Simplenote API2

Authentication

Simplenote uses a simple token based authentication system. All methods will require a
valid authentication token to process.

Obtaining a token
Call the /api/login method supplying two fields, email and password. These should be
the same as what you created your account with in the Simplenote application. The

server will respond by attempting to set a cookie named ‘auth’ with the token as the
value. Also, the HTTP response body will contain the token.

HTTP POST to the following URL:

https://simple-note.appspot.com/api/login

The body of the request should contain:

email=[email address]&password=[password]

The entire request body should be encoded in base64.

Using the token

Subsequent calls to the APl methods will check that either the ‘auth’ cookie is present
with a valid token or that the token is supplied as a query parameter (&auth=[token]).

Once issued, the token is valid for 24 hours. The email address should also be passed
with each request either as a query parameter or as a cookie.

Security

The Simplenote API allows either regular HTTP or encrypted HTTPS requests, except
for the login method which can only be accessed through HTTPS.

https://simple-note.appspot.com/api/login
https://simple-note.appspot.com/api/login

Working with notes

Each note has a unique string associated with it, using this key, individual notes can be
modified, created, retrieved, or deleted. Once a note has been created it resides at the
note URL and can be modified using that URL (/api2/data/[note key]).

Note object:

{

key : (string, note identifier, created by server),

deleted : (bool, whether or not note is in trash),

modifydate : (last modified date, in seconds since epoch),

createdate : (note created date, in seconds since epoch),

syncnum : (integer, number set by server, track note changes),

version : (integer, number set by server, track note content
changes),

minversion : (integer, number set by server, minimum version
available for note),

sharekey : (string, shared note identifier),

publishkey : (string, published note identifier),

systemtags : [(Array of strings, some set by server)],

tags : [(Array of strings)],

content : (string, data content)

}

Properties in green can be set by the client. Other properties are returned only by the
server.

*New properties may be returned in the note object without notice. Please make sure
your code can handle this! We’ll make sure to announce any changes for existing
properties though.

systemtags currently can only contain ‘pinned’ and ‘unread’. If the ‘pinned’ system tag
is present, that note should be sorted at the top of the list. If the ‘unread’ system tag is
present, it should be removed when that note is read by the user. To remove a system
tag just do an update of the note with the new systemtags array.

sharekey, and publishkey, can currently only be generated by the iPad/iPhone apps,
we’ll be exposing this functionality soon via the API.

tags currently should not contain any spaces. [We’ll be adding a more robust tags API]

Creating a note

To create a note, send a POST request to the following URL.:

The body of the POST request should be the new note object. At minimum, the content
property must be supplied. This will create a note and return a note object with a new
note identifier (in the key property).

Retrieving a note

To retrieve a note, send a GET request to the note URL.:

The key parameter must be supplied, auth may be omitted if the ‘auth’ cookie is
present, likewise for email.

The response body will contain a note object.

Updating a note

To update a note, a POST request is made to the note URL.:

The body should contain a partial note object. The minimum properties to send should
be the content. To support merging, last version number received from the server for
this note should be sent. If version is omitted, the new contents will automatically
overwrite the current note contents, even if changes have been made on other clients.

The response will have the updated note object, including the new version and
syncnumber properties assigned by the server. If no changes have been made by other
clients since the last update, then content will not be included in the response note
object. If there have been other changes then content will be returned and the client
should update their local store accordingly.

modifydate, and createdate can be set by the client. If not provided, the server will use
the current time for these values. Sorting in the Simplenote clients are done based on

these values and should be sent especially if the change did not happen at the time of

updating the note on the server.

https://simple-note.appspot.com/api/login
https://simple-note.appspot.com/api/login
https://simple-note.appspot.com/api/login
https://simple-note.appspot.com/api/login
https://simple-note.appspot.com/api/login
https://simple-note.appspot.com/api/login

Deleting a note

The latest Simplenote includes a Trash feature. Deleting a note now means to send a
note to the Trash, where it can also be restored. This is done using the deleted property
of the note object. To delete a note, just update a note and set the deleted property to
1. Restoring a note would mean to update and set the deleted property back to 0.

To delete a note from the trash (permanent delete), make a DELETE request to the note
URL:

https://simple-note.appspot.com/api/login
https://simple-note.appspot.com/api/login

Getting the note index

To make it simple to synchronize your notes with other applications, the API provides an
easy way to get an index of your notes. This method will return a JSON object with a
count of the number of note objects and an array of the note objects themselves. The
note objects are the same as retrieved by a normal GET call on a note, with the content
omitted. Since there is a maximum number of notes that can be returned in one call, if
there are more notes in the index, then the mark parameter will be set and it should be
used in the next index call to continue retrieving notes. For example, if the user has 300
notes, this would require at least 3 calls to retrieve all notes.

To get the index, make a GET request to the following URL.:

https://simple-note.appspot.com/api2/index?length=[number of notes]&mark=[bookmark

key]&since=[time value]&auth=[auth token]&email=[email]

The auth parameter is optional and is needed only if the ‘auth’ cookie is not present.
The email parameter is also optional and is needed only if the ‘email’ cookie is not
present. The length parameter determines the maximum number of note objects to
return (maximum is 100). If there are more note objects, then the response will include
a mark parameter. This is a note key and should be used as the value of the mark
parameter in a subsequent call to retrieve the next set of note results.

The since parameter is a time value (like modifydate or createdate) and instead of
returning all notes will return all notes that have been changed since the time specified.

Sample Index Response:

{

"count": 1,
"data":
[
{"modifydate": "1285591393.044700",
“tags": [],
"deleted": O,
"createdate": "1285591393.044700",
"systemtags": [],
"version": 1,
"syncnum": 1,
"key": "agtzaWlwbGUtbm90ZXIKCXIETM9OZRhsDA",
"minversion”: 1}

https://simple-note.appspot.com/api/login
https://simple-note.appspot.com/api/login
https://simple-note.appspot.com/api/login
https://simple-note.appspot.com/api/login

Examples

1. Get index
GET /api2/index

Response:
{"count": @, "data": []}

2. Create a note
{"content" : "New note!"}

POST /api2/data

Response:
{"modifydate": "1285591393.044700", "tags": [], "deleted": 0O,

"createdate”: "1285591393.044700", "systemtags": [], "version": 1,

"syncnum": 1, "key": "agtzaWlwbGUtbm90ZXIKCXIETm9@ZRhsDA",
"minversion”: 1}

3. Get index again should show newly created note
GET /api2/index

Response:

{"count": 1, "data": [{"modifydate": "1285591393.044700", "tags": [],
"deleted": 0, "createdate": "1285591393.044700", "systemtags": [],

"version": 1, "syncnum": 1, "key":
"agtzaWlwbGUtbm90ZXIKCXIETmM90ZRhsDA", "minversion": 1}]}

4. Retrieve note using note url
GET /api2/data/agtzaWlwbGUtbm90ZXIKCXxIETM9OZRhsDA

Response:
{"modifydate": "1285591393.044700", "tags": [], "deleted": O,

"createdate”: "1285591393.044700", "systemtags": [], "content":

note!", "version": 1, "syncnum": 1, "key":
"agtzaWlwbGUtbm90ZXIKCXxIETmM90ZRhsDA", "minversion": 1}

"New

5. Update note with new content, server returns new version and new syncnum
{"content" : "New note! with change", "version" : 1}

POST /api2/data/agtzaWlwbGUtbm90ZXIKCXIETm90ZRhsDA

Response:
{"modifydate": "1285591647.688616", "tags": [], "deleted": O,

"createdate”: "1285591393.044700", "systemtags": [], "version": 2,
"syncnum": 2, "key": "agtzaWlwbGUtbm90ZXIKCXIETm9@ZRhsDA",
"minversion”: 1}

6. Send note to trash by setting deleted to 1, only syncnum is changed because content

was not modified
{"deleted" : 1}

POST /api2/data/agtzaWlwbGUtbm90ZXIKCXxIETm90ZRhsDA

Response:

{"modifydate": "1285591687.123246", "tags": [], "deleted": 1,
"createdate”: "1285591393.044700", "systemtags": [], "version": 2,
"syncnum": 3, "key": "agtzaWlwbGUtbm90ZXIKCXIETm9OZRhsDA",
"minversion”: 1}

7. Permanently remove note from trash, only works if note is deleted
DELETE /api2/data/agtzaWlwbGUtbm90ZXIKCxIETm9OZRhsDA

Response:
Nothing returned, status code 200

8. Create 4 new notes (not shown), then retrieve index contains all 4 notes
GET /api2/index

Response:

{"count": 4, "data": [{"modifydate": "1285617794.872000", "tags": [],
"deleted": 0, "createdate": "1285617793.685000", "systemtags": [],
"version": 1, "syncnum": 1, "key":
"agtzaWlwbGUtbm9OZXIKCXxIETmM90ZRhvDA", "minversion": 1}, {"modifydate":
"1285617791.608000", "tags": [], "deleted": @, "createdate":
"1285617790.018000", "systemtags": [], "version": 1, "syncnum": 1,
"key": "agtzaWlwbGUtbm90ZXIKCxIETm9OZRhwDA", "minversion": 1},
{"modifydate": "1285617788.655000", "tags": [], "deleted": O,
"createdate": "1285617787.044000", "systemtags": [], "version": 2,
"syncnum": 2, "key": "agtzaWlwbGUtbm90ZXIKCxIETm9OZRhtDA",
"minversion”: 1}, {"modifydate": "1285617783.647000", "tags": [],
"deleted": 0, "createdate": "1285617780.555000", "systemtags": [],
"version": 1, "syncnum": 1, "key":
"agtzaWlwbGUtbm90ZXIKCXxIETmM90ZRhuDA", "minversion": 1}]}

9. Retrieve index again using length = 2, response contains only 2 notes and also mark

parameter to continue retrieving notes
GET /api2/index?length=2

Response:

{"count": 2, "data": [{"modifydate": "1285617794.872000", "tags": [],
"deleted": 0, "createdate": "1285617793.685000", "systemtags": [],
"version": 1, "syncnum": 1, "key":
"agtzaWlwbGUtbm90ZXIKCXxIETmM90ZRhvDA", "minversion": 1}, {"modifydate":
"1285617791.608000", "tags": [], "deleted": @, "createdate":
"1285617790.018000", "systemtags": [], "version": 1, "syncnum": 1,
"key": "agtzaWlwbGUtbm90ZXIKCxIETm9OZRhwDA", "minversion": 1}],
"mark": "agtzaWlwbGUtbm90ZXIKCxIETm9OZRhtDA"}

10. Continue retrieving notes using bookmark mark. Response contains remaining 2

notes and mark parameter is omitted since there are no more notes.
GET /api2/index?length=2&mark=agtzaWlwbGUtbm90ZXIKCxIETm9OZRhtDA

Response:

{"count": 2, "data": [{"modifydate": "1285617788.655000", "tags": [],
"deleted": 0, "createdate": "1285617787.044000", "systemtags": [],
"version": 2, "syncnum": 2, "key":
"agtzaWlwbGUtbm90@ZXIKCXxIETM9OZRhtDA", "minversion": 1}, {"modifydate":
"1285617783.647000", "tags": [], "deleted": @, "createdate":
"1285617780.555000", "systemtags": [], "version": 1, "syncnum": 1,
"key": "agtzaWlwbGUtbm90ZXIKCxIETm9OZRhuDA", "minversion": 1}]}

11. Using same bookmark mark from example 10, retrieve index with maximum length =

1. Response contains only 1 note and another mark to retrieve last remaining note.
GET /api2/index?length=1&mark=agtzaWlwbGUtbm90ZXIKCXIETMO9OZRhtDA

Response:

{"count": 1, "data": [{"modifydate": "1285617788.655000", "tags": [],
"deleted": 0, "createdate": "1285617787.044000", "systemtags": [],
"version": 2, "syncnum": 2, "key":
"agtzaWlwbGUtbm90ZXIKCXxIETmM90ZRhtDA", "minversion": 1}], "mark":
"agtzaWlwbGUtbm90@ZXIKCxIETM90ZRhuDA" }

12. Using bookmark mark from example 11, retrieve last remaining note in index,

response does not contain mark since there are no more notes.
GET /api2/index?length=2&mark=agtzaWlwbGUtbm90ZXIKCXIETM90ZRhuDA

Response:

{"count": 1, "data": [{"modifydate": "1285617783.647000", "tags": [],
"deleted": @, "createdate": "12856177860.555000", "systemtags": [],
"version": 1, "syncnum": 1, "key":
"agtzaWlwbGUtbm90@ZXIKCXIETmM90ZRhuDA", "minversion": 1}]}

Checking for changes

To check for changes you can use syncnum and version. syncnum will increment
whenever there is any change to a note, content change, tag change, etc. version will
increment whenever the content property is changed. You should store both these
numbers in your client to track changes and determine when a note needs to be
updated or saved.

Psuedo code algorithm for syncing:

For any note changed locally (including new notes):
Save note to server, update note with response (new syncnum, version, possibly new
content)

Get note index
For each remote note,
if remote syncnum > local syncnum,
Retrieve note, update note with response
if new note (key is not in local store),
Retrieve note, update note with response

For each local note not in index,
Permanent delete, remove note from local store

Response codes

The HTTP response status code should always be checked to be sure that an operation
has completed successfully. Successful operations return with a status code of 200.
Any other code is an error.

Some common error codes:

400 - Bad Request
401 - Unauthorized
403 - Forbidden
404 - Not Found
500 - Server Error

Best practices for error codes in common API methods:

https://simple-note.appspot.com/api/login
Any error code, retry or ask for password

https://simple-note.appspot.com/api/index

401 - User invalid, either authorization key expired or user incorrect, retry login
Any other error, retry

https://simple-note.appspot.com/api/note

401 - User invalid, either authorization key expired or user incorrect, retry login
404 - Note does not exist, do not retry

Any other error, retry

https://simple-note.appspot.com/api/delete

401 - User invalid, either authorization key expired or user incorrect, retry login
404 - Note does not exist, do not retry

Any other error, retry

https://simple-note.appspot.com/api/login
https://simple-note.appspot.com/api/login
https://simple-note.appspot.com/api/login
https://simple-note.appspot.com/api/login
https://simple-note.appspot.com/api/login
https://simple-note.appspot.com/api/login
https://simple-note.appspot.com/api/login
https://simple-note.appspot.com/api/login

