sd — sd*)2. In order

to illustrate the shape of this error function, we comput
its value over10000 samples(«, 8) given that the solution
(a*,B) is (4, ﬁ“‘%). As shown in figure 4(a), the error
function is globally smooth and has a global minima in th




implementation tricks for reducing the number of interpots,t) € [0,1]? to a 3D point(z, y, z) € R3:
lation conditions, further reducing the number of objestiv T S
function evaluations, as well as enhancing numerical ktiabi (@(s,8) y(s,1) 2(s,t)) = SM.G.M"T". (12)
Experimental results reported in [50] show that NewUOA For a bi-cubic patchS = (1 s s2 %), T = (1 ¢ ¢2 t3),
has good performance for functions of up to 160 variables; is a 4 x 4 matrix containingl6 control points, and\/ is
yet drastically reducing the number of evaluations of thge 4 x 4 basis matrixdefining the nature of the patch (a
objective function when compared to other optimizers bas@ézier, an Hermite, or any other patch). The manifolds in the
on quadratic models. (Id, cd, sd) space being smooth, one can fit a patch on it with
a Vandermonde matrixand with 16 control points obtained
after uniformly sampling théa, ) space with al x 4 lattice
VIl. FAST 2D 70 3D MAPPING (see Appendix 1 for more fietai?s on how mattixis built).

So far, we introduced two optimizers (simplex an@®nceG has been filled, any paik, 5) can be mapped to the
NewUOA) whose processing time is drastically faster thd¥S-SSIM space as follows :
the simple brute force search (benchmarks are provided in (s,t) = (a/cwaxs B/ Buax)
Section 1X). This is because simplex and NewUOA pick less -
points in the(w, 8) space than the brute force search does. In (id,cd,sd) = S.M.GM.T". (13)
this section, we introduce approximations of the manifald t Such a patch fits surprisingly well on the manifold. As
further reduce the processing time. can be seen in figure 4 (b), the error functiélif, g, , 3)

We showed in figure 1 that they, 3) space form a smooth obtained with a bicubic patch has a very smooth shape close
manifold in the MS-SSIM space. This manifold has twao the original error function.
principal directions associated ta and 5. As shown in
figure 5, the position of a 3D point on the manifold is tightlyA. Patch-Based Optimization Procedures
bound to the(c, ) values. Clearly, a 3D point on the MS- Thg yse of a patch allows to map a 2D pdiat 3) to its 3D
SSIM manifold is determined by the magnitude®fand 5. \ms.gsiM position(ic, cd, sd) with little computational effort
Stated that way, and 5 can be seen as parameters allowingynly 4 matrix multiplications). Since it does not change th
to navigate on the 3D manifold. In other words, a googptimization function of Eq. (11), the optimization proceels
parametrization of théa, §) « (Id, cd, sd) mapping could bron6sed so far can account for this mapping without having
allow to predict where da, 3) point falls in the MS-SSIM 4 change their functionality. Only they, 8) <> (Id, cd, sd)
space. Such parametrization would allow to map a distorti%ppmg procedure need to be changed. We tested two such
pair (a, §) to its related(ld, cd, sd) position without having satch-based optimizers namdiBF (patch-based brute force
to compute Eqg. (6), (7), (8), and (9). This would reduce q“ié‘earch) andS| (patch-based simplex search).
significantly the computational effort.

B. Newton-Raphson Search (NR)

?Zigfﬁg?ﬁ:o) The use of a parametric patch allows to formulate the prob-
\ (oc=0.01,[;=0) lem in a different way: given a 3D point = (l¢, cd, sd) asso-
\ ciated to( f, g), find its projection(s, ¢) on the patch such that
09 B axis § \ (0=0.p=10) the distances betweehandB(s,t) = (z(s,t),y(s,t), z(s,t))
08 : (@g(a—o.ow,ﬁ—lw is minimum. In other words, find the best,¢) such that
the Euclidean distance betweehand B(s,t) (namely F' =

0.7

SD €————(0=0.01,p=10) . o ' .
06 ||A— B(s,t)||) is minimum. Unfortunately, when dealing with
05 ’ bicubic patches, there is no closed-form solution to thabpr
04 (0=0,3=20) lem as it requires to find the roots of a fifth-degree polyndmia

(0=0.005;B=20)
(a=0.01,3=20)

03 A solution [52] is to assign an initial approximation of

. andt¢ and solve it using a conventional fixed-point scheme.
Since we want to minimize|A — B(s,t)|| we assume that
the best(s,t) is the one for whichZ||A — B(s,t)|| = 0

09 08 and 2 ||A— B(s,t)|| = 0. According to the Newton-Raphson
Fig. 5. MS-SSIM manifold for the cemetery image (third image in formula:
figure 1). The manifold can be seen as a parametric patch on wtin F ) F
every point is defined by a(a, 8) value. sl = glkl _ == plht1] — gk _ 2

F F
Our mapping function is inspired by the shape of the 3@herek is an iteratorf’ = %HA—BH andF} = %HA—BH.
manifolds. As can be seen in figure 1 and 5, the 3D manifolgsultiplying s andt by ayay and Bya.
have a shape close to the one of a parametric patch [51]. In a
similar fashion, théa, ) « (ld, cd, sd) mapping is also very r 0 0 0o \7*!
close to the mathematical definition of a parametric patch? M = ( 1 /3 179 1/21 )
1

. . . _ 2/3 4/9 8/27
A patch is a mathematical function relating two parameters 1 1 1



C. Refined Patches

Algorithm 1 Refined Patches
Input: frgyOfMAx +Buax
Output: 4,3
1. = 51 =0
20 2 = Oax, B2 = Puax-
3: for i = 0 to iterMax do
4: G « 16 MS-SSIM points covering, az] x [81, Ba].
5: (&, B) < Optimizer(f,q,G) /*PBF, PSI, or NR*/
6: @Zd(OéQ—Oél)+Oél
7 B=pB2—PB1)+ B
8: a1 = max(& — O‘X’jx ,0)
9: g = mm(a + & 4L ,onAX) Fig. 6. Error function FE for image bikes given two distortion types:
10: By = max(ﬁ Bmax O) Gaussian blur & Gaussian noise and average blur and salt-angepper
' ! ) ,84‘ ’ noise. The true distortion parameters (o, 3) are pinpointed with the
11 B2 = mln(ﬁ + Xfx 7ﬁMAX) vertical line. The energy is significantly lower around the ed line for the
12: end for true distortion type (here Gaussian blur and Gaussian noisethan for

the other one.
Although bicubic parametric patches fit well the MS-SSIM
manifolds, they are nonetheless approximations and can be
slightly inaccurate. One way of reducing these inaccusaciglgorithm 2 Blind Distortion Estimation
is through the use of so-callegfined patchesThe concept Input: f,g,P
behind the refined patches is the same for every patch- Qutput: cuesr, Bscsr,Poest
based optimizer. Whenever a patch-based optimizationadeth 1. o, . = Bieer = 0 ; Eun = 00
converges toward a solutiofi, 3) (be it PBF, PSI, or NR), : for each d|stort|orp c P do
the goal is to fit a smaller (and therefore more accuratehpatcs. (%7 5p) « find parameters given process
in the vicinity of (&, ) and re-start the optimizer on that ,. E <« E(f,9,dp, 5p)
localized patch. This procedure iterates a pre-specifieshen 5. it £ - g then
of times. In our experiments, numerical precision prevents. By = E
any gain past 3 iterations. As shown in Algorithm 1, the. Opesr = & 3 Boesr = 3
search space defined oy, 31) and (a2, f2) reduces at each . Deesr = P
iteration. o end if
Note that because of the nature of the patch, @e3) 10: end for
values returned by the optimizer ranges between 0 and™1
These values thus need to be remapped intqdhe&) space.
This is done at line 6 and 7.

In order to validate this procedure, we computed a confusion
matrix based on the returned valpgs: (the chosen distortion
process) compared to the actual distortion process used to
computeg from f. Three noise and blur combinations were
chosen namely:
VIIl. BLIND DISTORTION ESTIMATION A: gaussian filter, gaussian noise
B: average filter, salt and pepper noise
So far, we presented a method for estimating the amount ofc: motion blur, multiplicative noise (speckle)
distortion given known distortion types (say, Gaussians@oiTests were performed for & x 15 grid in the parameter
and Gaussian blur). But one question arises when the distortspace for all of our 58 test images and BFS has been
types are unknowm priori. Fortunately, following Eq.( 11), used as optimization procedure. Table | presents the result
the answer to this question is fairly straightforward (teader ing confusion matrix. The results present a clear dominance
can follow the exposition through Algo.2). Lét be a set of on the diagonal indicating that Algo.2 reliably chooses the
noise and blur distortion types. For examplecan contain a appropriate distortion process.
combination of Gaussian, average and Butterworth noisg, an

Gaussian, average, salt-and-pepper noise. GRethe goal | || A | B | C |

is to find for each distortion paip € P their associated pa- A || 71.3% | 14.2% | 14.5%

rametergd,, Bp) following one of the optimization procedure B || 9.8% | 83.1%| 7.1%

presented so far. Once every,, 5,) have been estimated, the C| 6.0% | 6.2% | 87.8%

one with the lowest global energy(f, g, d,, 5,) is retained. TABLE |

As can be seen in Flg 6' this algorithm makes the a‘SSUI’nptiegNFUSION MATRIX FOR DISTORTION PROCESS SELECTION USINSLGO
that the error functiot(.) is lower for the true distortion type 5

than for any other distortion.
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IX. RESULTS

Error (%)
i

In order to gauge performances, we tested our seven opti-= [
mization methods on 58 real-life images taken from the LIVE ~ 1©f o=

[45] and the COREL databases [46]. These images, whose size o) : : - T T
ranges betweefil0 x 488 and 768 x 512, are distorted with o Blur level ()

different amount of noise and blur. For every degraded image o
the estimated amount of distortigry, 3) is compared to the e |-V

actual amounta, 5) and the error expressed as a percentage  *| =T
of the respective intervall), cuax] and [0, Buax]:

Errol

20F -

@)= =L 0 e T ”

‘ 0 5 10 15 20 25 30
lpax Buax Noise level (c)

In our experimentsouax = 25 and By = 20. The first Fig. 7. Comparison between our BF method and four state-of-the-art
method we implemented is the brute force search techniqtsshniques for a single distortion. The plots show the aveige error across

In this case, théa, ﬁ) search space is sampled with a reguleﬂ” 58 images for (top) blur estimation and (bottom) noise emation.
26 % 26 lattice ranging from(0, 0) t0 (cuax, Suax ). The second
method is the simplex search for which we choose the Neld®€ given. Since the size @f cannot be estimated based gn
Mead algorithm [48]. The initial triangle is centered in th@nly, it is set to the largest expected PSF. Sifigg = 20 and
middle of the search space at positipfi, 6MAX) and the that the size of a Gaussian filter must be at least 3 [9],
algorithm stops whers0 points have been visited. As forthe PSF size is set t20. Note that thedeconvbl i nd()
the NewUOA method, we used the code provided by tffenction in the Matlab image processing toolbox have been
authors [53] As recommended in the origina| paper [49917sed for LR-PSF. As for the non-blind blur estimation method
5 points were used for the quadratic interpo|ation and thee retained the homomorphic filter described in section lll.
procedure is initialized E(tO‘MAX ﬂMAX) The confidence reg|on We call this methoddMF. Details regardlng thé1l methods
has a radius ofl and the algorithm stops when the distancareé summarized in Table II.
to the objective is less thaiml or when50 evaluations have
been made.

As mentioned in section VII-C, the four other method?' Results
use a bi-cubic patch. The Newton-Raphson search reaches c) Single Distortion: The first round of tests involves
convergence when bofRY — s¥| and|t*¥ — t!| are below single distortions. We first degraded & images with various
0.0001. The initial approximation ofs and¢ is obtained by amounts of Gaussian blur ranging frofh= 0 to 8 = Byax-
averaging thes andt¢ values of the 4 nearest control pointsThen, for eachs value, we computed the average error across
As for PBF and PSI, they use the same parameters as tl@dirimages for our BF method, LR-PSF and HMF. We then
non-patch version. We also tested the refined patch stratégsted BF, VAR and EVAR for various amounts of Gaussian
on the PSI technique. We called that method RPSI. noise @ = 0.01 to @ = awax). Again, the average error for

We compared our seven methods to four state-of-the-&8&Cha value across all images has been computed for each
techniques. Two of these methods addresses the noise esti@thod. Results are shown in figure 7.
tion problem (one blind and one non-blind) and two addresses
the blur estimation problem (one blind and one non-blin
These four methods recover Gaussian noise and Gaussian

The blind noise estimation method is a fast version [
of Buckley’s thin-plate smoothing spline method [7] and i
referred to as th&VARmethod. The method removes frgm
an estimated version ¢f (f) obtained by fitting patches on
The variance of noise is then estimated as follows ( farg).
The non-blind noise estimation procedure directly remafes ) )
from ¢ and computes variance r— o). We called this Fig. 8_. Three PSFs estimated by HMF. These PSF are in the _spectral

9 p \(@r—g) domain and correspond too: = 2,5 and 10. The white spikes distributed

methodVAR in high frequencies are caused by the log of near-zero ampiitles.

As for the blind blur estimation method, we used a Lucy-
Richardson [54], [55] maximum likelihood PSF estimation As can be seen in the first plot, our method completely
algorithm which we callLR-PSF[56], [57]. This algorithm outperforms LR-PSF and HMF as it constantly produces errors
restores the image and estimates the PSF simultaneodmow 5%. Also, LR-PSF performs better on large PSFs than
following an iterative procedure. The maximum number afn smaller ones. This is due to the filter size that we fixed
iterations is set ta20. Although this algorithm requires noto 120, a size better suited to large PSFs. As for HMF,
knowledge on the shape éf it nonetheless requires a size talthough not blind, it does not perform well. The reason




| Achronym | Name | Parameters
BF Brute force search (o, B) space sampled with a regul2é x 26 lattice.
Si Simplex search Initial triangle centered at(=%, ﬁ“‘%); 50 points maximum
visited.
NU NewUOA search 5 points used for interpolation; confidence region’s radigeads

0.25; algorithm starts af “x, ﬂ“‘%); algorithm stop when dis
tance to the objective: 0.0001 or when the number of evaluations
reaches0.

NR Newton-Raphson search Initial approximation ofs andt¢ : average of thes and¢ values
of the 4 nearest control points; Algorithm stops wheh" — s |
and [¢1 — M| < 0.0001.

PBF Patch-based brute force search use of a bi-cubic patche + BF parameters.

PSI Patch-based simplex search use of a bi-cubic patche + S| parameters.

RPSI Refined Patch-based simplex search | iterMax =3; use of a bi-cubic patche + S| parameters.
EVAR Blind noise-estimation method None

VAR Non-blind noise-estimation method None
LR-PSF | Lucy-Richardson PSF estimation methodrilter size =120 x 120, iterMax = 20.

HMF Homomorphic filter Filter size =120 x 120

TABLE II

DISTORTION ESTIMATION ALGORITHMS TESTED IN THIS PAPER

for this is related to the log operator which is sensitive tmethod is presented.
low-amplitude frequencies. This is illustrated in figurer8 i
which three PSFs estimated by HMF are shown in the spectrg® 3 , - -
domain. As can be seen, bright spikes caused by log of neal’ ﬂa* o~
zero values are scattered in high frequencies. Although o
implementation tries to filter out these values, they noslets
bias the estimated PSFs.

The second plot shows noise estimation results. Withou
any surprise, our method does better than the blind estmati
method EVAR as its performance decreases with noise. This
can be explained by the fact that EVAR relies on its ability of
correctly estimatingf. However, the thin-plane spline strategy
is not good at recovering from g wheng contains fine texture
corrupted with a large amount of noise. As for VAR, our
method does better for noise levels ab@8eThis is somehow
contradictory since VAR is mathematically the best possibl
estimate and should always be very accurate. But as sho : :
in the plot, the error increases almost linearly with This (c) a* =13, 8* = 10% (d) & = 13.52, B = 10.46%
uneXpeFted b(_ah_awo_r can be expla_lned by the fact that pl)Ic—?gl. 10. Typical results obtained by a search strategy (here PBF) for
values in a digital images are limited betwe@nand 255. (a),(b) Gaussian noise and Gaussian Blur and (c),(d) salt &epper noise

Because of that, the degradation process implicitly imglets and average filter blur. Given an image f (here Bikes) and a degraded
the following function: image g whose degradation parameters arg16.0, 7.0) and (13.0, 10%),

: the recovered parameters (16.7,7.4) and (13.52,10.17%)) give a new
figure g that is very similar to g.

(@a*=16,8* =7 (b)y a=16.9, =174

g(z,y) = min(255, max(0, hg * f(z,y) + Na)), (14)
(=:9) ( (0.hp » f(5) ) As far as precision is concerned, BF produces the best

wheremin andmax are clamping operators. In this way, theesults among our seven methods witl9% error for blur
noise contained in the residual image- ¢ follows a clipped estimation and7.52% error for noise estimation. Note that
Gaussian distribution whose standard deviation is differethose results could be further improved with more samples.
than that of V,. As « increases, more and more value8ut although precise, BF is very slow as itli§ times slower
are clipped, inducing more errors in the estimation at highthan the second slowest method. In fact, all other methaoals ar
levels. Our method does not suffer from this effect becausesignificantly faster than BF. Of the four patch-based meshod
implicitely incorporate the clipping distortion operasor NR produces slightly less precise results than the othes.one
d) Combined Distortions:Here, all 58 images are ap-A surprising observation is that PSI is more precise than Sl.
plied 225 Gaussian distortionsx, 3) linearly distributed be- This can be explained by the fact that patches make the to-be-
tween (0,0) and (awax=25, Buax=20) for a total of 13050 minimized error function smoother and void of local minima
degraded images. The overall results are presented in figurgsee figure 4). As we expected, the results further improved
in which the average error (and standard deviation) foryevewith a refined strategy (here RPSI) although at the cost of
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Fig. 9. Global comparison between our seven methods and four stats-the-art methods for the estimation of Gaussian blur and Gussian Noise.
The first and second plots show the average (and standard deaion) blur and noise estimation error. The third plot shows the average runtime for
each method. Every method has been executed in Matlab.

a larger computational effort. This clearly underscores th When considering figure 11 (e) and (f), one can see that
fact that patches not only reduces processing time, but aBB is well suited to blur but has a hard time estimating
help reducing error rates. As for NewUOA and simplex, theymall amounts of noise. The reason being that the manifold
both produced roughlg% and 19% error for noise and blur in the MS-SSIM space is usually cramped on the noise axis
estimation which is slighly worst than our other methodsear the origin(1, 1, 1) as shown in figure 1. High proximity
Overall, when considering all seven methods, PBF offers @f values in these areas hinder the brute force algorithm’s
our view the best compromise between spegdtimes faster performance. To solve that problem, a distance other than
than BF), precision and conceptual simplicity. Euclidean should be considered. However, we left to future

As for the other four methods, we noticed with little surprisWOrk the development of such distance function.

that HMF, PSF and VAR and not well suited to recover e iso tested our method on two other distortions, namely
blur and noise when more than one degradation is appligfsa|t-and-pepper noise and a box-filter blur. Here agdifgal
However, EVAR has a low error rate 6f0% which was quite jmages were applie225 distortions(a, 3) linearly distributed
unexpected for a blind-estimation method. To better undq{étween(o’o) and (cum=21, Bux=20%) for a total 0f13050
stand how EVAR (and the other methods) globally performgegraded images. In this cagestands for the size of the box
we plotted the average error for each degradation V@lug). filter anda for the percentage of corrupted pixels. Results are
This lead to the 3D surfaces shown in figure 11. presented in figure 12 in which the average error (and stendar
As can be seen in figure 11 (d), the performance of EVABeviation) for each method is presented. As can be seertsresu
increases with blur. Although counterintuitive, this beloa are slightly less precise for blur and roughly the same fasao
is normal since EVAR aims at estimatingaccording to the estimation than those obtained for the estimation of Ganssi
following function : g(x,y) = f(z,y) + Na(z,y). However, blur and Gaussian noise. This being said, the processirg tim
when the input image is degraded with bljifx, y) is in facta stayed globally the same. The brute force search and ithpatc
smooth imagef (x, y)*hg(x,y). As far as EVAR is concerned, based version are still the two most precise methods, feitbw
estimating a smooth imagg(z,y) = hg(x,y) with a spline- by RPSI, NR, and PSI. Simplex and NewUOA are still the
based method is far easier than estimatiiig, y) alone. This two least precise solutions with error rates aba®, and
explains the high accuracy of EVAR in figure 11. 15%. Since PBF is 6 times faster than RPSI, it is still in
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control points is defined in the MS-SSIM space. In order to
get these 3D control points, one first need to uniformly s@ampl
the (o, §) space as shown in Table Ill. Then, for egeh 3)
pair, the image paiff,g = f * hg +N,) is computed. These
image pair are then mapped to the MS-SSIM space following
Eq.(6), (7), and (8) and stored in matrix
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Fig. 11. The average error of Gaussian blur and Gaussian noise
estimation for all images computed over the entire(«, §) search space.

our view the best compromise between speed and accuraél.

Furthermore, such results clearly show that our framewsrk i
general enough to cope with different types of blur and noise
distortions as can be seen in figure 10. [5]

X. CONCLUSION

In this paper, we presented a method to simultaneous@
estimate the amount of blur and noise in a distorted image
g given a reference imagg. We have shown that, provided
a multi-dimensional quality metric (MS-SSIM), distortion [7]
values («, 3) are associated to 3D points which form a
manifold in the MS-SSIM space. We formalized the estimatiorg]
problem as a search problem for whighdifferent search
algorithms have been proposed. The simple brute forcelsearl]
algorithm is the slowest approach but shows high precision.
We also showed that replacing the mapping function by a patéhl
drastically reduces the computation effort while imprayin
results. It is the case for the simplex optimizer whose patch
based version is significantly more precise. This is due foi]
the patch smoothing out the error function and eliminating
local minima. Refined patch strategy prove to further improv
precision while maintaining a substantial speedup witpees [12]
to brute force search. The NewUOA and Simplex techniques
did not perform well globally although their processing ¢im[13]
are way below BFS’s.

In conclusion, we believe that the patch-based brute-force
technique offers the best compromise between accuramtispgy;
and simplicity. Also, results obtained on different types o
distortions shown that our method does well on non-Gaussian
distortions. To our knowledge, this property is unique t@ oy s
approach.

In the future, we look forward to test other types of disl—16]
tortion functions to include multiplicative noise, comgsen
artifacts and non-linear blur functions.

[17]
APPENDIX 1

As mentioned in Section VII, the bicubic patch requires 16

control points stored in thed x 4 matrix G. Each of these
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t\s 0 3 2 1
0 (0,0) (%452=,0) (225==,0) (0tmax, 0)
; 1 O 2—23 ) | (e 2—‘;; ) | (Cog 2—23 ) | (Gmax, 2—23 )
3 (07 g)ax ) (Oﬂlgax , g)ax ) ( 2a§1ax , g)ax ) (amaX7 g\ax )
1 (07 5max) (%a Bmax) (%7 5max) (amaX7 5max)

TABLE Il

16 (e, ) CONTROL POINTS USED TO COMPUTE MATRDG. EACH (a, 8) PAIR IS ASSOCIATED TO A(s, t) PARAMETRIC VALUE.
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Fig. 12. Global comparison between our seven methods and four statf-the-art methods for low-pass box filter and salt-and-peper noise. The
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