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What is Machine Learning?

• Machine learning is concerned with the development of
techniques which allow computers to ”learn”. More
specifically, machine learning is a method for creating
computer programs by the analysis of data sets.
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What is Machine Learning?

• Machine learning overlaps heavily with statistics, since
both fields study the analysis of data, but unlike
statistics, machine learning is concerned with the
algorithmic complexity of computational
implementations. Many inference problems turn out to
be NP-hard, so part of machine learning research is the
development of tractable approximate inference
algorithms.
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What is Machine Learning?

• Machine learning has a wide spectrum of applications
including search engines, medical diagnosis, detecting
credit card fraud, stock market analysis, classifying DNA
sequences, speech and handwriting recognition, game
playing and robot locomotion to name a few.
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Why do Machine Learning?

• It is fast becoming one of the most important areas of
research & development in CS
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Why do Machine Learning?

• It is fast becoming one of the most important areas of
research & development in CS

• ML Journals some of the highest impact in CS, Statistics
& EEE

• Companies such as Microsoft, Yahoo, Google, IBM
invest heavily in ML R & D

• Many interesting CS related problems can be tackled
with ML - two slides further on

• It’s a whole lot of fun.... hmmmmm
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Who does Machine Learning?

• Researchers & practitioners from diverse backgrounds
contributing to development of the discipline
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Who does Machine Learning?

• Researchers & practitioners from diverse backgrounds
contributing to development of the discipline

• Computing Science - Artificial Intelligence, Neural
Computing, Logic Programming, Algorithmics

• Statistics - Multivariate Statistics, Bayesian Statistics,
Statistical Pattern Recognition

• Physics - Monte Carlo methods, Mean-Field
approximations

• Engineering - Control Theory and Adaptive methods

• Psychology - Cognitive science and theories of learning
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Problems for ML?

• Bioinformatics
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Problems for ML?

• Bioinformatics

• Predicting the interaction of genes within an organism

• Inferring gene & protein network structures

• Predicting protein function from sequence

Lecture One January 9, 2006 – p. 5/18



Problems for ML?
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Problems for ML?

• Computer Vision & Graphics

• Image reconstruction from degraded images

• Object detection and localisation

• Visual tracking
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Problems for ML?

• Networked Systems Measurement & Control

• Autonomic network management systems

• Detecting network level packet patterns

• Intrusion detection systems

Lecture One January 9, 2006 – p. 7/18



Problems for ML?

• Human Computer Interaction
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Problems for ML?

• Human Computer Interaction

• Speech recognition

• System control via auditory feedback

• Gesture recognition
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Problems for ML?
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Problems for ML?

• Information Retrieval

• New topic identification in news feeds

• Language Models for ad hoc retrieval

• Image & video retrieval
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Problems for ML?

• Software Engineering & Technology

• Compilers that learn to optimise (Edinburgh)

• Automatic classification of software behaviour

• Enough I think?
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Course Overview

• Supervised Learning
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Course Overview

• Supervised Learning

• Will focus on probabilistic learning of functions from
data

• Introduce classification methods both probabilistic &
non-probabilistic

• Unsupervised Learning

• Introduce methods of density estimation, generative
modeling & clustering

• Graphical models

• Numerous applications
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Supervised Learning

• Introduce flexible linear models based on Least-Squares
estimation
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Supervised Learning

• Introduce flexible linear models based on Least-Squares
estimation

• Study the effect that model complexity has on
generalisation ability

• Learn flexible linear models within the probabilistic
inferential framework

• Introduce the Bayesian inferential method for flexible
linear models

• Study probabilistic methods for classification based on
conditional density estimates and flexible nonlinear
models, introduce approximate Bayesian methods

• Study non-probabilistic classification methods based on
maximum margin machines, Support-Vector Machines
and the good old K-Nearest neighbours
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Unsupervised Learning

• Generative models, Semi-parametric density estimation,
EM-algorithm
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Unsupervised Learning

• Generative models, Semi-parametric density estimation,
EM-algorithm

• Non-parametric density estimation, Parzen windows,
RSDE

• Clustering methods - Spectral & Model based clustering
(lots of fun)

• Introduce sub-space methods such as PCA & ICA

• Brief introduction to Graphical Models & applications
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Focus of Course

• Students not encouraged to blindly adopt off-the-shelf
Machine Learning Packages for applications
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Focus of Course

• Students not encouraged to blindly adopt off-the-shelf
Machine Learning Packages for applications

• Focus on basic principles underlying many Machine
Learning methods

• Students capable of making intelligent decisions about
what methods (if any) would be appropriate for specific
problems

• Understanding of core issues associated with particular
problems

• Possibly develop own methods for specific applications
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Structure of Course

• Two lectures each week, lecture notes posted on course
website
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Structure of Course

• Two lectures each week, lecture notes posted on course
website

• Laboratory & Tutorial session on Friday afternoon

• Matlab environment being used - rapid implementation
of methods and algorithms - many requiring a couple of
lines of code - allows students to focus on study of
issues surrounding performance of ML methods - rather
than implementation issues

• Students strongly advised to attend all lectures &
laboratories and to keep up with material as delivered
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Structure of Course

• Module Website
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Structure of Course

• Module Website

• http://www.dcs.gla.ac.uk/ giro-
lami/Machine Learning Module 2006/index.htm

• Lecture notes, Laboratory sheets, Tutorial sheets,
snippets of Matlab for each lecture session

• Links to some useful resources for the module

Lecture One January 9, 2006 – p. 16/18

h


Assessment

• Practical Assignment 20% total marks
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Assessment

• Practical Assignment 20% total marks

• Assignment issued Monday 30th January, to be handed
NO LATER THAN Friday 17th March

• Exam 80% of available marks, 3 questions from 6, 2
sections at least one q from each

• Enjoy..........
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