Machine Learning Module

Week 5
Lecture Notes 9 & 10

Non-Probabilistic Classification Methods

Mark Girolami
girolami@dcs.gla.ac.uk
Department of Computing Science
University of Glasgow

May 14, 2006

1 Non-Probabilistic Classification

Last week we studied two approaches to probabilistic classification the first
explicitly defined a discriminant function using a linear model and approx-
imate Bayesian inference was employed in obtaining the model parameters.
The second approach, generative, makes estimates of the class-conditional
probability distributions or densities of the feature vectors. This week we
will look at two very popular methods of classification which are not mo-
tivated from a probabilistic model of the data. The first is the classical
K-Nearest neighbour method and the second is the rather exotic sounding
Support Vector Machine.

2 K-Nearest Neighbours

Consider again the example of classifying Male & Female based on measured
height. Given the height h of N individuals as our training data set i.e.
D = {(h1,t1), (ho,t2),- -+, (hy,tn)} where each ¢, takes on the values of Male
or Female. Now we get a new height measurement, h,.,, for an individual
and we have to now assign a label (Male or Female) to that individual. To
do this we could simply find the closest height value in the training set and
adopt the target value associated with this closest value. So in other words
we find the Nearest Neighbour (hyn,tnn) of our test case hy,e, and make the
assignment t,., = tyy. This seems an incredibly simple decision but it is
one which in fact will perform well in many applications.

Now then lets say that we generalise our Nearest Neighbour rule and take
the K — NearestNeighbours to make our decision. In this case we will have
one vote from each of the K nearest-neighbours so the sensible thing to do
would be to take the Majority Vote as the imputed target value for our new
classification. If there is no clear majority then a simple random decision
could be taken in this case.

This is a very simple classification rule and yet it is very effective in
many cases. So now consider the more general case where our objects are
represented by a D-dimensional feature vector x € R” and that we can
compute some distance between any two vectors in this space, we will denote
the distance between example m & n by §(X,,,X,). So for a test point X,e.,
the decision on the majority vote obtained from the K smallest values of
{0(Xnew, Xn) tn=1..n Will give us our predicted value t,,,,.

2.1 Implementation

There is no model as such in KNN and so no training is required. All the
computational effort occurs when making classifications. Here is a naive
implementation of the KNN classification method in Matlab.

function [error,tpred] = knn_multi_class(X,t,Xtest,ttest,k)

Ntest = size(Xtest,1);
N = size(X,1);
tpred = zeros(Ntest,1);

C = max(t);

for n=1:Ntest
Dist = sum((repmat(Xtest(n,:),N,1) - X)."2,2);
[sorted_list,sorted_index] = sort(Dist);
[max_k, index_max_k] = max(histc(t(sorted_index(1:k)),1:C));
tpred(n) = index_max_k;

end

error = 100*sum(tpred ~= ttest)/Ntest;

2.1.1 Description of Code

A training set of features, in an N x D dimensional matrix X, and N x 1 target
vectors t are passed to the KNN script along with an Ntest x D dimensional
matrix Xy.s of test data. The corresponding true target values of the test
data are in the Ntest x 1 vector t;.. As this naturally accommodates
multiple classes then the target values will take on values in 1---C where C
is the number of distinct classes.

The value of k£, the number of neighbours to be considered is also passed
to the function.

We loop over every test point to be considered, and for each one we
compute the distance between the test point under consideration and every
one of the training points. In this case the distance is simply the squared
distance between each point. In the code above an N x1 vector which has only
the values Xtest(n, :) is created using the repmat command, which simply
repeats a matrix or vector by stacking in row or column format depending

on the argument passed to it (refer to the online help for details on repmat).
We can then compute the squared Euclidean distance

D
5(Xtest7 Xn) = \/Zdzl (xtest,d - xnd)z

for all n in one simple matrix operation which Matlab is particularly efficient
in doing.

Now we have to find the K-nearest neighbours which we do by sorting
the vector of distances from x,,.,, using, somewhat unsurprisingly, the Matlab
sort command. The next step is to take the K target values of the K-nearest
neighbours and select the dominant class amongst them. We achieve this in
one line of Matlab using the original indices of the sorted distances returned
by the sort command to select the target values of the K-nearest neighbours
using t(sorted_index(1:k)). We can make a count of the number of oc-
curences of each of the C' classes using the histc command and then simply
find the maximum.

3 Computational Complexity

The computational complexity for a single prediction will be dominated by
the function to compute the distances from each training point. For the
simple squared distance then the scaling is linear in the dimensionality of
the feature vector and the number of training points, O(DN). The sorting
required will scale as around O(N log N) which will tend to dominate the
overall cost. So clearly as your training set gets larger the testing time
for KNN will be adversely affected, although we would of course anticipate
improved predictions.

There are a number of ways in which this cost can be reduced, for ex-
ample using efficient search and data condensation methods. We will not
consider these any further in this course however you should be aware that
KNN computational scaling can be significantly improved over the naive im-
plementation given here.

4 Distances & Metrics

Whilst the KNN classifier is model free there are in fact 2 "hyperparame-
ters’ associated with the method. The most obvious one is the number of

neighbours K to employ when making a classification. Selection of this can
be made using Leave-One-Out Cross Validation however the other tunable
term is the distance function employed. The KNN classifier relies on the
definition of an appropriate metric in the defined feature space. This metric
gives meaning to the notion of distances within the feature space and hence
how similar (or close) one feature vector is to another.

There are four properties that a metric must have for all vectors x, vy,
z € RP

1. Non-Negativity: §(x,y) > 0
2. Reflexivity: d(x,y) =0 iff x=y
3. Symmetry: §(x,y) = i(y, x)

4. Triangle Inequality: d(x,y) + (y,z) > 0(x, z)

So the Euclidean distance §(x,y) = \/ Zfl):l(xd — yq)? satisfies all the

above properties and is hence a metric defining a distance in R”. However
if the space is transformed such that each axis is scaled by some arbitrary
constant then distance relations between point can be quite different. Figure
(1) shows a simple example of axis being scaled and the impact this has on
the distance relationships between the three points.

As each dimension can have different scales then it is common practice
to normalise, or standardise the vectors. So if there are N data points each
point can be set to have a zero-mean value by simply subtracting the sample

mean, i.e.
N
~ 1
X—X— — g X,
N
n=1

Likewise the variance of the data can be set to one so that each axis shares
the same mean, zero, and a common variance, one.

~ Nx
Y %

Instead of rescaling the data explicitly and then employing the squared
distance metric

@
/
@ @

X 0.3X

Figure 1: The left hand plot shows three points in a 2-d space defined by
axes x and y. The two points with the shortest distance between them is
denoted by the dashed line. If we rescale the z-axis by a factor of 0.3, then
we see that the closest pair of points changes.

D
0(x,y)* =Y (ra—ya)* = (x—y) (x —y)
d=1
we can actually change the metric directly such that

S(xy)=(x—-y) Bx-y)

where ¥ is a local transformation based on a number of nearest neighbours
around the point of interest, say x, which provides a local distortion. The
definition of X is outwith the course content but it does provide a nice of
locally adapting the metric used in KNN classification for each test point.

Other metrics often used in KNN is the Minkowski family of metrics
defined by

D ’
o(x,y) = <Z(l’d - yd)p>
d=1

when p = 1 this metric is often referred to as the L; norm or the Manhat-
tan or city block distance as it measures the shortest path based on segments
which run parallel to the axes. When p = oo then the L., norm defines the
distance between x and y as the maximum distance along each of the D axes.

6

A set theoretic metric which could be used when our objects are defined
as sets, for example a bag-of-words representation of a document, is the
Tanimoto metric defined below

Ny + Ny — 2Ny

i(x,y) =

Ng + Ny — Ny

where n, and n, are the number of elements in each set x and y. So in
last weeks example of text classification where we used a binary model n,
would be the number of distinct words occurring in document x and ng, is
the number of words that both documents share in common.

The choice of metric in KNN is very important and this is an active area
of research in Pattern Recognition.

5 KNN Performance

So how well can we expect the KNN classifier to perform? There is some
analysis of the KNN rule which indicates that the error rate of a KNN classi-
fier where K=1 is never more than twice the Bayes error rate (this is of course
and asymptotic result where N — oo) but nevertheless it is indicative that
good performance with the KNN can be expected. Intuitively we can think
of KNN as making a local approximation of the posterior class probability
in the region of the test point.

6 Experiments

Taking the two-dimensional data we used last week we standardise the data
by making it have zero-mean and unit variance in both dimensions. This can
be achieved simply using the Matlab commands

X = X - repmat(mean(X),size(X,1),1); and

X =X./repmat(std(X),size(X,1),1);

and then simply apply the KNN classifier to the test data and log the
test error for a range of values of K from 1 to 100. The minimum test error
rate achieved is 8.8% which is rather impressive given that the theoretical
optimal is about 8.0%. The Logistic Regression using a Polynomial order of
3 and a prior variance of o = 10 achieved an error rate of 9.2% on this data.

14}

13}

12}

Percentage Test Error

0 20 40 60 80 100
K — Number of Neighbours
Figure 2: The plot shows the actual percentage of classification errors made
on 1000 test points for values of K ranging from 1 to 100. A minimum test

error of 8.8% is achieved using K = 33. This compares very favourably to
the theoretical optimal Bayes Error rate achievable of around 8.0%.

0

Figure 3: The left hand plot shows the original data comprising of two classes
one class is distributed as an annular ring whilst the second class is a simple
Gaussian cloud. If we perform a simple transformation of the feature space
into a polynomial of order 2, then we see that the transformed points of each
of the two classes are such that they can be separated in a linear manner.
This is in contrast to the highly nonlinear nature of the separating boundary
in the original space. So by this simple transformation we have converted
what was a nonlinear classification problem into a linear one.

7 Distance, Metrics & the Kernel Trick

Let us revisit the previous discussion about distances and metrics. We have
already seen that by using polynomial or radial basis expansions of our fea-
ture vectors such that x — ¢(x) then we can model functions of arbitrary
complexity or define arbitrarily shaped decision surfaces for classification
with a linear model. So what we are doing is replacing what is a nonlinear
problem in the original feature space to a linear problem in our transformed
feature space.

Figure (3) shows this effect rather nicely where a simple polynomial of
order two is used to transform the data.

Now then when we compute a Euclidean distance between two objects in
their original feature space the distance between is defined simply as

i(xy)’=x-y)(x-y)

If we perform a transformation x — ¢(x) then the distance between the
objects in the transformed feature space will be defined as

5(0(x),0(y))* = (o(x) —o(y) (o(x) — ()
= 0(x)"o(x) + o(y) d(y) — 20(x) o(y)

We can see that the distance is simply defined by the inner-products
computed in the transformed feature space. Now here is where the world
famous kernel trick comes in.

A kernel function is defined for all x and y from a feature space X such
that

K(x,y) = ¢(x)"¢(y)
where ¢ is a mapping from the original feature space X to an inner-product

feature space F i.e. ¢ : x — ¢(x) € F.
Lets think of a simple example. Let x and y € R? and lets define the

mapping
¢:x = (1122)T — o(x) = (22,22, V2x12,)" € F =R?
So we can evaluate the inner-product in F as

o(x)To(y) = (a1,23, V2r122) (47, 43, V20110)"
= 2yl + 23y + 2010001y
= (z1y1 + T2y)”
= (xTy)’

So this is a pretty cool result as it shows that we can compute the
inner-product in feature space F by simply computing the kernel function
K(x,y) = (xTy)2 in the original feature space. So this means that we do
not need to explicitly define and compute the mapping ¢ to compute inner-
products in F. So we compute distances between points in F simply by
computing the kernel function on the points in X.

3(d(x),0(y))* = (6(x) = o(y))" (6(x) — o(y))
= K(X7X> + K(Y?Y) - 2K<X7Y)

There are a number of properties which have to be satisfied for a function
K to be a valid kernel function. The main one being that it is symmetric

10

K(x;,%x;) = K(x;,%;) and an N x N dimensional matrix whose elements are
K(x;,%x;) V 4,7 =1---N must be positive semi-definite. There is a whole
class of kernel functions which can be employed and we have already met
K (x;,%x;) = exp(8|x; — x;]*) in previous laboratory work.

8 Support Vector Machines

We have already met discriminative classifiers which directly provide a dis-
criminant function of the form

fxw) =w'o(x)

Consider a simple binary linear discriminant function (separating two
classes) operating on a two-dimensional feature vector

-
g(X;wa, W, wy) = WaTs + Wix1 + W = W X + Wy

where we now denote w as the column vector comprising of wy and w;. If
our class labels (target values) take on the values of +1 for each of the two
classes then our decision function would simply test whether g(x;ws, w1, wp)
was positive or negative, in which case decisions are made based on the sign
of the linear expansion of the feature vectors i.e.

] (x5 wg, wy, wo) = sign(wazs + w1 + wp) = sign(wa + wp)

Now let us say that we have IV data points in our available sample for training
(x1,t1) - - - (X, ty) and we assume that the two classes are completely linearly
separable then the training data will be correctly classified if

ta(Wix+wy) >0V n=1---N

Now then if we cast our minds far back to last weeks lecture on proba-
bilistic classification we saw that there was a posterior distribution over the
parameters, w, of our classifier, which of course means that there will be a
number of w which could separate the training data perfectly see Figure (4).

Whilst in the Bayesian methodology you would take the posterior average
of the w when making class predictions the Support Vector Machine (SVM)
exploits some results which come from Statistical Learning Theory to choose
which of the possible decision functions should be used.

11

Figure 4: The samples of two classes denoted by sold circles and squares can
be separated perfectly with no miss-classifications by a number of possible
w some examples of which are drawn on this cartoon.

There are theoretical results from analysis of the generalisation error of a
binary classifier which show that an upper-bound on the generalisation error
is inversely proportional to the perpendicular distance from the separating
hyperplane, w, and a hyperplane through the closest points from both classes
see Figure(5). This distance is called the margin in the SVM literature and
so to minimise the bound on the generalisation error we would then seek to
maximise the margin of our classifier.

So we will seek the hyperplane w which provides the maximum margin of
separation between the two classes. Vector geometry shows that the distance
of an arbitrary point x in some D-dimensional space to a hyper-plane H
within this space which is defined by all points that satisfy w'x 4wy = 0 is
given by

So if x] and x3 are the closest points from each class to the separating hyper-

12

Figure 5: The hyper-plane which maximises the margin.

plane w then the margin of separation is

w Xt + wp WX2+w0 w

[l Iwll - [wll

As the SVM discriminant function is sign(wx+wjp) then clearly the decision
made will be invariant to an arbitrary rescaling of the argument w'x+w in
which case we can define a canonical hyper-plane w such that w' Xl +wy =1
and w'x} + wy = —1 in which case the margin is now simply IIWII' So to
maximise this margin we need to minimise ||w|| subject to all the points
being correctly classified. The SVM optimisation can be written as

1
min—||w||2
2

subject to
tow'x+wy)>1VYVn=1---N

and by finding the solution to the above we will be using the w in our classifier
which will minimise the bound on the achievable generalisation error.

What we now have to do is find a way to identify the solution of the
constrained optimsation above.

13

8.1 SVM Optimisation

Optimisation theory is a huge mathematical subject which has applications
in about every area of science, technology, economics,... everywhere. We will
have to use one result from this theory to make progress in obtaining our
SVM classifier and so the optimisation methods we now require are simply
going to be stated and used in devising our SVM?!.

Given a constrained optimisation problem of the form

min f(w)
subject to
gw) < 0 1=1---K
hi(w) = i=1---M

we form the Lagrangian function as

M

L(w, 0 B) = f(w) + Y aigi(w) + D _ Gilu(w)

i=1

We now find the maximum of £(w,a, 3) with respect to w which is
denoted as 0(a, 3) and then we now have to solve the following optimisation

problem
max f(a, B)

subject to
>0 Vi=1---K

Following the above let us now define the Lagrangian function we need
for our SVM. Noting that there is only one set of inequality constraints and
no equality constraints then

N
1
L(W, wy,) = 5||w||2 + Zan (1 —ta(W'x, + wo))

n=1

f you are interested in studying and understanding a bit more about
the result we wuse here the book Convexr Optimisation is available online at
http://www.stanford.edu/~boyd/cvxbook/. Be careful and don’t print it out in your
first flush of enthusiasm it is a rather large book of 730 pages.

14

where we have defined each g;(w) =1 — t,(W'x, + wy) <= 0 which comes
from our original constraint.

We should know the drill by now, to find the stationary point of £L(w, wy, &)
we take derivatives and so

9 N N
a—wﬁ(w, Wo,) = W — Zantnxn =0=>w= Zantnxn
and
9 N N
) — Nt =0= ayt, =0
D (W, wp,) ;a nz::la

Now using the above we need to define our f(a) so let us plug-in the
results to L(w, wy,).
Using the result w = ZTZLVZI aptnX, we should see that

“lwllf==w'w = = aptyX Al Xm
Il =2 3 | D antxi | { D amt
n=1 m=1
TR
= 5 E E anamtntmxlxm

n=1 m=1

Now the second component of our Lagrangian needs to be considered

Z an (w'x, + wo))
N
= Z Oy — Z OénthTXn — Wo Z Qpty
n;l n;l n=1
= Z oy — Z OznthTXn
= Z oy — Z Z by, tmx X

n=1m=1

So combining the two parts we obtain

Zan — —ZZanamt tmx X

n=1m=1

15

Now this has to be maximised with respect to all «,, the constraints that
a, >0 V n=1---N and the additional constraint which emerges from
our stationary conditions that is ij:l apt, =0

So at long last we arrive at the SVM optimisation problem So combining
the two parts we obtain

N 1 N N
max Z oy — 5 Z Z anamtntmxlxm
n=1 n=1 m=1
subject to
a, > 0 Vn=1---N
N
Z apt, = 0
n=1

There are a number of ways to solve this problem and we will employ
a simple quadratic optimisation solver which is written in Matlab. We will
not consider the details of such solvers but suffice to say this has been an
important area of development for SVM'’s so that the required optimisation
can be solved efficiently for large data sets.

9 Support Vectors

What we find is that a number of the a,, parameters are returned as having
zero value from the optimisation. The «, which have non-zero values are
important and as they are associated with each vector in the training sample
x,, these are referred to as the Support Vectors as the support the decision
boundary between the two classes.

Now as the discriminant function for a new point X,., is of the form
W Xe+Wo then we can write the following by noting that, w = ZnN:1 AntpnXn,
and we will only need to take a summation over the non-zero a values, in
other words sum over the Support Vectors. Also noting that we are rely-
ing on an inner-product between the x, and x,.,, we can employ the kernel
trick and write the inner-product in the feature space as the kernel function
K (X, Xpew). Then our SVM discriminant function becomes

16

f(xnew; W, wO) = Sign(WTXnew + wO)

N
: E T
= sign tnanxnxnew + Wo

n=1

: E T
= sign tnanxnxnew + wO)
nesSVv

= sign Z b K (X, Xpew) + wg)

nesSv

Now wy can be obtained by noting that as we defined w'x} + wy = 1
and w'x5 +wy = —1 then adding together we obtain wy = —0.5w' (x} +x3)
where each x are support vectors from each class.

The optimsation problem which we require to solve can, of course, be
written in matrix format as below where we denote the diagonal matrix
diag(t) by A and the N x 1 dimensional vector of ones as 1. The N x N
dimensional kernel matrix K is the matrix whose elements are K(x;,x;)
which in the linear case is simply XXT. This of course opens up the door
for more ’exotic’ kernel functions to be used in our SVM classifier.

1
max o'l — iaTAKAa
subject to

oa, > 0 Vn=1---N
a't = 0

A little code example is over the page. Fifty example of two well separated
classes are drawn from two Gaussians and the constrained quadratic solver
monqp0 is called? we pass the matrix AK A, the vectors 1 & t, a value C', which
we shall discuss shortly and a convergence threshold value as parameters.
The function then passes back the non-zero « values (support vectors), the
value of wy and the indices of the support vectors. A contour grid of points
x is created and the value of the SVM discriminant function is computed at

2This Matlab implementation was obtained from Stépahne Canu
http://asi.insa-rouen.fr/ scanu/

17

each one of these points and the disciminant hyperplane is then plotted out.
You should be able to see clearly that the solution is very sparse and a very
small portion of the original data points end up being used in the SVM. As
usual the code is available at the class website.

9.1 Toy Implementation

clear
Step=0.5;
N = 50;

C 1000;

X [randn(N/2,2) ;randn(N/2,2)+[ones(N/2,1) .*6 zeros(N/2,1)1]1;
t=[ones(N/2,1) ;-ones(N/2,1)];
[alpha,w_0,alpha_index]=monqp0(diag(t)*X*X’*diag(t) ,ones(N,1),t,C,1e-6);

%Define contour grid

mn = min(X);

mx = max(X);
[x1,x2]=meshgrid(floor(mn(1)) :Step:ceil (mx (1)) ,floor(mn(2)) :Step:ceil(mx(2)));
[n11,n12]=size(x1);

[n21,n22]=size(x2);

XG=[reshape(x1,n11*n12,1)

reshape (x2,n21%n22,1)];

f = (t(alpha_index).*alpha)’*X(alpha_index,:)*XG’ + w_0;

plot(X(alpha_index,1),X(alpha_index,2),’go’); hold
plot (X(1:N/2,1),X(1:N/2,2),7.°) plot(X(N/2+1:N,1),X(N/2+1:N,2),°r.’)
contour (x1,x2,reshape(f, [n11,n12]),[0 0]); hold off

Figure (6) shows the SVM decision plane and the support vectors for this
little toy data set.

For the case where the samples from the two classes may not be completely
linearly separable then the SVM optimisation problem can be posed in such
a way as to take these possible errors into account. It turns out that a
very simple change to the SVM optimisation is required and it changes the

18

3 = r .
1= . ®, -
m
o 00
1. . @ .0'
|] ®
0. u oy ©.:
| e %2
u]
-1 .'. [P)
[]
ot - | ¢ ¢
-3 2
) 0 2 4 6 8

Figure 6: The SVM decision plane separating examples from two classes
along with the support vectors which are highlighted. Note that there are
only three non-zero o components and so only three points in the data set
which are supporting the decision surface.

positivity constraint from a,, > 0 to 0 < «,, < C, for all n, where C' is a box
constraint parameter.

9.2 SVM Hyper-Parameters

It is clear then that the SVM will have a number of hyper-parameters which
will have to be tuned using for example LOOCV. The box constraint para-
meter C' is one and any parameters associated with the kernel function will
be the other(s).

If we take the two-dimensional binary class data set which was used last
week and employ an SVM in classifying the test examples we can study how
well the SVM will do on this example for varying levels of value C. Figure
(7) shows the value of the classification error as C' is varied from C' =1 to
C = 20 in unit steps when an SVM is trained using a third-order Polynomial
kernel function K(x;,x;) = (1 + x/x;)®. A minimum value of test error,
9.4%, is achieved at C' = 2. This is comparable with the best performance
achieved with the Bayesian classifier using a cubic polynomial expansion.

19

Percentage Test Error

10.1
L]
1 (' L] o o °
10 (2] Y .‘. . o
0.8 ¢ "o‘#. o ® 90 0,65
9.9 * Ol % e & O,
0.6 * g \.'I@ 6@6 ° °
9.8 ok *
04f @ % By
if % @r @
9.7 02F % «*.p * L FE
#*»ﬁf*%ﬁ* * By %
*
9.6 o} « X
_ *
95 0.2
-04
9.4 > i i i i i i
0 5 10 15 20 -1 -0.5 0 0.5

Box Constraint Value

Figure 7: The left hand plot shows the test error achieved for varying values
of C' when using a polynomial order kernel function. The right hand plot
shows the training data and the decision surface. The support vectors are
highlighted and they can all be seen to be clumped around the decision
surface.

Clearly there are many types of kernel function which could be used and
if we were to consider the radial basis style function, which we met in the
Week 3 Laboratory then we will need to search over all combinations of width
parameter 3 and box constraint parameter C. Figure (8) shows results of
such a search.

10 Conclusions

We have introduced the KNN and SVM classifiers along with the kernel trick
in this weeks classes. There has been an explosion of research in the last ten
years focused on SVM and kernel methods and this class barely scratches the
surface of the literature on these methods. There have been some impressive
applications of SVM’s in computational biology and Information Retrieval
due to their excellent classification performance in general. However, the in-
credibly simple KNN classifier outperforms the SVM on the two class problem
we have been looking at. This is not always the case but it should be said
that for many applications the KNN classifier performs rather impressively.

20

Test Error

Kernel Width

Figure 8: The percentage error achieved by an SVM using a Radial Basis
Kernel function with a width parameter ranging from 0.01 to 4.0 in step
sizes of 0.05. For each of these ranges a value of C' was selected from 1 to
4 and we can see that the minimum test error of 9.0% was achieved with
hyper-parameter values of C' =1 and 3 = 1.4.

21

