
iOS BDD with Kiwi
https://github.com/process255/insta-test

Sean Dougherty
sean@process255.com

@sdougherty

process255.com
simpletomato.com

http://developdenver.org/panel/15
http://developdenver.org/panel/15
http://developdenver.org/panel/15
http://developdenver.org/panel/15
mailto:sean@process255.com
mailto:sean@process255.com

iOS engineer in Denver
writing iOS apps since 2010

web apps before that

Who am I?

iOS
Behavior Driven Development

with Kiwi

http://developdenver.org/panel/15
http://developdenver.org/panel/15
http://developdenver.org/panel/15
http://developdenver.org/panel/15
http://developdenver.org/panel/15
http://developdenver.org/panel/15

Insta-Test

https://github.com/process255/insta-test

An iOS App that displays the feed of popular
photos on Instagram.

https://github.com/process255/insta-test
https://github.com/process255/insta-test

Culture of testing.
Ruby On Rails

Objective-C

NO Culture of testing.

Ok, ALMOST no Culture of
testing.

Lots of Ruby developers are building iOS apps.

But... that is changing.

And they are bringing their tests with them.

But... that is changing.

What is TDD?
“Test driven development (TDD) is a software development
approach in which a test is written before writing the code.”

http://www.techopedia.com/

http://www.techopedia.com
http://www.techopedia.com

Why test our code?
“TDD encourages simple designs and inspires

confidence.”

Kent Beck, who is credited with having developed or
'rediscovered' the technique.

Why test our code?
Testing is another tool in our toolbox that helps us

build high quality software.

Why test our code?
A well maintained suite of tests gives

us confidence to refactor.

Why test our code?
Tests help new developers learn the code base and help
prevent new code from unknowingly breaking old code.

Why test our code?

Tests help us write better code.
Poorly written code is hard to test. Test driving our

code forces us to do better.

What is BDD?
Behavior Driven Development focuses and associates behavioral

specifications with each unit of software under development.

http://www.techopedia.com/

http://www.techopedia.com
http://www.techopedia.com

Apple’s OCUnit follows the traditional xUnit format.

Kiwi uses a specification format made popular by Ruby’s RSpec BDD library.

What is the difference?

Kiwi

OCUnit

it(@"should have 11 players", ^{

Team team = [Team team];
 [[[team should] have:11] players];

});

- (void)testHasElevenPlayers
{
 Team team = [Team team];
 STAssertTrue(team.players == 11, @"should have 11 players");
}

Kiwi

What is it good at?

readable tests

testing asynchronous code

built in stubbing and mocking

partial mocking

What is it bad at?

helper methods

code reuse

clickable test failure messages

Kiwi specs read like a sentence.

The team, when newly created,
should have a name.

The team, when newly created,
should have 11 players.

describe(@"Team", ^{

 context(@"when newly created", ^{

 it(@"should have a name", ^{

 Team team = [Team team];
 [[team.name should] equal:@"Avalanche"];

 });

 it(@"should have 11 players", ^{

 Team team = [Team team];
 [[[team should] have:11] players];

 });

 });

});

describe(@"Subject", ^{

beforeAll(^{
 ...

 });

 afterAll(^{

...
 });

beforeEach(^{
 ...

 });

 afterEach(^{

 ...
 });

});

What do I want to test?

A pragmatic approach

Simple methods

Methods that take time (async)

RestKit’s Object Mapping

Testing Storyboards

How can I test it?

A pragmatic approach

Simple methods

- (NSString *)prettyTitle

context(@"-prettyTitle", ^{

it(@"should return 'Sean Dougherty: 1,000 likes", ^{

Instagram* instagram = [[Instagram alloc] init];
 instagram.fullName = @"Sean Dougherty";
 instagram.likeCount = 1000;

[[[instagram prettyTitle] should] equal:@"Sean Dougherty: 1,000 likes"];

});

});

Methods that take time (async)

- (void)loadPopularWithSuccess:failure:

it(@"should load 16 photos", ^{

__block RKMappingResult *result;

[service loadPopularWithSuccess:...)
{

 result = mappingResult;
 }

failure:nil];

[[expectFutureValue([result array]) shouldEventually] haveCountOf:16];

});

RestKit’s Object Mapping

specify(^{ [[mappingTest should] mapKeyPath:@"id"
 toKeyPath:@"instagramID"
 withValue:@"1"];});

Testing Storyboards

it(@"the tableView should exist", ^{

[vc.tableView shouldNotBeNil];

});

Mocking & Stubbing

__block InstaService *service;

beforeEach(^{

service = [KWMock mockForClass:[InstaService
class]];

});

Mocking

beforeEach(^{

Instagram *instagram = [[Instagram alloc] init];
 instagram.thumbPath = @"thumb path";
 instagram.prettyTitle = @"pretty title";

 [vc stub:@selector(instagrams) andReturn:@[instagram]];

});

Stubbing

Testing Private Methods
and Private Properties

Use a class extension in your spec file

@interface InstaTableViewController ()

@property (nonatomic, copy) NSArray *instagrams;

- (void)loadPopular;

@end

Demo Time

Other Options

OCUnit (built into Xcode)

Cedar
https://github.com/pivotal/cedar

Expecta
https://github.com/specta/expecta

Specta
https://github.com/specta/specta

OCMock
https://github.com/erikdoe/ocmock

OCMockito
https://github.com/jonreid/OCMockito

Lots of others.

https://github.com/pivotal/cedar
https://github.com/pivotal/cedar
https://github.com/specta/expecta
https://github.com/specta/expecta
https://github.com/specta/specta
https://github.com/specta/specta
https://github.com/erikdoe/ocmock
https://github.com/erikdoe/ocmock
https://github.com/jonreid/OCMockito
https://github.com/jonreid/OCMockito

Resources

Insta-Test
https://github.com/process255/insta-test

Kiwi
https://github.com/allending/Kiwi

nsscreencast
http://nsscreencast.com/episodes/4-automated-testing-with-kiwi

Test Driving iOS Development with Kiwi by Daniel H Steinberg
https://itunes.apple.com/us/book/test-driving-ios-development/id502345143?mt=11

https://github.com/process255/insta-test
https://github.com/process255/insta-test
https://github.com/allending/Kiwi
https://github.com/allending/Kiwi
http://nsscreencast.com/
http://nsscreencast.com/
http://nsscreencast.com/episodes/4-automated-testing-with-kiwi
http://nsscreencast.com/episodes/4-automated-testing-with-kiwi
https://itunes.apple.com/us/book/test-driving-ios-development/id502345143?mt=11
https://itunes.apple.com/us/book/test-driving-ios-development/id502345143?mt=11

Attribution

Kiwi by Allen Ding
https://github.com/allending/Kiwi

AFNetworking by Matt Thompson and Scott
Raymond
https://github.com/AFNetworking/
AFNetworking

RestKit by Blake Watters
https://github.com/RestKit/RestKit

OHHTTPStubs by Olivier Halligon
https://github.com/AliSoftware/OHHTTPStubs

SDWebImage by Olivier Poitrey
https://github.com/rs/SDWebImage

SVProgressHUD by Sam Vermette
https://github.com/samvermette/
SVProgressHUD

CocoaPods by Eloy Durán
http://cocoapods.org/

https://github.com/allending/Kiwi
https://github.com/allending/Kiwi
https://github.com/AFNetworking/AFNetworking
https://github.com/AFNetworking/AFNetworking
https://github.com/AFNetworking/AFNetworking
https://github.com/AFNetworking/AFNetworking
https://github.com/RestKit/RestKit
https://github.com/RestKit/RestKit
https://github.com/AliSoftware/OHHTTPStubs
https://github.com/AliSoftware/OHHTTPStubs
https://github.com/rs/SDWebImage
https://github.com/rs/SDWebImage
https://github.com/samvermette/SVProgressHUD
https://github.com/samvermette/SVProgressHUD
https://github.com/samvermette/SVProgressHUD
https://github.com/samvermette/SVProgressHUD
http://cocoapods.org
http://cocoapods.org

Thank You

