Machine Learning Module

Week &
Lecture Notes 15 & 16

Cluster Analysis

Mark Girolami
girolami@dcs.gla.ac.uk
Department of Computing Science
University of Glasgow

February 27, 2006

1 Cluster Analysis

Given some data composed of feature descriptions of a number of objects a
standard question to ask is whether there are natural groupings of the ob-
jects such that the objects within each group share to some extent common
attributes. In other words do a number of the examples when grouped to-
gether share an internal cohesiveness which discriminates them from other
groupings?

As a very simple illustration consider objects described by two attributes,
when a random sample of these objects are made available then we can
visualise the objects in the 2-D attribute or feature space and Figure (1)
illustrates the scatter of the objects in attribute space.

8
6 * IR
° .’.."f..... ..'
®e (3
e 2, \‘O, ’.og.
o 4 '30.-.0 -'. e o
2 ° .
= * e
o) . ° A
5 2 L) °
-'9 o0 ° L
= Po L[]
= 00 o
<0 ke .".".‘0.
° .v.‘.o. 3.
() L]
oo 08T °% o
o
-2 % °
_4 .
-4 -2 0 4 6 8

2
Attribute One

Figure 1: A sample of 200 examples of objects described by two attributes.
Each dot represents a sample as defined by attribute 1 & 2, it should be
obvious that there appears to be two groupings of objects which each share
and internal cohesiveness and are somewhat separated from each of the other
groups.

Clearly there are two groupings which, within each group, data points
are 'similar’ to each other in some sense, and are more similar to each other
than they are to objects within the other group or cluster. These groupings
may well be meaningful and capture some natural similarity of the objects
within each grouping or cluster. For this toy example it is a trivial matter
to see that there are clearly two natural groupings within this data and the

clustered nature of the data indicates that there are two self similar clusters
of objects. In more complex data representations segmentation of a sample
of data into coherent clusters is not such a trivial matter and it is this subject
that we focus on this week.

There are a multitude of applications of cluster analysis and a small
number of them will be considered here.

1.0.1 Bioinformatics

Applications of cluster analysis within Bioinformatics are rather extensive
and ont of the more familiar applications is the production of a phylogenetic
tree based on the similarities of gene or protein sequences. Other applications
which have become prominent are the clustering of genes or samples within
microarray studies.

1.0.2 Information Retrieval

Cluster analysis within Information Retrieval has a very long history and the
notion of grouping documents within a collection which share the same top-
ical content has been the subject of many research papers and applications.

2 Algorithms for Cluster Analysis

There are a number (a large number actually) of methods available to perform
cluster analysis but the one which we will be introduced to this week is the
K-means algorithm.

2.1 K-Means Clustering Algorithm

Let us define our data points x,, € R” where in a given sample n will range
from 1---N. We make our first assumption that there are at most K possible
groupings or clusters within the data. Of course what leads us to make this
assertion will be application specific but clearly by now you should be able
to see that this value K is one over which we would wish to do inference.
However for the simplest of algorithms it is considered that K - the number
of clusters - is given a priori.

We will also assume that there are a number of binary indicator variables
associated with each data point and cluster zy, which takes on the value

1 if x,, has been assigned to cluster k and zero otherwise. You should see
similarities here between the problem of estimating the probability density
of data using a mixture model and cluster analysis. Cluster analysis is in
many senses a less complex problem to solve as we are simply assigning data
points to clusters rather than trying to learn the actual form of probability
density.

2.1.1 Measure of Cluster Quality

Now we need to define a measure which will indicate the quality of the
clustering. Once this is defined it can be employed in guiding the selection
of the optimal clustering of our data.

We would be more convinced that a cluster which had been identified was
not some spurious random artefact if the internal cohesiveness of the points
allocated to the cluster was high. A simple way of defining this is to measure
how close each of the cluster points is to the cluster average. If all the points
are tightly surrounding the mean then the cluster is highly cohesive. On the
other hand if the data points are diffusely spread around the cluster centre
then our confidence in the cluster actually representing a compact grouping
of self-similar points will be low.

Given this we can define a measure of cluster compactness as the total
distance from the cluster mean in other words

N
Sl — el = 3 sl — 2
xn€Cr n=1

where the cluster mean is defined as

and N, = Zﬁle Zkn 18 the total number of points allocated to cluster K.
The total goodness of the clustering will then be based on the sum of the
cluster compactness measures for each of the K clusters. Using the indicator
variables zj, then we can define the overall cluster goodness as

N K
Ex = Zzzanxn - mkH2

n=1 k=1

So we have our overall measure of cluster quality the next step is to devise
an algorithm which will allow us to optimise this.

2.1.2 Iterative Criterion Optimisation Algorithm

The criterion which we have to optimise is

N K
Ex = Zzzanxn - mkH2

n=1 k=1

there are two sets of parameters - the cluster mean values m;, and the cluster
allocation indicator variables zy,.

In a similar spirit to the EM algorithm (Week 6 lectures on density esti-
mation) we will optimise our criterion over each set of variables by holding
one set fixed whilst performing optimisation over the other set.

So given our current indicator variables zy, the optimal value of the mean
vectors my, simply boils down to the estimates based on the data points allo-
cated to each cluster. Convince yourself that this is the case by differentiating
the cluster criterion with respect to each my and solving.

Therefore given each 2z, we obtain our K-means by

Zivzl ZknXkn
25:1 Fkn!

Now give each of our new my, we need to update the values of our indicator
values zx,.

From the expression for £ we can see that each x,, should be assigned
to the cluster k for which it has the shortest distance to the cluster centre
i.e. ||x, — mygl|[? is the smallest. This is then just a simple matter of finding
the centre with the minimum distance to the data point under question and
setting the associated indicator variable to this cluster value i.e. z, = 1 for
k which yields the minimum of ||x, — my||?.

Once these values have been redefined then we can go back and revise
our estimates of each m, and continue this iteration until £ converges to
some steady value.

This is very simple algorithm and is the K-Means Clustering algorithm
for which a simple Matlab implementation is included here. Note that a fully
commented version is available for download form the class website.

m; =

function [M,j,e] = kmeans(X,K,Max_Its)

[N,D]=size(X);
I=randperm(N) ;

M=X(I(1:K),:);
Mo = M;

for n=1:Max_Its

for k=1:K
Dist(:,k) = sum((X - repmat(M(k,:),N,1)).72,2)’;
end

[i,j]l=min(Dist, [1,2);

for k=1:K
if size(find(j==k))>0
M(k,:) = mean(X(find(j==k),:));
end
end

Z = zeros(N,K);
for m=1:N

Z(m,j(m)) = 1;
end

e = sum(sum(Z.*Dist)./N);
fprintf (’%d Error = %f\n’, n, e);
Mo = M;

end

2.2 Illustrative Example of K-Means Clustering

The image of a 'wee dog’ looking out to sea is given in Figure (2). The image
can be downloaded from the class website as usual. The image is a small 100
x 100 colour thumbnail and we can represent each pixel in the image as a
three-dimensional vector corresponding to the Red, Green & Blue channels
of the JPEG image. If we were to attempt to segment the image into self
consistent regions corresponding to the background or foreground (i.e. the
dog) then we need to cluster the pixels together based on their Red, Green
& Blue representations.

Using the K-means algorithm as previously described and setting the
number of clusters to K = 4 which would correspond to the dog, the road,
the grass and the water the segmentation of the image obtained is given in
Figure (2). Four colours have been used to represent the clustered regions
and it seems that a sensible segmentation of the image has been achieved. See
the Laboratory sheet regarding this example and the code wk8_demo_1.m.

20 20
40
60
" el Y rinlsy
20 40 60 80 100 20 40 60 80 100

Figure 2: The image of a dog looking out to sea, the right hand image
shows the areas of the original image which have been allocated to one of
four possible clusters. We have managed to segment the image based on the
regions corresponding to water, grass, road, dog

This simple example illustrates how a very simple algorithm such as the
K-Means Clustering method can be employed at segmenting a data set. Of

course there are two major shortcomings of this method, the first being that
the algorithm will converge to different optima of £x depending on the in-
tialisation of the clusters. Secondly the number of clusters has to be defined
beforehand and it would be desirable to have an algorithm which would select
the value of K based on the data.

There is one other problem associated with the K-Means algorithm which
can be demonstrated with an example using the code wk8_demo_2.m. Assume
that our data has cluster structure which is highly nonlinear such that there
are strong nonlinear dependencies within our features, see Figure (3).

. K-Means Clustering 5 Kernel K-Means Clustering
2
1
0
-1
-2
3 2 0 1 2 3 I R S— 0 1 2

Figure 3: The data is generated such that two consistent clusters both share
the same mean but are distributed as a Gaussian cloud and uniformly within
a unit width annulus centered at the origin. The left hand plot shows the
clustering using the standard K-Means algorithm. It fails to obtain a rea-
sonable clustering. The right hand plot shows the clustering obtained by
using Kernel K-Means clustering. A more sensible segmentation of the data
is obtained.

The data is such that one grouping is centered at the origin and is clumped
as a radially symmetric Gaussian. The second grouping is also centered at
the origin but forms an annular ring of width one unit.

There clearly are two clusters which the data could sensibly be allocated
to, however running K-Means on this data produces a clustering as shown
in the left-hand side of Figure(3) which clearly is not appropriate.

8

What is the problem? K-Means is based on Euclidean distances and so
will segment the data space employing linear hyper-planes and so will fail if
nonlinear separation boundaries are required. We can get round this problem
by employing the kernel trick introduced back in Week 5 and this is what we
will now do.

3 Kernel K-Means Clustering

The clustering criterion upon which the K-Means algorithm is based is simply

N K
Ex = Zzzanxn - mkH2

n=1 k=1

Now this can be written as follows

N K
gK - Zzzkn||xn_mk||2
n=1 k=1

n=1 k=1
N K
T T T
= g E Zkn (xnxn—2mkxn+mkmk)
n=1 k=1
Note that
N
T 1
m,x, = -—— E ZkmX o Xn
Ny, —
m=1
and

N 2
T 1
m,m; = -— E ZkpXp

It should be obvious that each of the elements of &£, can be written in
terms of an inner-product and as such if we were to map our data into another

feature space defined by a function ¢ (refer to the lecture notes for Week 5)
then by taking the above terms and plugging them together we can write the
clustering criterion in the feature space defined by ¢ as Sf} where the mean

vectors in this space are denoted by mi.

2 |0(%) — mf |2

WE

gy =

¢(XH)T¢(XH)_
Zkn le Z%:l Zk‘m(b(xm)—r(b(x”)—i_

M- i
> IM>

n=1 k=1 z S Yo zkp (%) T B ()
N f(xm XTL)_
= Z Zkn le Zmzl kaK(Xma Xn)

N N
N%f > p=1 2= hpzht K (Xp, X1)

M= i
M= 104

an(;kn

Il
—
x~
I
—

n

where the distance between the n’th data point and the £’'th cluster mean,
within the feature space, is denoted as d,, where

On = ||O(xn) — min
K(x,,%,)—
= le ZZ:I zka(va Xn)
N%g 25:1 Zl]il Zkp 2l K (X, X1)

The first point to notice is that the clustering criterion can be written
solely in terms of the kernel functions computed at each of the data point
pairs and so an algorithm can be developed which only requires the step of
updating the indicator variables z;, as no explicit updating of cluster mean
values of required.

An implementation of Kernel K-means clustering is given over the page
and a fully commented version is available at the course website.

10

function [z,e] = kernel_kmeans(X,K,Max_Its,kwidth)

%This is a simple implementation of Kernel K-means clustering - an
hinteresting paper which proposed kernel based Kmeans clustering is [1]
%Girolami, M, Mercer Kernel-Based Clustering in Feature Space,

%IEEE Trans Neural Networks, 13(3),780 - 784, 2002.

[N,D]=size(X);
C = kernel_func(X,X,’gauss’,kwidth,1);

Z = zeros(N,K); for n = 1:N
Z(n,rand_int(K)) = 1;
end

for its = 1:Max_Its

for k=1:K

Nk = sum(Z(:,k));

Y(:,k) = diag(C) - 2+C*Z(:,k)./Nk + Z(:,k)’*C*Z(:,k)./(Nk~2);
end

[i,j]=min(Y, [1,2);

Z = zeros(N,K);
for n=1:N
Z(n,jm)) = 1;
end
e = sum(sum(Z.*Y))./N;
fprintf (’%d Error = %f\n’, its, e);
end

for n=1:N
z(n) = find(Z(n,:));
end
Tolo Jo o Jo o To To o To T T o o o
%sthis is a little utility function which returns
%a random integer between 1 & Max_Int.
function u = rand_int(Max_Int)
u=ceil (Max_Int*rand) ;

11

Now we have a kernel-based clustering method which will allow us to
segment our data in a nonlinear manner as can now be seen from the right
hand plot of Figure(3). Well this is good news, we have generalised our
K-means algorithm to a more flexible representation which takes account of
nonlinear relationships within our data. There is, of course, a small price to
pay for this flexibility. The kernel function used may well have a parameter
(or a number of parameters) of its own - which will need to be chosen in
some way - so we have added an additional layer of parameters into our
representation.

This weeks laboratory session will explore these two forms of clustering
in some detail.

4 EM & K-Means Clustering

In Week 6 we developed an EM algorithm for a Gaussian Mixture model. Lets
have another look at this algorithm and make some simplifying assumptions.
Firstly lets assume that the covariance for each mixture component is simply
an identity matrix which is fixed. There is no need to estimate the covariance
matrices as these are set. Now lets think of the posterior probabilities of data
points being allocated to a Gaussian component. In this case (where each
Y is an identity then in the E-step each

1
E{zk,} = P(k|x,) o exp (—§||xn — mk||2)
and the M-step boils down to

= Zﬁ;l P(k|XTL)Xn
Z%:l P(k|xn)

If we make a hard decision about the expected value of z, based on the
maximum of posterior we should be able to see that the maximum posterior
corresponds to the minimum of ||x, — my||* which is exactly what we are
doing in K-means. So if we choose z, based on the maximum posterior our
M-step is precisely the cluster centre updates for K-means clustering.

K-Means clustering can be obtained directly from the EM algorithm from
a mixture of unit radius spherical Gaussians where at the E-step a hard
decision about component membership is made.

my,

12

