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Classification

• The previous approach to classification focused on
modeling the discriminant function directly using a linear
model i.e.

log
P (C = 1|x)

P (C = 0|x)
= wTφ(x)
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Classification

• The previous approach to classification focused on
modeling the discriminant function directly using a linear
model i.e.

log
P (C = 1|x)

P (C = 0|x)
= wTφ(x)

• The generative approach on the other hand seeks to
define the discriminant function by directly estimating
the posterior ratio from the data likelihood and prior
terms i.e.

log
P (C = 1|x)

P (C = 0|x)
= log

P (x|C = 1)P (C = 1)

P (x|C = 0)P (C = 0)
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Classification

• Now given a training data set, X, t, we can estimate the
prior probabilities of class membership by simply
counting the numbers of instance of each class in the
data and normalising by the total number of data
samples i.e.

P̂ (C = k) =
1

Nk

N∑

n=1

δ(tn, k)

Lecture Eight February 3, 2006 – p. 3/15



Classification

• Now given a training data set, X, t, we can estimate the
prior probabilities of class membership by simply
counting the numbers of instance of each class in the
data and normalising by the total number of data
samples i.e.

P̂ (C = k) =
1

Nk

N∑

n=1

δ(tn, k)

• Note that the hat notation is being used to indicate that
we are estimating the probability of class membership
from this finite data sample.
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Classification

• Now we require the class conditional data-likelihood
P (x|C = k), that is the probability density or
distribution from which the data is generated.
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Classification

• Now we require the class conditional data-likelihood
P (x|C = k), that is the probability density or
distribution from which the data is generated.

• We will look at this important and general problem,
probability density estimation, in the first two lectures
devoted to Unsupervised Learning.
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Classification

• Now we require the class conditional data-likelihood
P (x|C = k), that is the probability density or
distribution from which the data is generated.

• We will look at this important and general problem,
probability density estimation, in the first two lectures
devoted to Unsupervised Learning.

• However, for now we will look at two specific situations
where we can make assumptions about the parametric
form of the class-conditional likelihoods.
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Classification

• Let us for now assume that we have reason to believe
that our class-conditional likelihoods are well represented
by multivariate Gaussians such that

p(x|C = k) =
1√

(2π)D|Σk|
exp

{
−

1

2
(x− µk)

TΣ−1

k (x− µk)

}

Lecture Eight February 3, 2006 – p. 5/15



Classification

• Let us for now assume that we have reason to believe
that our class-conditional likelihoods are well represented
by multivariate Gaussians such that

p(x|C = k) =
1√

(2π)D|Σk|
exp

{
−

1

2
(x− µk)

TΣ−1

k (x− µk)

}

• Then we require to obtain estimates for the mean

vectors µ̂k and the covariance matrix Σ̂k to obtain our
estimated class-conditional likelihood p̂(x|C = k) which
can be plugged into our discriminant function.
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Classification

• Lets expand the discriminant function for two classes,
say k and l then it is easy to show that

log
P (C = k|x)

P (C = l|x)
= log

P (x|C = k)

P (x|C = l)
+ log

P (C = k)

P (C = l)

=
1

2
xTAx + wTx + b0

Lecture Eight February 3, 2006 – p. 6/15



Classification

• Lets expand the discriminant function for two classes,
say k and l then it is easy to show that

log
P (C = k|x)

P (C = l|x)
= log

P (x|C = k)

P (x|C = l)
+ log

P (C = k)

P (C = l)

=
1

2
xTAx + wTx + b0

• where A = Σ−1

l − Σ−1

k and w = Σ−1

k µk − Σ−1

l µl with

b0 = log
P (C = k)

P (C = l)
+

1

2
log

|Σl|

|Σk|
+

1

2

(
µ

T

l Σ−1

l µl − µ
T

k Σ−1

k µk

)
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Classification

• So what we can see is that the discriminant function
that we obtain when assuming multivariate Gaussian
class-conditional densities is a quadratic function of the
features x and so we have a quadratic decision surface.
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Classification

• So what we can see is that the discriminant function
that we obtain when assuming multivariate Gaussian
class-conditional densities is a quadratic function of the
features x and so we have a quadratic decision surface.

• It should also be clear that if a common covariance
matrix across all classes is assumed then our
discriminant reduces to a linear function of the form
wTx + b0 where w = Σ−1(µk − µl) which relies on the
difference in the class means.
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Classification

• Now we have to estimate the parameters of the
conditional-likelihood, in this case mean and covariances,
to obtain the required posterior class probabilities
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Classification

• Now we have to estimate the parameters of the
conditional-likelihood, in this case mean and covariances,
to obtain the required posterior class probabilities

• As we are really only interested in the discriminant
function at the end of the day then it can be argued that
most effort should focus on estimating a functional form
for the posterior log-likelihood ratio as in the
discriminative approach.
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Classification

• Now we have to estimate the parameters of the
conditional-likelihood, in this case mean and covariances,
to obtain the required posterior class probabilities

• As we are really only interested in the discriminant
function at the end of the day then it can be argued that
most effort should focus on estimating a functional form
for the posterior log-likelihood ratio as in the
discriminative approach.

• The generative approach on the other hand requires to
make good estimates of the density to obtain the
discriminant function and this can be a weakness of the
method in that requiring data from the regions of high
density for each class to estimate parameter values e.g.
mean values, may not necessarily help in defining the
discriminant function.
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Naive Bayes

• In Bioinformatics microarray data can be used to
build classifiers which will be capable of discriminating
between cancerous and healthy tissue samples.
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Naive Bayes

• In Bioinformatics microarray data can be used to
build classifiers which will be capable of discriminating
between cancerous and healthy tissue samples.

• Each sample is defined by the amount of mRNA that a
large numbers of gene express in healthy or diseased
conditions. Often there are over 30,000 genes, so this
means that we have a feature vector x ∈ R

D where
D = 30, 000.
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Naive Bayes

• In Bioinformatics microarray data can be used to
build classifiers which will be capable of discriminating
between cancerous and healthy tissue samples.

• Each sample is defined by the amount of mRNA that a
large numbers of gene express in healthy or diseased
conditions. Often there are over 30,000 genes, so this
means that we have a feature vector x ∈ R

D where
D = 30, 000.

• If we assume that the mRNA levels are roughly Gaussian
then we can see that estimating Σhealthy a
30, 000 × 30, 000 dimensional covariance matrix is going
to be impossible given that the number of samples will
be as small as several dozen.

Lecture Eight February 3, 2006 – p. 9/15



Naive Bayes

• So despite there possibly being features which will be
correlated with each other it is impractical to even
consider attempting to estimate a full covariance. So we
are forced to make a further assumption that the
covariance matrix is diagonal such that
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Naive Bayes

• So despite there possibly being features which will be
correlated with each other it is impractical to even
consider attempting to estimate a full covariance. So we
are forced to make a further assumption that the
covariance matrix is diagonal such that

•

Σk =




σ2
1

0 0 · · · 0

0 σ2
3

0 · · · 0

0 0
. . . · · · 0

0 · · · 0 σ2

D−1
0

0 · · · · · · 0 σ2

D



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Naive Bayes

• In this case then the multivariate Gaussian reduces to a
product form such that

p(x|C = k) =
D∏

d=1

p(xd|Ck) =
D∏

d=1

Nxd
(µd, σd)
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Naive Bayes

• In this case then the multivariate Gaussian reduces to a
product form such that

p(x|C = k) =
D∏

d=1

p(xd|Ck) =
D∏

d=1

Nxd
(µd, σd)

• Despite this form of classifier being referred to as Naive

Bayes or Idiots Bayes, presumably because of the
naive assumption of there being no covariance between
features, in many applications such a classifier works
surprisingly well.
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Naive Bayes

• In this case then the multivariate Gaussian reduces to a
product form such that

p(x|C = k) =
D∏

d=1

p(xd|Ck) =
D∏

d=1

Nxd
(µd, σd)

• Despite this form of classifier being referred to as Naive

Bayes or Idiots Bayes, presumably because of the
naive assumption of there being no covariance between
features, in many applications such a classifier works
surprisingly well.

• One particular application within Information

Retrieval is document classification which we shall
look at briefly here.
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Naive Bayes

• Assume a number of Documents d each have (or have
not) the occurrence of words w from a dictionary D.
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Naive Bayes

• Assume a number of Documents d each have (or have
not) the occurrence of words w from a dictionary D.

• Assume a bag-of-words document model i.e |D| defined
by single draws from a binomial distribution, so word w

occurs in documents from class k with probability pkw

and the probability of it not occurring in the class k

document is obviously 1 − pkw.
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Naive Bayes

• Assume a number of Documents d each have (or have
not) the occurrence of words w from a dictionary D.

• Assume a bag-of-words document model i.e |D| defined
by single draws from a binomial distribution, so word w

occurs in documents from class k with probability pkw

and the probability of it not occurring in the class k

document is obviously 1 − pkw.

• If word w occurs in the document at least once assign
value 1 and if it does not occur take value 0. Each
document represented by a of ones and zeros with the
same length as the size of the dictionary.
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Naive Bayes

• Clearly for large dictionaries we will need to employ a
Naive Bayes classifier.
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Naive Bayes

• Clearly for large dictionaries we will need to employ a
Naive Bayes classifier.

• Define matrix D, rows corresponding to each document
and columns representing dictionary terms, so element
Ddw indicates presence or absence of word w in
document d.
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Naive Bayes

• Clearly for large dictionaries we will need to employ a
Naive Bayes classifier.

• Define matrix D, rows corresponding to each document
and columns representing dictionary terms, so element
Ddw indicates presence or absence of word w in
document d.

• Using Naive Bayes class-conditional probability of a
document d coming from class k is

p(Dd|C = k) =

|D|∏

w=1

p(Ddw|Ck) =
D∏

w=1

pDdw

kw (1−pkw)1−Ddw
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Naive Bayes

• Once the parameter values pkw are estimated then the
estimate of the class conditional likelihood can be
plugged into the discriminant function to make
classification.
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Naive Bayes

• Once the parameter values pkw are estimated then the
estimate of the class conditional likelihood can be
plugged into the discriminant function to make
classification.

• We will see in subsequent lectures that the
Maximum-Likelihood estimate for the parameters pkw is
simply

p̂kw =
1

Nk

∑

d∈Ck

Ddw
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Naive Bayes

• Once the parameter values pkw are estimated then the
estimate of the class conditional likelihood can be
plugged into the discriminant function to make
classification.

• We will see in subsequent lectures that the
Maximum-Likelihood estimate for the parameters pkw is
simply

p̂kw =
1

Nk

∑

d∈Ck

Ddw

• So if a term does not occur in the documents from class
k then p̂kw = 0 which seems a little pessimistic as it may
be that additional documents from the class may well
have the word.
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Naive Bayes

• It is also somewhat inconvenient in that if p̂kw = 0 for
one word then p(Dd|C = k) = 0 which makes no real
sense.

Lecture Eight February 3, 2006 – p. 15/15



Naive Bayes

• It is also somewhat inconvenient in that if p̂kw = 0 for
one word then p(Dd|C = k) = 0 which makes no real
sense.

• In further lectures we will look at Bayesian estimates of
distribution parameters and we will see for binary
variables that the MAP estimator is a more reasonable,
and computationally convenient,

p̂kw =
1 +

∑
d∈Ck

Ddw

2 + Nk
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