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1 Introduction

Machine Learning is fast becoming one of the most important areas of re-
search & development activity in Computing Science1 with companies such
as Microsoft, Google, Yahoo & Amazon as well as major international banks
& financial institutions actively recruiting Machine Learning specialists in
an ongoing basis and supporting major research & development groups ded-
icated to Machine Learning research and its application in a number of do-
mains.

Machine Learning is a massively interesting area to study as the subject
is being developed by research questions and applications with diverse back-
grounds. For example Computing Science contributes to Machine Learn-
ing from the field of Artificial Intelligence and specifically Neural Computing;
Statistics has an important role to play in that Likelihood Based Inference

and Bayesian Statistical Inference have become the cornerstone of many Ma-
chine Learning methods; Physics has contributed Monte Carlo methods
which have been adopted in Machine Learning to enable large-scale applica-
tion of Bayesian Inference in Information Retrieval and Image Processing to
name but two; Engineering many engineers have contributed to the area
of Machine Learning by providing challenging applications in Control en-
gineering where nonlinear systems have been modeled by Artificial Neural

Networks and Gaussian Processes.
A large amount of Machine Learning focuses on important theoretical

mathematical and statistical issues but this course will concentrate on intro-
ducing concepts and methods which have direct applications of interest.

Above all else studying Machine Learning is an awful lot of fun.

1.1 Important Applications of Machine Learning Meth-

ods

The number of practical examples of Machine Learning applications is huge
and if we just restrict ourselves to learning problems associated with the
main research groups within the Department of Computing Science then an
interesting and exciting list emerges.

1For example The Journal of Machine Learning Research has the highest rating (2004
& 2005) for a journal in artificial intelligence, automation and control, or statistics and
probability. It is the second highest rating of any computer science journal.
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• Bioinformatics

– Predicting the interaction of genes within an organism

– Inferring gene & protein network structures

– Predicting protein function from sequence

• Computer Vision & Graphics

– Image reconstruction from degraded images

– Object detection and localisation

– Visual tracking

• Networked Systems Measurement & Control

– Autonomic network management systems

– Detecting network level packet patterns

– Intrusion detection systems

• Human Computer Interaction

– Speech recognition

– System control via auditory feedback

– Gesture recognition

• Information Retrieval

– New topic identification in news feeds

– Language Models for ad hoc retrieval

– Image & video retrieval

• Software Engineering & Technology

– Compilers that learn to optimise (Edinburgh)

– Automatic classification of software behaviour

• Formal Analysis, Theory & Algorithms An area that Machine Learning
has not broken into yet.
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1.2 Structure of Module

The two areas of Machine Learning which this introductory course will fo-
cus on are Supervised Learning and Unsupervised Learning. The first
five weeks will concentrate on Supervised Learning where the machine

will learn under the supervision of a teacher providing reward when the ma-
chine gets the assigned task correct and punishment when it does not. The
main areas of supervised learning which we will study will be methods for
Regression and Classification. The second half of the course will focus on
Unsupervised learning techniques where the machine will learn in the absence
of a teacher.

There will be two lectures each week and one laboratory session.

2 Linear Regression

An important and general problem in Machine Learning, which has wide
application, is learning or inferring a functional relationship between a set of
attribute variables and associated response or target variables.

To begin with we will consider the most straightforward of learning prob-
lems, Linear Regression2. We will use a practical example to introduce the
main concepts of linear regression modeling. The plot of Figure 1 shows the
gold medal winning distance in the long jump event at each of the Olympic
Games held since 1896. Our aim is to use the data available to learn a model
of the functional dependence (if one exists) between the time elapsed since
the first modern games were held and the distance which would win gold in
the long jump and use this model to make predictions about the winning
distances in future games. Clearly if we were going to use these predictions
to do something serious e.g. try and make some money through betting on
the winning distances, then there is much more information available that
can be taken into account when devising such a predictive model for making
predictions (the recent form of the main competitors for example). But we
take this simple example to introduce and develop the main ideas of linear
regression models.

2The term regression was originally used in the context of genetics by Francis Galton
(1877) when studying how intelligence is passed on (or not as the case may be) from
generation to generation. The term was then adopted by statisticians who developed
Galton’s work within a statistical context.
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2.1 Defining the Model

We can begin by defining our model as a function which maps our input

attributes, in this case length of time elapsed, to our output or target values.
A class of functionals which maps integers (Z) to the Real line (R) has to be
considered such that

f : Z → R
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Figure 1: Gold Medal Distance for the long jump from 1896 to 2004 plotted
against the number of years since the first modern games were held with
1900 being 0 and 1896 being -4. Note that the two world wars interrupt the
games in 1914, 1940 & 1944.

2.1.1 Modeling Assumption

Now we make our first modeling assumption by assuming that a straight
line can adequately model the functional relationship between time elapsed,
which we will denote as x, and winning distance, denoted by t. In other
words the functional mapping

f(x; w0, w1) = w1x + w0

defines our model. The slope w1 and the intercept w0 are the free para-

meters of our model which have to be assigned appropriate values in some
way.
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2.2 Loss Functions

We identify the model parameters by considering a Loss Function which de-
fines a measurable indicator of the miss-match between our model output
f(x; w0, w1) and the actual target value t for all available input-output ex-
ample pairs (xn, tn) where n = 1, · · · , N and in this case N = 25, the number
of game results recorded. The sample average loss is given as

1

N

N∑

n=1

L(tn, f(xn; w0, w1))

Clearly we will select the values of the model parameters w0 & w1 to
minimise the average loss incurred in modeling the targets by the linear
function chosen. Now we have to consider a specific form of our loss function
before we can go on and seek to minimise the average (over the examples
available) model loss.

2.2.1 Mean-Squared-Error Loss

For a regression model such as this the mean-squared error (MSE)

1

N

N∑

n=1

|tn − f(xn; w0, w1)|
2 (1)

is an appropriate loss function to use when identifying the model pa-
rameters. Indeed minimisation of the MSE is the basis of the venerable
Least-Squares errors method of function approximation originally developed
by Gauss & Legendre (1809) when predicting planetary motion. We will see
in further lectures that the MSE actually has a probabilistic basis which we
will employ throughout the module.

There are numerous other loss-functions which could be considered, for
example the class of, what are know as robust losses, based on absolute devi-
ations (the absolute value of the error). These loss-functions are particularly
useful when there are many outliers in the data as only the sign of the de-
viation affects the optimal solution. However the main concepts we wish to
introduce at this point can be covered with MSE.
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2.2.2 Matrix Notation

In this course we will make liberal use of matrix notation as it will simplify
much of the manipulations which will follow in the material to be covered.
The student is very strongly advised to brush up on matrix manipulations
and some useful resources have been made available on the class website (e.g.
The Matrix Cookbook).

We can define the 2 × 1 dimensional column vector w and the N × 1
dimensional column vector t such that

w =

[
w0

w1

]
& t =




t1
...

tN




and finally the N × 2 dimensional matrix X is defined as

X =




1 x1

...
...

1 xN




Denoting the inner-product of two D-dimensional column vectors a & b

as aTb =
∑

D

d=1
adbd, where ad & bd are the d-th elements of the respective

vectors, then it is easy to show3the MSE (Equation 1) can be compactly
written in matrix format as

MSE =
1

N
(t − Xw)T(t − Xw) (2)

2.3 Minimising Mean-Squared-Error

Now then we need to find the parameter set which will minimise MSE and
the application of some straightforward calculus will enable us to do this.
The minimum of MSE can be found by finding the stationary points with
respect to the parameters w0 & w1, that is the point where the gradient of
MSE is zeros.

3Convince yourself that this is the case by deriving the matrix expression for MSE.
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∂MSE

∂w
=




∂MSE

∂w0

∂MSE

∂w1


 =




− 2

N

∑
N

n=1
(tn − f(xn; w0, w1))

− 2

N

∑
N

n=1
(tn − f(xn; w0, w1))xn


 =

[
0
0

]
= 0

(3)
As with the expression for MSE the corresponding gradient can be neatly

written in matrix format4

∂MSE

∂w
= −

2

N
XT(t − Xw) (4)

Now the equations ∂MSE

∂w
= 0 define a stationary point of the MSE

and calling to mind our calculus for single parameter functions, if the sec-
ond derivatives are strictly positive then this stationary point will be a (lo-
cal) minimum. For multi-parameter functions then the matrix of all partial
second-derivatives requires to be positive-definite5 for the stationary point to
be a (local) minimum.

∂2MSE

∂w∂wT
=




∂2MSE

∂w0∂w0

∂2MSE

∂w0∂w1

∂2MSE

∂w1∂w0

∂2MSE

∂w1∂w1


 =




2 2

N

∑
N

n=1
xn

2

N

∑
N

n=1
xn

2

N

∑
N

n=1
x2

n


 (5)

As will become usual in this course we can write the matrix of second-
derivatives, also referred to as the Hessian matrix, succinctly as

∂2MSE

∂w∂wT
=

2

N
XTX (6)

which follows from differentiation of Equation (4) with respect to w.

4Have some more fun and convince yourself that this is the case.
5A symmetric matrix H is positive-definite if for any appropriately dimensioned vector

a then a
T
Ha > 0, in other words H has eigenvalues which are greater than zero and so

det(H) > 0.
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2.4 Least-Squares Solution

Now if N >> 2 then XTX will be positive-definite and so we can say that
the stationary point is the (global) minimum of MSE6. Therefore

∂MSE

∂w
= −

2

N
XT(t − Xw) = 0 ⇒ XTXw = XTt (7)

As the matrix XTX is positive-definite it can be inverted and so we obtain the
estimate ŵ7 for the set of parameters which minimise the MSE fit between
our linear model and the target values.

ŵ =
(
XTX

)
−1

XTt (8)

The Least-Squares solution is

ŵ =

[
w0

w1

]
=

[
276.78
0.748

]

2.5 Making Predictions

With this parameter estimate our predictions for the given target values t̂

follow as

t̂ = Xŵ = X
(
XTX

)
−1

XTt (9)

Figure (2) shows the line of best fit in the least-squares sense to the data
under consideration. To make new predictions, say for example the winning
distance at the London 2012 Olympic Games denoted by t̂2012, then

t̂2012 = xT

2012
ŵ = [1 112]ŵ = [1 112]

(
XTX

)
−1

XTt (10)

So based on our linear regression model we can expect a gold medal
winning distance of 276.78 + 0.748 × 112 = 360.5 inches in London. The
current Olympic record, set by Bob Beamon in 1968, stands at 350.39 inches
and the current World Record was set in 1991 by Mike Powell with a distance
of 352.36 inches. It would appear that our model is somewhat optimistic and
we have a rather long wait for verification of our prediction.

6There will be many instances where the matrix is not positive-definite and so not
uniquely invertible. In such a case solutions can still be obtained however they will not be
unique and this throws up other problems such as how do we choose the most appropriate
solution? we will consider these problems later in the course.

7The hat notation is used to denote an estimate for the parameters.
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Figure 2: Least Squares fit of linear model to Olympic long Jump Gold data.

2.6 Nonlinear Response from a Linear Model

The least-squares solution provides the best fit in the sense of minimising
the average squared missmatch between our linear model and the data. The
model is linear in the sense that it is a linear function of the associated
parameters but says nothing of any transformations of the input variables.
For example we may believe that the underlying function mapping time-
elapsed and distance achieved is a polynomial function (due to for example
cyclic levels of performances caused by various world events e.g. wars) such
that for example a cubic polynomial relation holds i.e.

f(x;w) = w3x
3 + w2x

2 + w1x + w0 (11)

or more generally an arbitrary K’th order polynomial holds

f(x;w) =
K∑

i=0

wix
i (12)

It should be straightforward to see that by now defining the N × (K + 1)
dimensional matrix X such that

X =




1 x1 x2

1
· · · xK

1

...
...

... · · ·
...

1 xN x2

N
· · · xK

N


 (13)
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then the best polynomial fit, in the least-squares sense, will still be ob-
tained using Equation (8) where now ŵ will be a (K +1)× 1 column vector.
Figure (3) shows the fit of a K = 9 - order polynomial model of the long-
jump data, does this look to be a better fit to the underlying trend than the
K = 1 - order model? Is it a better predictor than a strictly linear model?
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Figure 3: Least Squares fit of 9’th order polynomial model to Olympic long
Jump Gold data.

To answer these questions we have to consider objective assessments of
the goodness of our models in terms of how faithfully they represent the data
generating process whatever that may be.

The laboratory exercise will examine these questions in some detail and
a tutorial sheet is available to assist in the vector and matrix manipulations.
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