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Generalisation

• The important observations made in Laboratory One.

• Increasing model complexity (polynomial order) yields
monotonic decrease in MSE on training data.

• Increasing model complexity does not necessarily yield
monotonic decrease in testing error
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Generalisation
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Figure 1: Results from Laboratory 1, designing polynomial order regression model

to predict long jump distance in last five Olympic Games (1988 - 2004) given results from

all previous games.
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Generalisation

• Employing too simple a model then poor predictions will
be made but if too complex a model employed the
quality of predictions also adversely affected.
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Generalisation

• Employing too simple a model then poor predictions will
be made but if too complex a model employed the
quality of predictions also adversely affected.

• This week looking at underlying mechanisms which
cause this phenomenon and we will be introduced to
methods which allow us to estimate what our model
predictive performance or test error will be.

• What is important is developing a model that can
generalise its performance beyond the available examples
used for training.
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Generalisation

• Consider again our averaged Loss-Function defined as

1

N

N∑

n=1

L(tn, f(xn;w))
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• Each input-output pair (xn, tn) can be assumed to follow
a natural distribution which makes it more likely to
observe certain input-output pairs than others.
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Generalisation

• Consider again our averaged Loss-Function defined as

1

N

N∑

n=1

L(tn, f(xn;w))

• Each input-output pair (xn, tn) can be assumed to follow
a natural distribution which makes it more likely to
observe certain input-output pairs than others.

• We can say that there is a Probability Distribution

p(x, t) which characterizes how likely it is to observe any
particular pair (x, t)
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Generalisation

• Ideally what we would like to be able to do would be to
minimise the loss over all the possible input-output pairs
that could possibly be observed.
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Generalisation

• Ideally what we would like to be able to do would be to
minimise the loss over all the possible input-output pairs
that could possibly be observed.

• In other words we want to minimise the Expected

Loss.

• The Expectation operator is defined as the population
average of a function which for a continuous (real)
random variable X which takes on values x ∈ R with
probability density p(x) is defined as
E{f(X)} =

∫
f(x)p(x)dx. For example the expected

value or population average of X is E{X} =
∫

xp(x)dx.
If X takes on a number of K discrete values (X = xk)

then E{X} =
∑K

k=1 xkP (xk)
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Generalisation

• Expected Loss then defined as

E{L} =

∫ ∫
L(t, f(x;w))p(x, t)dxdt
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Lecture Three January 15, 2006 – p. 7/32



Generalisation

• Expected Loss then defined as

E{L} =

∫ ∫
L(t, f(x;w))p(x, t)dxdt

• As we have N examples drawn from p(x, t) we can
estimate the expected loss with the sample average

1

N

N∑
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L(tn, f(xn;w))
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Bias-Variance Decomposition

• The expected squared error loss can be rewritten so that
we can gain insight regarding the source of our modeling
errors
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Bias-Variance Decomposition

• The expected squared error loss can be rewritten so that
we can gain insight regarding the source of our modeling
errors

• We assume that the true model for our data is linear i.e.
w0 + w1x. Let us also assume that we had an infinite
amount of data i.e. N → ∞ then the MSE, which is
based on a sample of data drawn from p(x, t), will tend
to the expected loss.
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Bias-Variance Decomposition

• The expected squared error loss can be rewritten so that
we can gain insight regarding the source of our modeling
errors

• We assume that the true model for our data is linear i.e.
w0 + w1x. Let us also assume that we had an infinite
amount of data i.e. N → ∞ then the MSE, which is
based on a sample of data drawn from p(x, t), will tend
to the expected loss.

• We denote [1 x]T as x in what follows.
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Bias-Variance Decomposition

• For MSE loss
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Bias-Variance Decomposition

• For MSE loss

lim
N→∞

1

N

N∑

n=1

|tn − f(xn;w)|2

=

∫ ∫
|t − f(x;w)|2p(x, t)dxdt

=

∫ ∫
|t −wTx|2p(t|x)p(x)dxdt
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Bias-Variance Decomposition

• Now if we differentiate the expected loss with respect to
the parameters w = [w0 w1]

T and solve for w then we
obtain
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Bias-Variance Decomposition

• Now if we differentiate the expected loss with respect to
the parameters w = [w0 w1]

T and solve for w then we
obtain

2

∫ ∫
(tx − xxTw)p(t|x)p(x)dxdt = 0
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Bias-Variance Decomposition

• Now if we differentiate the expected loss with respect to
the parameters w = [w0 w1]

T and solve for w then we
obtain

2

∫ ∫
(tx − xxTw)p(t|x)p(x)dxdt = 0

• Now
∫ ∫

txp(t|x)p(x)dxdt is expected value of the cross
term tx under p(x, t). Gives description of how inputs x

and outputs t are correlated. It is a measure of their
cross-covariance denoted by E{TX}, where the upper
case is used to denote that these are random variables as
opposed to the values which they may take on i.e. t & x.
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Bias-Variance Decomposition

• The right hand term is defined as
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Bias-Variance Decomposition

• The right hand term is defined as

∫ ∫
xxTwp(t|x)p(x)dxdt =

∫
p(t|x)dt

∫
xxTwp(x)dx

= 1 ×

∫
xxTp(x)dx w

=

∫ [
1 x

x x2

]
p(x)dx w

=

[
1 E{X}

E{X} E{X2}

]
w

= E{XXT} w
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Bias-Variance Decomposition

• For infinite amount of data the true model parameters
are obtained from

w =
(
E{XXT}

)−1
E{TX}
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Bias-Variance Decomposition

• For infinite amount of data the true model parameters
are obtained from

w =
(
E{XXT}

)−1
E{TX}

Comparing with the Least-Squares estimate we can see
how ŵ is an estimate of w based on the sample of data
available.

Lecture Three January 15, 2006 – p. 12/32



Bias-Variance Decomposition

• For infinite amount of data the true model parameters
are obtained from

w =
(
E{XXT}

)−1
E{TX}

Comparing with the Least-Squares estimate we can see
how ŵ is an estimate of w based on the sample of data
available.

• We would then expect to apportion some of the error
observed to the sample based approximations to the
expectations appearing in the above equation.
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Bias-Variance Decomposition

• Consider the error made at a particular point x∗

∫
|t − f(x∗;w)|2p(t|x∗)dt
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Bias-Variance Decomposition

• Consider the error made at a particular point x∗

∫
|t − f(x∗;w)|2p(t|x∗)dt

Differentiating with respect to f(x∗;w) and setting to
zero we find that

f(x∗;w)

∫
p(t|x∗)dt = f(x∗;w) =

∫
tp(t|x∗)dt = E{T |x∗}
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Bias-Variance Decomposition

• Consider the error made at a particular point x∗

∫
|t − f(x∗;w)|2p(t|x∗)dt

Differentiating with respect to f(x∗;w) and setting to
zero we find that

f(x∗;w)

∫
p(t|x∗)dt = f(x∗;w) =

∫
tp(t|x∗)dt = E{T |x∗}

• The best function estimate at a point x∗ is the
conditional expectation E{T |x∗} in other words the
expected value of t given that the input equals x∗. This
is the best that we can hope to do.
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Bias-Variance Decomposition

• Expected loss,
∫ ∫

|t − f(x;w)|2p(t|x)p(x)dxdt, can be
written as
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Bias-Variance Decomposition

• Expected loss,
∫ ∫

|t − f(x;w)|2p(t|x)p(x)dxdt, can be
written as

∫ ∫
|t + E{T |x} − E{T |x} − f(x;w)|2p(t|x)p(x)dxdt =

∫ ∫
|t − E{T |x}|2p(t|x)p(x)dxdt +

∫ ∫
|E{T |x} − f(x;w)|2p(t|x)p(x)dxdt −

2

∫ ∫
|E{T |x} − f(x;w)||t − E{T |x}|p(t|x)p(x)dxdt
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Bias-Variance Decomposition

• It is straightforward to see that the third term above
equals zero as
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Bias-Variance Decomposition

• It is straightforward to see that the third term above
equals zero as

2

∫ ∫
|E{T |x} − f(x;w)||t − E{T |x}|p(t|x)p(x)dxdt =

2

∫ ∫
|t − E{T |x}|p(t|x)dt|E{T |x} − f(x;w)|p(x)dx =

2

∫
|E{T |x} − E{T |x}||E{T |x} − f(x;w)|p(x)dx = 0
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Bias-Variance Decomposition

• Likewise the first term can be written as
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Bias-Variance Decomposition

• Likewise the first term can be written as
∫ ∫

|t − E{T |x}|2p(t|x)p(x)dxdt =

∫ ∫ (
t2 + E2{T |x} − 2tE{T |x}

)
p(t|x)p(x)dxdt =

∫ (
E{T 2|x} + E2{T |x} − 2E2{T |x}

)
p(x)dx =

∫ (
E{T 2|x} − E2{T |x}

)
p(x)dx
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Bias-Variance Decomposition

• Likewise the first term can be written as
∫ ∫

|t − E{T |x}|2p(t|x)p(x)dxdt =

∫ ∫ (
t2 + E2{T |x} − 2tE{T |x}

)
p(t|x)p(x)dxdt =

∫ (
E{T 2|x} + E2{T |x} − 2E2{T |x}

)
p(x)dx =

∫ (
E{T 2|x} − E2{T |x}

)
p(x)dx

• This gives the variance of the output (target) around the
conditional mean value (which is the best estimate of
the target value), characterizes the data noise and so the
uncertainty in the target value estimates.
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Bias-Variance Decomposition

E{T|x*}

t

xx*

p(t|x*)

f(x; w)

Figure 2: Diagram illustrating the irreducible component of error. The true func-

tion to be estimated is f(x;w) and the best estimate in the mean square sense is the

conditional mean E{T |x∗} however we also see that the conditional distribution p(t|X∗)

will have a finite variance E{T 2|x∗} − E2{T |x∗} which contributes to the overall error.
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Bias-Variance Decomposition

• Second term,
∫ ∫

|E{T |x} − f(x;w)|2p(t|x)p(x)dxdt
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Bias-Variance Decomposition

• Second term,
∫ ∫

|E{T |x} − f(x;w)|2p(t|x)p(x)dxdt

• Is an approximation error measuring mismatch between
our model parameters identified with an infinite amount
of data and the parameters estimated from a finite
sample.
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Bias-Variance Decomposition

• Second term,
∫ ∫

|E{T |x} − f(x;w)|2p(t|x)p(x)dxdt

• Is an approximation error measuring mismatch between
our model parameters identified with an infinite amount
of data and the parameters estimated from a finite
sample.

• Parameters of model f(x;w) are estimated from a
particular data set D = (xn, tn)n=1,··· ,N .
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Bias-Variance Decomposition

• Second term,
∫ ∫

|E{T |x} − f(x;w)|2p(t|x)p(x)dxdt

• Is an approximation error measuring mismatch between
our model parameters identified with an infinite amount
of data and the parameters estimated from a finite
sample.

• Parameters of model f(x;w) are estimated from a
particular data set D = (xn, tn)n=1,··· ,N .

• Repeat experiment and obtain another data set D′ then
our function estimate would differ somewhat from that
obtained from data set D.
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Bias-Variance Decomposition

• If there were a sampling distribution for our data sets
P (D) then the expected value of our estimated function
would be the model of choice i.e.∫

f(x;w)P (D)dD = EP (D){f(x;w)}.
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Bias-Variance Decomposition

• If there were a sampling distribution for our data sets
P (D) then the expected value of our estimated function
would be the model of choice i.e.∫

f(x;w)P (D)dD = EP (D){f(x;w)}.

• Recap here and note that each f(x;w) is estimated
from a data set D via the least squares estimator.
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Bias-Variance Decomposition

• If there were a sampling distribution for our data sets
P (D) then the expected value of our estimated function
would be the model of choice i.e.∫

f(x;w)P (D)dD = EP (D){f(x;w)}.

• Recap here and note that each f(x;w) is estimated
from a data set D via the least squares estimator.

• Therefore averaging our models over multiple data sets
ensures that we have, on average over data sets, a
mean-square optimal model.
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Bias-Variance Decomposition

• So back to the second term in our error criterion, we can
employ the same trick as previous and so
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Bias-Variance Decomposition

• So back to the second term in our error criterion, we can
employ the same trick as previous and so

|E{T |x} − f(x;w)|2p(t|x)p(x)dxdt =

|E{T |x} − EP (D){f(x;w)} + EP (D){f(x;w)} − f(x;w)|2p(t|x)p(x)dxdt =

|E{T |x} − EP (D){f(x;w)}|2p(t|x)p(x)dxdt +

|EP (D){f(x;w)} − f(x;w)|2p(t|x)p(x)dxdt −

2 |E{T |x} − EP (D){f(x;w)}||EP (D){f(x;w)} − f(x;w)|p(t|x)p(x)dxdt
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Bias-Variance Decomposition

• Now we average this over all possible data sets and we
find that, as before the third term is zero
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Bias-Variance Decomposition

• Now we average this over all possible data sets and we
find that, as before the third term is zero

• All that remains is
∫

|E{T |x} − EP (D){f(x;w)}|2p(x)dx +

∫
EP (D)

{
|EP (D){f(x;w)} − f(x;w)|2

}
p(x)dx
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Bias-Variance Decomposition

• Now we average this over all possible data sets and we
find that, as before the third term is zero

• All that remains is
∫

|E{T |x} − EP (D){f(x;w)}|2p(x)dx +

∫
EP (D)

{
|EP (D){f(x;w)} − f(x;w)|2

}
p(x)dx

• The expectation does not appear in 1st term as it is
independent of data set, as both terms independent of
target values

∫
p(t|x)dt = 1 so integral with respect to t

drops out
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Bias-Variance Decomposition

• At long and weary last we can look at the overall
expression for the expected loss and here we also take
expectations with respect to the data sets.
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Bias-Variance Decomposition

• At long and weary last we can look at the overall
expression for the expected loss and here we also take
expectations with respect to the data sets.

∫ ∫
EP (D){|t − f(x;w)|2}p(t|x)p(x)dxdt =

∫ (
E{T 2|x} − E2{T |x}

)
p(x)dx + (1)

∫
|E{T |x} − EP (D){f(x;w)}|2p(x)dx + (2)

∫
EP (D)

{
|EP (D){f(x;w)} − f(x;w)|2

}
p(x)dx (3)
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Bias-Variance Decomposition

• The first term,
∫ (

E{T 2|x} − E2{T |x}
)
p(x)dx, defines

the irreducible error, irrespective of model, caused by
noise in the observations.
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Bias-Variance Decomposition

• The first term,
∫ (

E{T 2|x} − E2{T |x}
)
p(x)dx, defines

the irreducible error, irrespective of model, caused by
noise in the observations.

• The second term,
∫
|E{T |x} −EP (D){f(x;w)}|2p(x)dx,

is the bias squared, a measure of structural miss-match
between model and underlying data generating function.

Lecture Three January 15, 2006 – p. 23/32



Bias-Variance Decomposition

• The first term,
∫ (

E{T 2|x} − E2{T |x}
)
p(x)dx, defines

the irreducible error, irrespective of model, caused by
noise in the observations.

• The second term,
∫
|E{T |x} −EP (D){f(x;w)}|2p(x)dx,

is the bias squared, a measure of structural miss-match
between model and underlying data generating function.

• Adopting too simple a functional class for model,
insufficiently flexible, then averaged estimate
EP (D){f(x;w)} is biased away from the

conditional-mean E{T |x}. Model bias can be reduced
by employing appropriately expressive functional classes.
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Bias-Variance Decomposition

• The third term,∫
EP (D)

{
|EP (D){f(x;w)} − f(x;w)|2

}
p(x)dx, is

referred to as the variance giving a measure of how
much predictions between training data sets will vary.
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Bias-Variance Decomposition

• The third term,∫
EP (D)

{
|EP (D){f(x;w)} − f(x;w)|2

}
p(x)dx, is

referred to as the variance giving a measure of how
much predictions between training data sets will vary.

• Model variance is something which we must control
carefully as highly variable predictions will be unreliable.
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Bias-Variance Decomposition

• The third term,∫
EP (D)

{
|EP (D){f(x;w)} − f(x;w)|2

}
p(x)dx, is

referred to as the variance giving a measure of how
much predictions between training data sets will vary.

• Model variance is something which we must control
carefully as highly variable predictions will be unreliable.

• Whilst a more complex model will reduce the bias there
may be a corresponding increase in the variance and it is
this trade-off between the two competing criteria that is
the focus of much attention in devising predictive
models for real applications
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Bias-Variance Decomposition
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Figure 3: The leftmost plot shows the estimated bias2 for a polynomial model,

the middle plot shows the corresponding estimated variance, the rightmost plot gives the

cumulative effect of both bias2 + variance. As complexity of the model increases bias2

continually decreases providing an increasingly superior fit to the data. Whilst variance

may increase with model complexity with the net effect being that the minimum of bias2

+ variance (the expected loss minus the constant term) is achieved at K = 3 which is

the correct complexity for the function being approximated.
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Bias-Variance

• The bias-variance decomposition demonstrates that
despite more complex models being able to better
describe the available data the variation, in terms of
generalisation capability, will increase.
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Bias-Variance

• The bias-variance decomposition demonstrates that
despite more complex models being able to better
describe the available data the variation, in terms of
generalisation capability, will increase.

• In many real modeling situations true model will not be
part of functional class selected, driving the model bias
as low as possible is clearly an unwise strategy to follow.
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Bias-Variance

• The bias-variance decomposition demonstrates that
despite more complex models being able to better
describe the available data the variation, in terms of
generalisation capability, will increase.

• In many real modeling situations true model will not be
part of functional class selected, driving the model bias
as low as possible is clearly an unwise strategy to follow.

• The Least-Squares estimator happens to be an unbiased
estimator.
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Bias-Variance

• The bias-variance decomposition demonstrates that
despite more complex models being able to better
describe the available data the variation, in terms of
generalisation capability, will increase.

• In many real modeling situations true model will not be
part of functional class selected, driving the model bias
as low as possible is clearly an unwise strategy to follow.

• The Least-Squares estimator happens to be an unbiased
estimator.

• Unbiased estimator may not be most appropriate in
many applications.
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Cross-Validation

• Require measure of expected loss to provide indication of
the generalisation ability of predictive models
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Cross-Validation

• Require measure of expected loss to provide indication of
the generalisation ability of predictive models

• From the bias-variance decomposition increasing model
complexity reduces model bias reflected in a lower
training error.
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Cross-Validation

• Require measure of expected loss to provide indication of
the generalisation ability of predictive models

• From the bias-variance decomposition increasing model
complexity reduces model bias reflected in a lower
training error.

• Training error obtained from same data used for
parameter estimation so provides optimistic estimate of
the achievable test error
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Cross-Validation

• Require measure of expected loss to provide indication of
the generalisation ability of predictive models

• From the bias-variance decomposition increasing model
complexity reduces model bias reflected in a lower
training error.

• Training error obtained from same data used for
parameter estimation so provides optimistic estimate of
the achievable test error

• Cross-validation directly estimates generalisation (test)
error simply by holding out a fraction of training data
and using this to obtain a prediction error.
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Cross-Validation

• Given a data set D = (x1, t1), · · · , (xN , tN ), remove one
input and target pair, say (xi, ti), so creating the data
sample D−i

Lecture Three January 15, 2006 – p. 28/32



Cross-Validation

• Given a data set D = (x1, t1), · · · , (xN , tN ), remove one
input and target pair, say (xi, ti), so creating the data
sample D−i

• Use D−i to induce our learning machine, e.g.
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input and target pair, say (xi, ti), so creating the data
sample D−i

• Use D−i to induce our learning machine, e.g.

ŵ−i =
(
XT

−iX−i

)−1
XT

−it−i

The (N − 1) × (K + 1) matrix with ith row removed is
X−i, the (N − 1)× 1 vector with ith element removed is
t−i & ŵ−i is least-squares estimate based on D−i
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Cross-Validation

• Given a data set D = (x1, t1), · · · , (xN , tN ), remove one
input and target pair, say (xi, ti), so creating the data
sample D−i

• Use D−i to induce our learning machine, e.g.

ŵ−i =
(
XT

−iX−i

)−1
XT

−it−i

The (N − 1) × (K + 1) matrix with ith row removed is
X−i, the (N − 1)× 1 vector with ith element removed is
t−i & ŵ−i is least-squares estimate based on D−i

• For the held-out input-target pair (xi, ti) we can
compute the corresponding loss L(ti, f(xi; ŵ−i)), e.g

|ti − ŵT
−ixi|

2 where xi is the ith row of X
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Cross-Validation

• Perform this procedure N times cycling through all the
data and leaving each one out in turn and so our
Leave-One-Out estimate of the generalisation error or
expected loss will simply be

Lecture Three January 15, 2006 – p. 29/32



Cross-Validation

• Perform this procedure N times cycling through all the
data and leaving each one out in turn and so our
Leave-One-Out estimate of the generalisation error or
expected loss will simply be

Lcv =
1

N

N∑

i=1

L(ti, f(xi; ŵ−i))

=
1

N

N∑

i=1

|ti − ŵT
−ixi|

2
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Cross-Validation

• Perform this procedure N times cycling through all the
data and leaving each one out in turn and so our
Leave-One-Out estimate of the generalisation error or
expected loss will simply be

Lcv =
1

N

N∑

i=1

L(ti, f(xi; ŵ−i))

=
1

N

N∑

i=1

|ti − ŵT
−ixi|

2

• Cross-Validation is entirely general with regard to the
loss function for which it can estimate the expectation.
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Cross-Validation

• Fifty input-target pairs from a noisy third-order
polynomial function are sampled and these are used to
learn a polynomial regression function.
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• Fifty input-target pairs from a noisy third-order
polynomial function are sampled and these are used to
learn a polynomial regression function.

• A further 1000 input-target pairs are used as an
independent test set with which to compute the overall
test error.
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• Fifty input-target pairs from a noisy third-order
polynomial function are sampled and these are used to
learn a polynomial regression function.

• A further 1000 input-target pairs are used as an
independent test set with which to compute the overall
test error.

• In addition we use the LOOCV estimator as described
above to estimate the expected test-error
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Cross-Validation

• Fifty input-target pairs from a noisy third-order
polynomial function are sampled and these are used to
learn a polynomial regression function.

• A further 1000 input-target pairs are used as an
independent test set with which to compute the overall
test error.

• In addition we use the LOOCV estimator as described
above to estimate the expected test-error

• A range of polynomial orders are considered from order 1
(linear model) up to 10th order (highly flexible model
and for each model-order the training error, test error
and LOOCV error are computed.
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Cross-Validation
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Figure 4: The Training, Testing and Leave-One-Out error curves obtained for

a noisy cubic function where a sample size of 50 is available for training and LOOCV

estimation. The test error is computed using 1000 independent samples.
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CV Scaling

• We are looping N times and within the loop we have to
perform our training method which in this case is
obtaining the Least-Squares solution
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• We are looping N times and within the loop we have to
perform our training method which in this case is
obtaining the Least-Squares solution

• Least-Squares solution requires a matrix inversion that
scales as O((K + 1)3) where K + 1 is the dimension of
the matrix being inverted
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CV Scaling

• We are looping N times and within the loop we have to
perform our training method which in this case is
obtaining the Least-Squares solution

• Least-Squares solution requires a matrix inversion that
scales as O((K + 1)3) where K + 1 is the dimension of
the matrix being inverted

• Matrix multiplications will contribute
O(N(K + 1)2 + 2N(K + 1)3) scaling
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CV Scaling

• We are looping N times and within the loop we have to
perform our training method which in this case is
obtaining the Least-Squares solution

• Least-Squares solution requires a matrix inversion that
scales as O((K + 1)3) where K + 1 is the dimension of
the matrix being inverted

• Matrix multiplications will contribute
O(N(K + 1)2 + 2N(K + 1)3) scaling

• Overall dominant scaling for LOOCV is O(N 2(K + 1)3).
As either K or N become large we can see that LOOCV
can become rather expensive computationally
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