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1 Classification

A large class of problems which Machine Learning techniques are applied to
are classification problems and in this section we will now look at a number
of classification methods which are available to us.

As a simple example lets try and build a classifier which will predict
whether a person is male or female based on their measured height alone.
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Figure 1: The distributions of measured height for both males and females
in a population.

1.1 Class Priors

The class variable C' will take on two values so we can encode male by the
value 1 and female by the value 0. Now within the general population there
is an approximate equal number of male and females (lets just assume that
there is in any case for the time being). In that case the probability of class
male occurring will be defined simply as P(C' = 1) and the probability of class
female occuring will be P(C' = 0). Now these probabilities are set prior to
making any measurements and hence are called the prior probabilities of
class membership.

If these are well balanced i.e. P(C = 0) = P(C = 1) = 0.5 then it
is equally likely to observe either class. However in applications such as
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medical diagnostics or intrusion detection the prior probabilities of one class
e.g. network intrusion or cancer are much smaller than the other e.g. normal
traffic or not cancer. In this case then we can make a prediction before seeing
any data that is more likely to be correct based on the prior probabilities
alone.

1.2 Class Conditional Likelihood

Now we have an individual, randomly selected from the population, and we
make a measurement of their height. Now there will be a natural distribution
of the height of males and females, so in other words there will be a class
conditional distribution of the measured features, in this case height. We
can write these class conditional distributions as p(h|C' = 1) and p(h|C = 0)
form male and female classes respectively.

1.3 Class Posterior

Now from Bayes rule which we met last week we can obtain the posterior
probability of class membership by noting that

P(h,C=1) =p(h|C=1)P(C =1) = P(C = 1[h)p(h) (1)

and so

p(hIC = )P(C =1) o)
p(h)

and the marginal likelihood of our measurement, p(h), is the probability of

measuring a height A irrespective of the class and so

P(C =1|h) =

p(h) = p(h|C = 1)P(C =1) + p(h|C = 0)P(C = 0) (3)
which means that the class posteriors will also sum to one, P(C' = 1|h) +
P(C =1lh) =1
1.4 Discriminant Functions

From Figure (1) we can see the empirical distributions of height for both
males and females. The first thing to notice is that there is a distinct differ-
ence in the location of the distributions and they can be separated to a large
extent (males are typically taller than females). However there is a region

3



where the two distributions overlap and it is here that classification errors
can be made. The region of intersection where P(C' = 1|h) = P(C = 0|h) is
important as it defines our decision boundary. If we make a measurement of
69 inches then we can see that P(C' = 1|h) > P(C = 0|h) and whilst there
is some probability that we have measured a rather tall female, to minimise
the unavoidable errors that will be made then our decision should be based
on the largest posterior probability.

We can then define a discriminant function based on our posterior
probabilities one such function could be the ratio of posterior probabilities
for both classes. If we take the logarithm of this ratio then the general
discriminant function

) = log g0 @

would define the rules that h would be assigned to C' =1 (male) if f(h) > 0
and if f(h) < 0 the assignment would be to C' = 0 (female).

1.5 Discriminative & Generative Classifiers

There are two ways in which we can define our discriminant function. In the
first case we can explicitly model our discriminant function using for example
a linear or nonlinear model. This is often referred to as the discriminative
approach to defining a classifier as all effort is placed on defining the overall
discriminant function with no consideration for the class-conditional densities
which form the discriminant.

The second way is to focus on estimating the class-condition densities
(distributions if the features are discrete) p(h|C' = 1) and p(h|C' = 0) and
then use these estimates to define our posterior probabilities and hence our
discriminant function. As the class-conditional densities define the statistical
process which generates the features we measure then this approach is often
referred to as the generative approach. We will introduce one example of both
approaches starting with the discriminative approach.



2 Discriminative Approaches to Classification

As we have just considered the Bayesian formalism for linear models we will
straightaway look at a Bayesian approach to classification using linear mod-
els. We will use the more general notation of x = [x1, -+, xp]" representing
the D-dimensional vector containing each of D features available for classifi-
cation purposes.

P(C =1]x)
P(C = 0]x)

Now as the ratio of the probabilities of class membership P(C' = 1|x) &
P(C = 0]x) lies on the positive real line i.e. [0 4 oo) then the log-likelihood
ratio will cover the whole of the real line i.e. take values between —oo and
+00. As such we can model this ratio using a linear-model, where now
we employ an explicit and general basis expansion of the input such that
d(x) = [p1(x, -+, oar(x)]T, and each ¢,,(x) defines the m’th basis function
applied to the data vector x. We have already met simple polynomial basis
functions previously, now we are being a little more general with our notation.
Back to the log-likelihood ratio and our linear model of it

log

P(C=1x) ¢
logm =w ¢(x)

Now as P(C' = 1|x) + P(C = 0|x) = 1 then a tiny little bit of algebra'
shows that

1
1+ exp (—wTo(x))
exp (W' é(x))
1+ exp(wTo(x))

P(C = 1|x)
1- P(C = 1[x)

=exp (Wo(x)) = P(C =1x) =

The likelihood for each data point (input-output pair) (x,, t,) will simply
be the posterior probability P(C' = t,|x,). This is a Logistic Regression
model where the logistic function defines the posterior probability of class
membership.

1Spoil yourself and work through this to convince yourself.



2.1 Bayesian Logistic Regression

Now we can write the likelihood component for each n as

P(C = tulx,w) = P(C=1[x, w)" x (1= P(C = 1|x,,w))' "
1 tn
1+ exp (—wTd)(Xn))} {1 +exp (W1 (%))
exp (ngb(xn))t"
1+ exp (WTo(xy,))

1 1—tn

Let us be bold and take a Bayesian viewpoint straightaway (you know it
makes sense!) so we will place a Gaussian prior on our coefficients such that
p(w|a) = N(0,a7'T) and we assume that each t,, is sampled i.i.d (remember
this from last week?) in which case our likelihood will be

N
p(t|X, w) = [[ P(C = tu|x,, W)
n=1
Now that we are all good Bayesians we immediately want to define the
posterior over the parameters and so we need the joint-likelihood formed by
the likelihood and the prior

pt,wiX, ) = p(t[X, w)p(w|a)
P

T¢ Xn))tn

ex
1 +exp (WTo(x,))

Nw(0,a7')

p(t
N
Now of course we want our posterior, however, this is the point where I

tell you about the fly in the ointment. To obtain our posterior we require
the following

1

p(wlt, X, a) = p(tfwi)p(wm)m

where the marginal likelihood



Pt[X,0) = / P(b1X, w)p(wla)dw

B exp (WTp(x,)) N
-/ H1+exp (wTgley” (0o D

So here is the bad news, the above multi-dimensional integral cannot be
computed analytically. Unlike the really nice regression problem where a
fully analytic expression for the posterior was available in the classification
setting we run into some small degree of difficulty and a number of avenues
are open to us in order to make progress.

The first thing that we can do is solve the above integral numerically or
go the whole hog and simulate samples from the full posterior and use these
samples to compute any posterior expectations we require. This is the basis
of Monte Carlo methods and for now we shall leave this method to the side.

The second thing that we can do is make an approximation of the pos-

terior which will be analytically convenient, and this is what we shall now
do.

2.2 Laplace Approximation

It can be shown that for large data samples i.e. N — oo where N is much
larger than the number of parameters, in our case the dimension of w, then
the parameter posterior distribution is approximately multivariate Gaussian
with a mean value equal to the parameter values which yield the maximum
of the posterior distribution and has a covariance matrix which captures the
curvature of the posterior at the maximum value and is defined as the nega-
tive inverse for the matrix of partial derivatives computed at the maximum
value (this should be familiar to you from our presentation of the maximum
likelihood method in the previous lecture). In other words if we define the
parameters at the maximum of the posterior as wj,4p and the covariance of
the approximation as C, where

0 o
C=- (W 10gp(t,W|X,OZ))



where the right-hand side is computed at the MAP value wy;2p in which
case we can write

1
p(t|X, a)

Now this means that we need to somehow estimate the Maximum a Pos-
teriori parameter value as well as compute the curvature of the posterior
at that point. Just note that we need to find the parameter values which
maximise the posterior and we can do this by maximising the logarithm of
the joint likelihood as the normalising term (the marginal) does not depend

on the parameters. So as before let us write out the logarithm of the joint
likelihood which follows as

p(W|t,X,OZ) :p(t|X,W)p(W|Oé) %NW(WMAPaC)

L =logp(t,w|X, a) Ztnw — log (1 + exp (quﬁ(xn)))
- éWTW vy log(2ma?)

this is clearly not as nice an expression as we had for the linear regression
models we have already met. Now let us take first and second derivatives
with respect to all the parameter values w.

oL .
= >tk = P(C = 1ol — 2w

1
= ®t—-®'p——w
o

where the N x 1 vector of class-membership probabilities is defined as p =
[P(C =1|x;), -+, P(C =1|xy)]" and the N x M matrix ® is defined as

o) o du(x)
bilew) e ()
The second—derivatives follows as before
0*L X
GwowT Z¢ x,)6(x,) T P(C = 1[x,) (1 = P(C = 1]x,)) = 1
— Ve 1
a



where V is an N x N dimensional diagonal matrix defined as

V11 0 0
0 V92 0
0

0 0 UNN

where each v,, = P(C = 1|x,)(1 — P(C = 1]x,)). You are strongly
encouraged to work through the derivatives manually and convince
yourself of your ability to derive the above results.

Now then we can define the covariance matrix of the approximate poste-
rior as

-1
C= <¢'TV¢' + l1)
[0}

You should notice the similarity of this and the covariance of the posterior
under a linear regression model (refer to last weeks notes).

The MAP value for the parameters does not follow in the nice closed form
by setting the gradients to zero and solving for w as in the standard linear
regression model as each element of the vector p i.e. P(C = 1|x,) is itself a
nonlinear function of w. We now need to resort to optimisation techniques.

2.3 Newton Optimisation Routine

We need to find the parameter values wy;4p which will yield the maximum
is to make moves in parameter space which will yield the largest change
in the criterion to be maximised, in this case the joint likelihood. This
can be achieved by making changes to the parameters in the direction of
steepest ascent, so in other words follow the gradient. So the change in
the parameters Aw would be proportional to the gradient computed at that
point in parameter space.

oL

where 0 is the step-size which is taken when moving from w,g to Wye, SO
repeatedly updating the parameters using

w<—w—|—5a—£

ow



will yield an increase in the joint likelihood and so move w to the point of
maximum posterior probability. The step size will govern the stability and
speed of convergence to this point.

An alternative to steepest descent is to use the Newton method which
you may have met in school maths as a technique for finding the roots of
functions f(z) = 0 from an initial guess of xy. The next guess is

f(xy)
f'(xr)

Now we are looking for the stationary points % = 0 and so we can take
the Newton method to find the roots of a single variable function and extend
it to deal with multiple variables in which case the Newton routine we require

is defined as )
wew_ [JFL oL
owowT ow
This will converge faster than the gradient based method but also may be

prone to overshooting the maximum point.
Employing our expressions for the above terms then

Tt < Tk —

1.\""! 1
W o— W (@T\@ + —I) <¢'Tt —®'p— —w)
« «
1\"! 1 1
= (@TV@ + —I) ((@TV@ + —I) w+dt—dp— —w)
« « o
1\ !
= <<I>TV@ + —I) " (VOdw +t —p)
«
and so at each step w is updated and using the new values of w then the

elements of both p and V are updated after which the next Newton step is
re-applied and this is continued until convergence.
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2.4 Demonstration of Laplace Approximation

The Matlab code laplace_demo.m in the Week 4 Laboratory folder will enable
you to reproduce the following diagrams. Consider two classes of object
which are characterised by two features and (in the never to be repeated
scenario in the real world) these features are distributed for each class such
that

x|[C=1 ~ N([1, 5,1
X|[C=0 ~ N([-5, 1],1.1I)

A random sample of 30 examples from each of the two classes is drawn from
the above distributions and are plotted in Figure (2).
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Figure 2: The blue circles are examples from class C' = 0 and the solid
red dots are examples from class C' = 1. The green line shows the decision
boundary P(C' = 1|x) = 0.5 obtained from the estimated wy;4p using the
Newton routine described above.

These sixty data-points and the corresponding target values i.e. t = 1 if
x e (C=1andt =0if x € C = 0 are then used in the Newton method
to identify wpy;ap. The prior was set a variance of @ = 100 which of course
means that the prior will have a rather small effect on the likelihood in
transforming it into the posterior. In other words there will be little in the
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Log—Prior Log-Likelihood Log-Unnormalised Posterior
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Figure 3: The three contour plots above show the negative logarithm of
parameter probability distributions where the left-hand plot shows the dis-
tribution of the parameter values w = [w; w,]" under the defined prior.
The middle plot shows the negative log-likelihood which is distinctly non-
Gaussian and the right-hand plot shows the joint likelihood (un-normalised
posterior). The large solid blue dot shows the point in parameter space where
the posterior is a maximum and the lines of small dark dots shows the evo-
lution of the Newton algorithm towards this point starting from and initial
point of w = [0 0], ten steps are required to achieve this optimum.

way of regularising effect of the prior. This is clear from the contour plots
shown in Figure (3).

The same figure also shows how the Newton method finds the parameter
values which yield the maximum of the posterior.

Of course being good Bayesians we are really interested in the approxima-
tion to the parameter posterior which this method provides us with. Why?
because when we go on to make classification predictions we can average our
uncertainty in the parameter estimates over this approximate posterior.

So the question is how good is the approximation? well in this particular
case we can visualise the actual posterior alongside our Laplace approxima-
tion. Now remember that we are putting a multivariate-Gaussian onto the
most probable a posterior: point in parameter space and then using the cur-
vature of the posterior at this point to define the covariance of our Gaussian
approximation.
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Log Posterior Laplace Approximation
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Figure 4: The left-plot shows the negative log-posterior whilst the right-
plot shows the Laplace approximation. The first thing to note is that the
location of the maximum has been reasonably well identified. The second
point is to note that the positive curvature of the posterior (as both parameter
values increase they become a posteriori more probable. We can observe this
curvature in our Laplace approximation, however, note that as we move away
from the MAP value the approximation is not so good.)

2.5 Logistic Regression Classification

So now by using the Newton method we can find the maximum of the pos-
terior and with this the Laplace approximation to the posterior distribution
can be employed.

Now to make predictions we want the following distribution

P(C = 1|xpew, @, X, t) = /P(C = 1Xpew, W)p(W| X, t, a)dw
We have approximated our posterior over the parameters w, p(w|X,t, )
with a Gaussian via the Laplace approximation. So we can make a Monte

Carlo estimate of the above integral using samples simulated from our ap-
proximate posterior such that
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N
1 S
P(C =1[xpew, 0, X t) = > P(C = 1|%pew, Ws)
ns=1
1 i 1
N e 1+ eXp(_W;rQS(Xnew))

where each w is simulated or drawn from the approximate Gaussian
posterior, wy ~ N (wy4p, C) and this is easy to simulate (see laboratory
sheet). of course we could go the whole road and use samples from the true
posterior and to do this we have to resort to Markov-Chain-Monte-Carlo
techniques, but for now we will just use our Laplace approximation to the
parameter posterior.

The alternative to approximate Monte-Carlo averaging is to assume that
the posterior is sharply peaked around the MA P value and so we can use the
approximation simply uses the M AP estimate and so class predictions based
on a new data point Xx,., are made by using the approximate predictive
posterior probability given below

P(C = 1|xpew, @, X, t)

Q

P(C = 1’Xnew7WMAP7a7X7t)
1

1+ exp(—W}\—/[APWXnew))

So the discriminant function we are using indicates that if P(C' = 1|X;e0, o, X, t) >
0.5 then x,,., is assigned to Class C' =1 and C' = 0 otherwise.

2.6 Demonstration of Bayesian Logistic Regression Clas-
sification
The matlab file logistic_classification_demo.m will produce the following plots

which show a two class problem based on two-dimensional feature vectors.
By using a simple polynomial basis such that

2 2 K K
I oz me @y xyy -0 Ty Xy

b = e
2 2 K K

I ay1 oN2 Ty a1 0 TN T

where now ® is an N x (DK + 1) dimensional matrix where in this case
D = 2. Note that we have only taken each feature to a polynomial power

14



and have not considered any cross-terms in the basis expansion such as for
example T11T12, LUHLU%z, I%lxlg.

Figure (5) shows the linear decision boundary learned using the methods
just described (Laplace approximation of the model parameter posterior for a
logistic regression model) for the two-dimensional data set. Figure (6) shows
the more flexible decision boundary achieved when a K = 3 polynomial basis
is used in the model.

We have normalised the coefficient values w; with the diagonal terms
of the covariance matrix C which will be the variance of the M AP weight
values so clearly a small value indicates that it is not important in the model
and its removal would amount to a negligble decrease in likelihood (perhaps
an increase in predictive likelihood). Remember that the matrix of second-
order partial derivative defines how the curvature of our likelihood varies at a
particular point. So if the curvature in a particular direction corresponding
to a specific parameter is small then perturbations to that parameter will
have a very small effect on the actual function (likelihood) indicating that
the parameter may not be relevant.

Do the normalised values of the weighting coefficients seem sen-
sible?

Of course the number of classification errors made on an independent test
test will be the real measure of what level of complexity is required for this
model. In this weeks laboratory session we will explore the generalisation
properties of this discriminative method of classification.
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Scatter Plot of Data from Classes Contour of Posterior P(C=1|x)
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Figure 5: The top-left plot shows the two-dimensional data plotted as a
scatter-plot with the two classes differentiated by dots and circles, note the
classes overlap. The right hand plot shows the posterior probability of class
membership when using a linear model i.e. K = 1) and the decision boundary
P(C = 1|x) = 0.5 is shown in the bottom left plot. The magnitude to the
weighting coefficients normalised by the square-root of the Hessian matrix
are shown in the bottom right plot, small values indicate that the weights
might actually be zero and have little effect on the achieved data likelihood.

16



Contour of Posterior P(C=1|x)
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Figure 6: The top-left plot shows the two-dimensional data plotted as a
scatter-plot with the two classes differentiated by dots and circles, note the
classes overlap. The right hand plot shows the posterior probability of class
membership when using a polynomial model of order K = 3 and the decision
boundary P(C' = 1|x) = 0.5 is shown in the bottom left plot. The magnitude
to the weighting coefficients normalised by the square-root of the Hessian
matrix are shown in the bottom right plot, small values indicate that the
weights might actually be zero and have little effect on the achieved data
likelihood.
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3 Generative Classification Methods

The previous approach to classification focused on modeling the discriminant
function directly using a linear model i.e.
P(C=1x)
log———F< =w ¢(x
B =0 ~ " O™
The generative approach on the other hand seeks to define the discrimi-
nant function by directly estimating the posterior ratio from the data likeli-
hood and prior terms i.e.

P(C=1]x) PEC=1)PC=1)
P(C=0]x) P(x|C=0)P(C=0)
Now given a training data set, X, t, we can estimate the prior probabilities

of class membership by simply counting the numbers of instance of each class
in the data and normalising by the total number of data samples i.e.

N

~ 1
P(C =k) - ; §(tn, k)
where §(t,, k) equals one if the target value ¢, (the class label) corresponds
to the kth class and Ny corresponds to the number of examples from class k.
Note that the hat notation is being used to indicate that we are estimating
the probability of class membership from this finite data sample.

Now we require the class conditional data-likelihood P(x|C = k), that is
the probability density or distribution from which the data is generated.

3.1 Class Conditional Density & Distribution Estimates

Now the first thing to note here is that we need to make and estimates of the
class conditional densities or distributions (if the features are discrete). We
will look at this important and general problem, probability density estima-
tion, in the first two lectures devoted to Unsupervised Learning. However, for
now we will look at two specific situations where we can make assumptions
about the parametric form of the class-conditional likelihoods.
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3.1.1 Multivariate Gaussian Likelihood

Let us for now assume that we have reason to believe that our class-conditional
likelihoods are well represented by multivariate Gaussians such that

1

p(xIC = ) = )T )}

1
————exp {
V (2m) P[]

Then we require to obtain estimates for the mean vectors p, and the
covariance matrix X, to obtain our estimated class-conditional likelihood
p(x|C' = k) which can be plugged into our discriminant function.

Lets expand the discriminant function for two classes, say k and [ then it
is easy to show that

W PC=Hx) _ PIC=k) | P(C=Fk
EP(C=1lx) ~ ®BPxlc=0)" ®PC=0
= %XTAX—G—WTX—F bo

where A = 7' — X' and w = X', — ;7 with

P(C=k 1. |5 1 _ .
( ) Ly 121 (2 oy — 2 )

:1 B ———
bo=loe pa=py T2l8 5 2

So what we can see is that the discriminant function that we obtain when
assuming multivariate Gaussian class-conditional densities is a quadratic
function of the features x and so we have a quadratic decision surface. It
should also be clear that if a common covariance matrix across all classes
is assumed then our discriminant reduces to a linear function of the form
wx + by where w = 37! (pu, — ;) which relies on the difference in the class
means.

Now we have to estimate the parameters of the conditional-likelihood,
in this case mean and covariances, to obtain the required posterior class
probabilities. As we are really only interested in the discriminant function
at the end of the day then it can be argued that most effort should focus on
estimating a functional form for the posterior log-likelihood ratio as in the
discriminative approach.

The generative approach on the other hand requires to make good es-
timates of the density to obtain the discriminant function and this can be
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a weakness of the method in that requiring data from the regions of high
density for each class to estimate parameter values e.g. mean values, may
not necessarily help in defining the discriminant function. However despite
this criticism generative methods for classification are useful in a number of
situations.

3.2 Naive Bayes Classifier

In Bioinformatics microarray data can be used to build classifiers which will
be capable of discriminating between cancerous and healthy tissue samples.
Each sample is defined by the amount of mRNA that a large numbers of gene
express in healthy or diseased conditions. Often there are over 30,000 genes,
so this means that we have a feature vector x € R” where D = 30,000. If
we assume that the mRNA levels are roughly Gaussian then we can see that
estimating Yjeqitny a 30,000 x 30, 000 dimensional covariance matrix is going
to be impossible given that the number of samples will be as small as several
dozen.

So despite there possibly being features which will be correlated with
each other it is impractical to even consider attempting to estimate a full
covariance. So we are forced to make a further assumption that the covariance
matrix is diagonal such that

o 0 0 0
0 o2 0 0
3y = 0 0 x 0
0 0 o4, 0
0 0 op

In this case then the multivariate Gaussian reduces to a product form
such that

D
p(x|C = k) Hp xq|Cy) = HJ\/’xd(ud,ad)
d=1

Despite this form of Class1ﬁer being referred to as Naive Bayes or Id-
iots Bayes, presumably because of the naive assumption of there being no
covariance between features, in many applications such a classifier works
surprisingly well.
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One particular application within Information Retrieval is document
classification which we shall look at briefly here.

3.3 Document Classification

Lets assume that we have a number of Documents d and they each have
(or have not) the occurrence of words w from a dictionary D. If we assume
a simple bag-of-words document model then we can model the document
as |D| single draws from a binomial distribution, such that for word w the
probability of the word occurring in the document from class & is py,, and the
probability of it not occurring in the class k£ document is obviously 1 — pg.,.
It word w occurs in the document at least once then we assign the feature
corresponding to the word the value 1 and if it does not occur in the document
we assign the feature the value 0. So each document will be represented by
a feature vector of ones and zeros with the same length as the size of the
dictionary. Clearly for large dictionaries we will need to employ a Naive Bayes
classifier. Let us say that we can create a matrix D whose rows correspond
to each document and columns represent the dictionary terms so that the
element Dy, indicates the presence or absence of the word w in document d.
So using Naive Bayes then the class-conditional probability of a document d
coming from class k is

D] D
p(D4|C = k) = [ p(Daw|Ci) = [ v (1 = pru)' P
w=1 w=1

Once the parameter values py,, are estimated then the estimate of the class
conditional likelihood can be plugged into the discriminant function to make
classification. We will see in subsequent lectures that the Maximum-Likelihood
estimate for the parameters py,, is simply

So if a term does not occur in the documents from class k then pj, = 0
which seems a little pessimistic as it may be that additional documents from
the class may well have the word. It is also somewhat inconvenient in that
if prw = 0 for one word then p(Dy|C = k) = 0 which makes no real sense.
In further lectures we will look at Bayesian estimates of distribution pa-
rameters and we will see for binary variables that the MAP estimator is a
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more reasonable, and computationally convenient,

1+ > 4ec, Daw
2+ N,

Prw =

4 Conclusion

We have looked at examples of discriminative and generative methods of
classification. The discriminative method has its focus on the discrimina-
tive function whilst the generative approaches focus on making estimates of
class-conditional distributions. For the discriminative method considered we
have only looked at binary classification and extending logistic regression
to multiple-classes requires a little more computational effort. on the other
hand the generative methods are particularly simple and naturally deal with
a multiplicity of classes. The laboratories this week will investigate both
methods of classification.
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