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Density Estimation

• Class conditional density p(x|C = k) denote by
functional parametric form p(x|θk)
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Density Estimation

• Class conditional density p(x|C = k) denote by
functional parametric form p(x|θk)

• Given data and labels require estimation of each set of
θk

• Employ likelihood function and estimate parameters
which maximise the likelihood
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MLE for Gaussian

• Nk examples from class k, assume D features are
distributed as Multivariate Gaussian. Likelihood is Lk
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MLE for Gaussian

• Nk examples from class k, assume D features are
distributed as Multivariate Gaussian. Likelihood is Lk

Nk∏

n=1

p(xn|θk) =
Nk∏

n=1

p(xn|µk,Σk)

=

Nk∏

n=1

1√
(2π)D|Σk|

exp

{
−

1

2
(xn − µk)

T
Σ

−1

k (xn − µk)

}
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MLE for Gaussian

• Nk examples from class k, assume D features are
distributed as Multivariate Gaussian. Likelihood is Lk

Nk∏

n=1

p(xn|θk) =
Nk∏

n=1

p(xn|µk,Σk)

=

Nk∏

n=1

1√
(2π)D|Σk|

exp

{
−

1

2
(xn − µk)

T
Σ

−1

k (xn − µk)

}

Work with logarithm of likelihood logLk and drop

constant −NkD
2

log 2π

−
N

2
log |Σk| −

1

2

Nk∑

n=1

(xn − µk)
T
Σ

−1

k (xn − µk)
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MLE for Gaussian

• In this case each θk = {µk,Σk} and so we take
derivatives of logLk
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MLE for Gaussian

• In this case each θk = {µk,Σk} and so we take
derivatives of logLk

• Expand the quadratic term and drop all terms
independent of µk then

∂

∂µk

logLk =
∂

∂µk

(
1

2

Nk∑

n=1

{
2µT

k Σ
−1

k xn − µT
k Σ

−1

k µk

}
)
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MLE for Gaussian

• In this case each θk = {µk,Σk} and so we take
derivatives of logLk

• Expand the quadratic term and drop all terms
independent of µk then

∂

∂µk

logLk =
∂

∂µk

(
1

2

Nk∑

n=1

{
2µT

k Σ
−1

k xn − µT
k Σ

−1

k µk

}
)

• Vector derivatives obtain

∂

∂µk

logLk =
Nk∑

n=1

{
Σ

−1

k xn −Σ
−1

k µk

}
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MLE for Gaussian

• Setting the gradient to zero we then obtain

Nk∑

n=1

Σ
−1

k xn =
Nk∑

n=1

Σ
−1

k µk = NkΣ
−1

k µk
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• Setting the gradient to zero we then obtain

Nk∑

n=1

Σ
−1

k xn =
Nk∑

n=1

Σ
−1

k µk = NkΣ
−1

k µk

• Now we can multiply both sides by the matrix Σk to

obtain
∑Nk

n=1
xn = Nkµk
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MLE for Gaussian

• Setting the gradient to zero we then obtain

Nk∑

n=1

Σ
−1

k xn =
Nk∑

n=1

Σ
−1

k µk = NkΣ
−1

k µk

• Now we can multiply both sides by the matrix Σk to

obtain
∑Nk

n=1
xn = Nkµk

• Maximum-Likelihood estimate for the mean of the
class-conditional Multivariate Gaussian as

µ̂k =
1

Nk

Nk∑

n=1

xn
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MLE for Gaussian

• Do the same for the ML estimate of the required
covariance matrix Σk
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MLE for Gaussian

• Do the same for the ML estimate of the required
covariance matrix Σk

• From Section 2.1.2 of the Matrix Cookbook we have the
following equality

∂

∂Σk

|Σk| = |Σk| (Σk)
−1
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MLE for Gaussian

• Do the same for the ML estimate of the required
covariance matrix Σk

• From Section 2.1.2 of the Matrix Cookbook we have the
following equality

∂

∂Σk

|Σk| = |Σk| (Σk)
−1

• So

∂

∂Σk

Nk

2
log |Σk| =

Nk

2|Σk|
|Σk| (Σk)

−1 =
Nk

2
Σ

−1

k
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MLE for Gaussian

• Cookbook, Section 2.2 expression third from bottom,

shows that ∂
∂X

a
T
X

−1
b = −X

−1
ab

T
X

−1
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MLE for Gaussian

• Cookbook, Section 2.2 expression third from bottom,

shows that ∂
∂X

a
T
X
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b = −X

−1
ab

T
X

−1 using this
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MLE for Gaussian

• Cookbook, Section 2.2 expression third from bottom,

shows that ∂
∂X

a
T
X

−1
b = −X

−1
ab

T
X

−1 using this

expression then ∂
∂Σk

∑Nk

n=1
(xn − µk)

T
Σ

−1

k (xn − µk)

equals

−
Nk∑

n=1

Σ
−1

k (xn − µk)(xn − µk)
T
Σ

−1

k

Plugging everything together then we obtain

∂

∂Σk

logLk = −
Nk

2
Σ

−1

k +
1

2

Nk∑

n=1

Σ
−1

k (xn−µk)(xn−µk)
T
Σ

−1

k
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MLE for Gaussian

• Setting gradient to zero, replacing mean vectors with
their ML estimates, after a little manipulation the
estimate for the class-conditioned covariance is, as we
would expect

Σ̂k =
1

Nk

Nk∑

n=1

(xn − µ̂k)(xn − µ̂k)
T
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MLE for Gaussian

• Setting gradient to zero, replacing mean vectors with
their ML estimates, after a little manipulation the
estimate for the class-conditioned covariance is, as we
would expect

Σ̂k =
1

Nk

Nk∑

n=1

(xn − µ̂k)(xn − µ̂k)
T

• ML estimation method can be adopted for any
parametric form of probability density or distribution
function. Of course we can also adopt a Bayesian
approach by setting appropriate priors for the mean and
covariance terms - we will resist this temptation for the
time being
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Illustrative Examples

• Matlab script gauss_density_est.m generates random
sample drawn from 2D Gaussian with parameters

µ =

[
1.0

3.0

]
C =

[
1.5 0.6

0.6 0.4

]
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Illustrative Examples

• Matlab script gauss_density_est.m generates random
sample drawn from 2D Gaussian with parameters

µ =

[
1.0

3.0

]
C =

[
1.5 0.6

0.6 0.4

]

• Use sample to obtain estimates for the required
parameters clearly sample size N → ∞ then estimates
converge to true values
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Illustrative Examples
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Figure 1: The left plot shows a random sample of 30 points drawn from a 2D

Gaussian, the iso-contours of estimated probability density are superimposed on the plot.

The iso-contours of probability density for the Gaussian with the actual parameter values

are given on the right hand plot superimposed upon the iso-contours of estimated density.
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Non-Gaussian Example

• Now consider an example of data for which we, wrongly,
assume that the density is also Gaussian.
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Non-Gaussian Example

• Now consider an example of data for which we, wrongly,
assume that the density is also Gaussian.

• The density is a mixture of two Gaussians with mean
and covariances of

µ1 =

[
0.5

2.0

]
C1 =

[
1.0 0.0

0.0 1.0

]

µ2 =

[
3.0

4.0

]
C2 =

[
1.0 0.0

0.0 1.0

]
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Non-Gaussian Example

• Now consider an example of data for which we, wrongly,
assume that the density is also Gaussian.

• The density is a mixture of two Gaussians with mean
and covariances of

µ1 =

[
0.5

2.0

]
C1 =

[
1.0 0.0

0.0 1.0

]

µ2 =

[
3.0

4.0

]
C2 =

[
1.0 0.0

0.0 1.0

]

• Data considered as coming from two sub-populations, or
there are two distinct generating processes each
responsible for producing the data we observe.
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Non-Gaussian Example
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Figure 2: The left plot shows a random sample of 30 points drawn from 2 distinct

2D Gaussians, the iso-contours of estimated probability density under the assumption that

the density is a single 2D Gaussian, are superimposed on the plot. The right plot shows

the same random sample with the iso-contours of estimated probability density where the

true functional form has been employed i.e. two 2D Gaussians.
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Density Estimation

• Average likelihood of points spread uniformly across the
regions shown in the figures assuming a single Gaussian
is -3.261.
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regions shown in the figures assuming a single Gaussian
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• Average likelihood of points spread uniformly across the
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• This is higher than that achieved when assuming a single
Gaussian and so provides a superior predictive generative
model of the data.
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Density Estimation

• Average likelihood of points spread uniformly across the
regions shown in the figures assuming a single Gaussian
is -3.261.

• Average likelihood of points spread uniformly across the
regions shown in the figures assuming a mixture of two
Gaussians is -3.123.

• This is higher than that achieved when assuming a single
Gaussian and so provides a superior predictive generative
model of the data.

• A Matlab script mix_gauss_density.m is available on
the course website to allow you to replicate these results.
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Mixture Models

• The probability density function for the case of two
Gaussians can be represented as

p(x|θ) = πp(x|θ1) + (1 − π)p(x|θ2)

= πNx(µ1,C1) + (1 − π)Nx(µ2,C2)
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p(x|θ) = πp(x|θ1) + (1 − π)p(x|θ2)

= πNx(µ1,C1) + (1 − π)Nx(µ2,C2)

• where θ = {π,θ1,θ2} and each set of parameters is
defined by θ1 = {µ1,C1} and θ2 = {µ2,C2}
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Mixture Models

• The probability density function for the case of two
Gaussians can be represented as

p(x|θ) = πp(x|θ1) + (1 − π)p(x|θ2)

= πNx(µ1,C1) + (1 − π)Nx(µ2,C2)

• where θ = {π,θ1,θ2} and each set of parameters is
defined by θ1 = {µ1,C1} and θ2 = {µ2,C2}

• The parameter π is the probability that a point x will be
generated from p(x|θ1) and so the probability that the
point will be generated from p(x|θ2) is 1 − π
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Mixture Models

• In the more general case where there are M

components, of arbitrary parametric form the probability
density will be expressed as

p(x|θ) =

M∑

m=1

πmp(x|θm)
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Mixture Models

• In the more general case where there are M

components, of arbitrary parametric form the probability
density will be expressed as

p(x|θ) =

M∑

m=1

πmp(x|θm)

• where the whole parameter set is defined as

θ = {π1 · · · πM ,θ1 · · · θM} and
∑M

m=1
πm = 1 as each

πm is the probability that the mth component of the
mixture will produce a data point so it must sum to one
to be a valid probability over the M selection events
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Mixture Models

• Given data D = {x1 · · ·xN} assuming mixture model

p(x|θ) =
∑M

m=1
πmp(x|θm) estimate parameters
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Mixture Models

• Given data D = {x1 · · ·xN} assuming mixture model

p(x|θ) =
∑M

m=1
πmp(x|θm) estimate parameters

• Require estimates of each πm, probability of data being
generated by each m, just count how many points from
D coming from each of M components then normalise
by N . Count Nm points in D drawn from component m

then

π̂m =
Nm

N

where each Nm can be obtained from Nm =
∑N

n=1
zmn

where each zmn = 1 if the nth point was drawn from
component m and zmn = 0 otherwise.
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Mixture Models

• What of the specific parameters of each of the
components θm? This is also easy as all we need to do

is obtain the estimates θ̂m which maximise the likelihood
of the data points which were drawn from component m

under the parametric form p(x|θm).
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Mixture Models

• What of the specific parameters of each of the
components θm? This is also easy as all we need to do

is obtain the estimates θ̂m which maximise the likelihood
of the data points which were drawn from component m

under the parametric form p(x|θm).

• For example if the mixture components were Gaussians
then the Maximum-Likelihood estimate for the
component mean vectors would simply be

µ̂m =

∑N
n=1

znmxn∑N
n=1

znm

=
1

Nm

∑

n∈m

xn
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Mixture Models

• The expression for the covariance matrices for each
component would follow simply as

Σ̂m =
1

Nm

N∑

n=1

zmn(xn − µ̂m)(xn − µ̂m)T

and we are then finished.

Lecture Eleven February 14, 2006 – p. 19/33



Mixture Models

• The expression for the covariance matrices for each
component would follow simply as

Σ̂m =
1

Nm

N∑

n=1

zmn(xn − µ̂m)(xn − µ̂m)T

and we are then finished.

• There is one small difficulty which we have overlooked,
we do not have values for the indictor variables zmn on
which we have relied.
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Mixture Models

• The expression for the covariance matrices for each
component would follow simply as

Σ̂m =
1

Nm

N∑

n=1

zmn(xn − µ̂m)(xn − µ̂m)T

and we are then finished.

• There is one small difficulty which we have overlooked,
we do not have values for the indictor variables zmn on
which we have relied.

• This is a major difficulty as the fact that the variables
zmn are hidden or latent then our ML estimates cannot
follow in the straightforward manner we had anticipated.
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The EM Algorithm

• The problem is that we assumed knowledge of the values
for the allocation or indicator variables zmn
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The EM Algorithm

• The problem is that we assumed knowledge of the values
for the allocation or indicator variables zmn

• Need the joint likelihood of data X = {x1 · · · xN} and
indicator variables Z = {z1 · · · zN} where each
zn = {z1n · · · zMn}
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The EM Algorithm

• The problem is that we assumed knowledge of the values
for the allocation or indicator variables zmn

• Need the joint likelihood of data X = {x1 · · · xN} and
indicator variables Z = {z1 · · · zN} where each
zn = {z1n · · · zMn}

• Given θ = {θ1 · · · θM} we can marginalise over all
possible component allocations

p(X|θ) =
∑

Z

p(X,Z|θ)

where the summation is over all possible values which Z

may take on.
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The EM Algorithm

log p(X|θ) = log
∑

Z

p(X,Z|θ)

= log
∑

Z

P (Z|X)
p(X,Z|θ)

P (Z|X)
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The EM Algorithm

log p(X|θ) = log
∑

Z

p(X,Z|θ)

= log
∑

Z

P (Z|X)
p(X,Z|θ)

P (Z|X)

Use inequality log E{f(X)} ≥ E{log f(X)} so can write
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The EM Algorithm

log p(X|θ) = log
∑

Z

p(X,Z|θ)

= log
∑

Z

P (Z|X)
p(X,Z|θ)

P (Z|X)

Use inequality log E{f(X)} ≥ E{log f(X)} so can write

log
∑

Z

P (Z|X)
p(X,Z|θ)

P (Z|X)
≥

∑

Z

P (Z|X) log
p(X,Z|θ)

P (Z|X)

=
∑

Z

P (Z|X) log p(X,Z|θ)

−
∑

Z

P (Z|X) log P (Z|X)
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The EM Algorithm

As xn drawn iid from m exclusively then summation over all
Z equals a summation over all n and m i.e. LB equals

∑

Z

P (Z|X) log
p(X,Z|θ)

P (Z|X)
=

M,N∑

m,n

P (m|xn) log
p(xn|θm)P (m)

P (m|xn)

=
M∑

m=1

N∑

n=1

P (m|xn) log p(xn|θm)P (m)

−
M∑

m=1

N∑

n=1

P (m|xn) log P (m|xn)

where now P (m|xn) is the probability that zmn = 1 and
P (m) is the probability that zmn = 1 for any n.

Lecture Eleven February 14, 2006 – p. 22/33



The EM Algorithm

• The Expectation Maximisation (EM) algorithm is a
general purpose method to Maximise the likelihood of
the complete data (X & Z) so as to obtain estimates of
the component parameters θm.
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The EM Algorithm

• The Expectation Maximisation (EM) algorithm is a
general purpose method to Maximise the likelihood of
the complete data (X & Z) so as to obtain estimates of
the component parameters θm.

• Before performing the Maximisiation step we require to
obtain the Expected values of a set of hidden binary
allocation variables zmn.
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The EM Algorithm

• The Expectation Maximisation (EM) algorithm is a
general purpose method to Maximise the likelihood of
the complete data (X & Z) so as to obtain estimates of
the component parameters θm.

• Before performing the Maximisiation step we require to
obtain the Expected values of a set of hidden binary
allocation variables zmn.

• Once we have obtained the Expected values of the latent
variables we then perform the Maximisation step to
obtain our current parameter estimates.
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The EM Algorithm

• The Expectation Maximisation (EM) algorithm is a
general purpose method to Maximise the likelihood of
the complete data (X & Z) so as to obtain estimates of
the component parameters θm.

• Before performing the Maximisiation step we require to
obtain the Expected values of a set of hidden binary
allocation variables zmn.

• Once we have obtained the Expected values of the latent
variables we then perform the Maximisation step to
obtain our current parameter estimates.

• This EM interleaving is continued until some
convergence criterion is achieved.
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Expectation Step

• Taking functional derivatives of the lower-bound with
respect to P (m|xn) then

∂LB

∂P (m|xn)
= log P (m|xn) − log p(xn|θm)P (m) − 1
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Expectation Step

• Taking functional derivatives of the lower-bound with
respect to P (m|xn) then

∂LB

∂P (m|xn)
= log P (m|xn) − log p(xn|θm)P (m) − 1

• Setting to zero we see that P (m|xn) ∝ p(xn|θm)P (m)
and normalising appropriately yields the distribution of
the form

P (m|xn) =
p(xn|θm)P (m)

∑M
m′=1

p(xn|θm′)P (m′)
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Expectation Step

• You should now be able to see that this is the posterior
distribution over the mixture components m which
generated xn, or the expected value of the binary
variable zmn.
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Expectation Step

• You should now be able to see that this is the posterior
distribution over the mixture components m which
generated xn, or the expected value of the binary
variable zmn.

• Now that we have maximised the bound with respect to
the Expected value of the indicator variable we need to
Maximise the bound with respect to the parameter
values.
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Maximisation Step

• The only terms in the bound LB which are dependent
on the component parameters are

M∑

m=1

N∑

n=1

P (m|xn) log p(xn|θm)P (m)

in which case we maximise the above with respect to
each θm.
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Maximisation Step

• As an example assume that each p(xn|θm) is a
multivariate Gaussian, then expanding and retaining the
elements dependent on the parameters we obtain

−
1

2

M∑

m=1

N∑

n=1

P (m|xn) log |Σk|

−
1

2

M∑

m=1

N∑

n=1

P (m|xn)(xn − µm)TΣ
−1

m (xn − µm)

+

M∑

m=1

N∑

n=1

P (m|xn) log P (m)
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Maximisation Step

• Taking derivatives wrt µm and solving yields

µ̂m =

∑N
n=1

P (m|xn)xn∑N
n=1

P (m|xn)
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Maximisation Step

• Taking derivatives wrt µm and solving yields

µ̂m =

∑N
n=1

P (m|xn)xn∑N
n=1

P (m|xn)

• Nice result, compare with the estimator when we have
perfect knowledge of the allocation variables zmn i.e.

µ̂m =

∑N
n=1

zmnxn∑N
n=1

zmn

so in the absence of the values zmn we employ the
expected values, or the posterior probabilities P (m|xn)
which are obtained in the Expectation step
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Maximisation Step

• Leaving you to have some fun with the derivation of the
estimator for the covariance matrices we obtain

Σ̂m =

∑N
n=1

P (m|xn)(xn − µ̂m)(xn − µ̂m)T
∑N

n=1
P (m|xn)

again we can see that we have replaced perfect
knowledge of the allocation variables with our current
estimates of the posteriors P (m|xn)
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Maximisation Step

• Finally we need an estimate for P (m) taking derivatives
then we observe that

P (m) ∝
N∑

n=1

P (m|xn)

This needs to be properly normalised and so

P (m) =
1

N

N∑

n=1

P (m|xn)
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EM Algorithm

E Step

P (m|xn) =
p(xn|θm)P (m)

∑M
m′=1

p(xn|θm′)P (m′)

M Step

µ̂m =

∑N
n=1

P (m|xn)xn∑N
n=1

P (m|xn)

Σ̂m =

∑N
n=1

P (m|xn)(xn − µ̂m)(xn − µ̂m)T
∑N

n=1
P (m|xn)

P (m) =
1

N

N∑

n=1

P (m|xn)
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Experiments

• Data with equal probability from three 2D Gaussians
with a common unit variance i.e. I means of
[0, 0], [3, 3], [−3, 3] see Matlab file Gauss_Mix_Data.mat

Lecture Eleven February 14, 2006 – p. 31/33



Experiments

• Data with equal probability from three 2D Gaussians
with a common unit variance i.e. I means of
[0, 0], [3, 3], [−3, 3] see Matlab file Gauss_Mix_Data.mat

• There is also a 1500 × 2 dimensional data set drawn
from the same distribution which can be used to obtain
values of likelihood on independent test data
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Experiments

• Data with equal probability from three 2D Gaussians
with a common unit variance i.e. I means of
[0, 0], [3, 3], [−3, 3] see Matlab file Gauss_Mix_Data.mat

• There is also a 1500 × 2 dimensional data set drawn
from the same distribution which can be used to obtain
values of likelihood on independent test data

• Wish to estimate probability density for data. There is,
as always, one slight snag, our EM algorithm requires
the number of components in the mixture. For now lets
assume that we have a good idea what this value is
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Experiments

−6 −4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

4

5

6

0 10 20 30 40 50
−4.4

−4.3

−4.2

−4.1

−4

−3.9

EM Iteration
D

at
a 

Lo
g−

Li
ke

lih
oo

d

Figure 3: The left plot shows a random sample of 150 points drawn from 3 distinct

2D Gaussians, the iso-contours of estimated probability density under the assumption that

the density is a mixture of three 2D Gaussians, are superimposed on the plot. The right

plot shows the data likelihood under the mixture model at each EM step, it is clear that

the likelihood does not decrease at each step.

Lecture Eleven February 14, 2006 – p. 32/33



Experiments
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Figure 4: The left plot shows a random sample of 150 points drawn from 3 distinct

2D Gaussians, the iso-contours of estimated probability density under the assumption that

the density is a mixture of three 2D Gaussians, are superimposed on the plot. The right

plot shows the data likelihood under the mixture model at each EM step, it is clear that

the likelihood does not decrease at each step.
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