
Machine Learning Module

Week 2

Lecture Notes 3 & 4

Generalisation & Overfitting

Mark Girolami
girolami@dcs.gla.ac.uk

Department of Computing Science
University of Glasgow

January 5, 2006

1

1 Generalisation and Overfitting

In the laboratory session last week we saw how the Mean Squared Error
(MSE) computed on the training set deviated from the MSE achieved on the
test set for various model orders. The trend was that as the model complexity
increased the training error decreased. There was however no such simple
relation with the test error and it was observed that there was a model order
for which the test error was a minimum with more or less complex models
achieving higher test errors. In other words if we employ too simple a model
then poor predictions will be made but if we use too complex a model the
quality of our predictions will also be adversely affected. This week we will
look at the underlying mechanisms which cause this phenomenon and we will
be introduced to methods which allow us to estimate what our predictive
performance or test error will be when no independent test data is available.

So far no assumptions regarding the manner in which the data is naturally
distributed have been made, in this section however, we will begin to motivate
such assumptions so that we can assess the possible performance that we can
expect of our models.

As we have seen what is of importance in our models is how well they
will predict the outcomes of new events, in our previous example the winning
distance in the Olympic Long Jump. We do not stand to make much money
by developing a model that can tell us with great accuracy what the winning
distances were over the last 100 years, what will be of real value is to have
a model that will provide good predictions of new and unseen events. In
this sense we require a model that can generalise its performance beyond
the available examples used for training. Consider again our averaged Loss-
Function defined as

1

N

N∑

n=1

L(tn, f(xn;w)) (1)

Now for any data modeling problem each input-output pair (xn, tn) can
be assumed to follow a natural distribution which makes it more likely to
observe certain input-output pairs than others in which case we can say that
there is a Probability Distribution p(x, t) which characterizes how likely it
is to see (measure) any particular pair (x, t). Without exception in real
data modeling this distribution will be unknown, if it were, then we could
make optimal predictions based on the true distribution of what will ever be

2

observed. Life is not so simple.
Ideally what we would like to be able to do would be to minimise the

average loss over all the possible input-output pairs that could possibly be
observed. In other words we want to minimise the Expected Loss1 under
the distribution p(x, t) such that

E{L} =

∫ ∫
L(t, f(x;w))p(x, t)dxdt

As we have N examples drawn from p(x, t) we can estimate the expected
loss with the sample average Equation (1) which is often referred to as the
Empirical Loss. So as the empirical loss is a sample estimate of the expected
loss it is quite appropriate to seek to minimise this estimate as a surrogate
for the expected loss.

2 Bias-Variance Decomposition

The expected squared error loss can be rewritten so that we can gain insight
regarding the source of our modeling errors and as such this section will be
devoted to what is referred to as the Bias-Variance decomposition in the
machine learning literature.

We assume that the true model for our data is linear i.e. w0 + w1x. Let
us also assume that we had an infinite amount of data i.e. N → ∞ then the
MSE, which is based on a sample of data drawn from p(x, t), will tend to
the expected loss as follows. We denote [1 x]T as x in what follows.

lim
N→∞

1

N

N∑

n=1

|tn − f(xn;w)|2 =

∫ ∫
|t − f(x;w)|2p(x, t)dxdt

=

∫ ∫
|t − wTx|2p(t|x)p(x)dxdt

1The Expectation operator is defined as the population average of a function which
for a continuous (real) random variable X which takes on values x ∈ R with probability
density p(x) is defined as E{f(X)} =

∫
f(x)p(x)dx. For example the expected value or

population average of X is E{X} =
∫

xp(x)dx. If X takes on a number of K discrete

values (X = xk) then E{X} =
∑

K

k=1
xkP (xk)

3

Now if we differentiate the expected loss with respect to the parameters
w = [w0 w1]

T and solve for w then we obtain

2

∫ ∫
(tx − xxTw)p(t|x)p(x)dxdt = 0

Now
∫ ∫

txp(t|x)p(x)dxdt is simply the expected value of the cross term tx

under the distribution p(x, t) and so gives a description of how the inputs

x and the outputs t are correlated with each other, in other words it is a
measure of their cross-covariance and will be denoted by E{TX}, where the
upper case is used to denote that these are random variables as opposed to
the values which they may take on i.e. t & x. Likewise the right hand term
is

∫ ∫
xxTwp(t|x)p(x)dxdt =

∫
p(t|x)dt

∫
xxTwp(x)dx

= 1 ×
∫

xxTp(x)dx w

=

∫ [
1 x

x x2

]
p(x)dx w

=

[
1 E{X}

E{X} E{X2}

]
w

= E{XXT} w

Therefore in the limit of an infinite amount of data the true model para-
meters are obtained from

w =
(
E{XXT}

)−1
E{TX} (2)

and comparing with the Least-Squares estimate we can see how ŵ is an
estimate of w based on the sample of data available. We would then expect
to apportion some of the error observed to the sample based approximations
to the expectations appearing in the above equation.

Consider the error made at a particular point x∗

∫
|t − f(x∗;w)|2p(t|x∗)dt

differentiating with respect to f(x∗;w) and setting to zero we find that

f(x∗;w)

∫
p(t|x∗)dt = f(x∗;w) =

∫
tp(t|x∗)dt = E{T |x∗} (3)

4

So the best function estimate, in terms of expected squared error loss at a
point x∗ is given by the conditional expectation E{T |x∗} in other words the
expected value of t given that the input equals x∗. So this is the best that
we can do. Now back to the expected loss,

∫ ∫
|t − f(x;w)|2p(t|x)p(x)dxdt,

which can be written as follows

∫ ∫
|t + E{T |x} − E{T |x} − f(x;w)|2p(t|x)p(x)dxdt =

∫ ∫
|t − E{T |x}|2p(t|x)p(x)dxdt +

∫ ∫
|E{T |x} − f(x;w)|2p(t|x)p(x)dxdt −

2

∫ ∫
|E{T |x} − f(x;w)||t − E{T |x}|p(t|x)p(x)dxdt

It is straightforward to see that the third term above equals zero as

2

∫ ∫
|E{T |x} − f(x;w)||t − E{T |x}|p(t|x)p(x)dxdt =

2

∫ ∫
|t − E{T |x}|p(t|x)dt|E{T |x} − f(x;w)|p(x)dx =

2

∫
|E{T |x} − E{T |x}||E{T |x} − f(x;w)|p(x)dx = 0

Likewise the first term can be written as
∫ ∫

|t − E{T |x}|2p(t|x)p(x)dxdt =
∫ ∫ (

t2 + E2{T |x} − 2tE{T |x}
)
p(t|x)p(x)dxdt =

∫ (
E{T 2|x} + E2{T |x} − 2E2{T |x}

)
p(x)dx =

∫ (
E{T 2|x} − E2{T |x}

)
p(x)dx

This expression gives the variance of the output (target) around the con-
ditional mean value (which is the best estimate of the target value) and
characterizes the intrinsic noise in the data and therefore the uncertainty in

5

E{T|x*}

t

xx*

p(t|x*)

f(x; w)

Figure 1: Diagram illustrating the irreducible component of error. The true
function to be estimated is f(x;w) and the best estimate in the mean square
sense is the conditional mean E{T |x∗} however we also see that the condi-
tional distribution p(t|X∗) will have a finite variance E{T 2|x∗} − E2{T |x∗}
which contributes to the overall error.

the target value estimates, which like taxes and death cannot be avoided. A
little diagram is given below to illustrate this component of the overall error.

The second term,
∫ ∫

|E{T |x}− f(x;w)|2p(t|x)p(x)dxdt, now needs fur-
ther consideration. This can be considered as an approximation error as it
measures the mismatch between our model parameters identified with an
infinite amount of data and the parameters estimated from a finite sample.

Now the parameters of the model f(x;w) are estimated from a particular
data set D = (xn, tn)n=1,··· ,N and if we repeated our experiment or measure-
ments2 and obtained another data set D′ then our function estimate would
differ somewhat from that obtained from data set D. If there were a sam-
pling distribution for our data sets P (D) then the expected value of our
estimated function would be the model of choice i.e.

∫
f(x;w)P (D)dD =

EP (D){f(x;w)}.
2It of course may not be possible to repeat an experiment or make a repeat observation,

take the Olympic Games Long Jump example, we won’t be seeing a re-run of any of the
events held over the last hundred years. In cases like this it seems nonsensical to talk about
collections of repeated observations, however the Bayesian approach to such problems has
no problems in this respect and we shall be looking at this methodology in later lectures.

6

Let’s just recap here and note that each f(x;w) is estimated from a data
set D via the least squares estimator. Therefore averaging our models over
multiple data sets ensures that we have, on average over data sets, a mean-
square optimal model. So back to the second term in our error criterion, we
can employ the same trick as previous and so

∫ ∫
|E{T |x} − f(x;w)|2p(t|x)p(x)dxdt =

∫ ∫
|E{T |x} − EP (D){f(x;w)} + EP (D){f(x;w)} − f(x;w)|2p(t|x)p(x)dxdt =

∫ ∫
|E{T |x} − EP (D){f(x;w)}|2p(t|x)p(x)dxdt +

∫ ∫
|EP (D){f(x;w)} − f(x;w)|2p(t|x)p(x)dxdt −

2

∫ ∫
|E{T |x} − EP (D){f(x;w)}||EP (D){f(x;w)} − f(x;w)|p(t|x)p(x)dxdt

Now we average this over all possible data sets and we find that, as before
the third term is zero and all that remains is∫

|E{T |x} − EP (D){f(x;w)}|2p(x)dx +
∫

EP (D)

{
|EP (D){f(x;w)} − f(x;w)|2

}
p(x)dx

Note that the expectation does not appear in the first term as it is indepen-
dent of data set and as both terms are independent of the target values then∫

p(t|x)dt = 1 thus the integral with respect to t drops out. At long and
weary last we can now look at the overall expression for the expected loss
and here we also take expectations with respect to the data sets.

∫ ∫
EP (D){|t − f(x;w)|2}p(t|x)p(x)dxdt =

∫ (
E{T 2|x} − E2{T |x}

)
p(x)dx + (4)

∫
|E{T |x} − EP (D){f(x;w)}|2p(x)dx + (5)

∫
EP (D)

{
|EP (D){f(x;w)} − f(x;w)|2

}
p(x)dx (6)

7

As discussed previously the first term above defines the irreducible er-
ror caused by noise in the observations. The second expression is referred
to as the square of the bias. This gives a measure of structural miss-match
between the model and the underlying data generating process or function.
Adopting a functional class for our model which is too simple, in other words
it is insufficiently flexible and expressive, will mean that the averaged esti-
mate EP (D){f(x;w)} will be biased away from the conditional-mean E{T |x}.
Now the bias can be reduced by employing appropriately expressive func-
tional classes so we have a lever which we can adjust to reduce our overall
loss. However the third term is referred to as the variance and this gives a
measure of how much our predictions between data sets will vary. This is
something which we must control carefully as highly variable predictions are
unreliable. Whilst a more complex model will reduce the bias there may be a
corresponding increase in the variance and it is this trade-off between the two
competing criteria that is the focus of much attention in devising predictive
models for real applications.

2.1 Illustrative Toy Example

We now try out the theory presented on an example. Assume that we are
able to make noisy measurements of a function which is defined as a simple
polynomial of order three such that f(x;w) = 5x3 − x2 + x and so w =
[0 1 − 1 5]T. Now x is randomly sampled with uniform probability over
the limited range from -5 to +5, we denote this as x ∼ U(−5, +5) and reads
as ’x is uniformly distributed in the range -5 to +5’, so p(x) = U(−5, +5).
Now to inject some realism into our playtime our measurements actually have
noise on them such that our target values t are actually a noisy realisation of
the function of interest i.e. t(x) = f(x;w)+ε. The noise ε will be distributed
with a Gaussian distribution3 such that ε ∼ N (0, 50). We will employ a linear
model of the form

∑K

k=0 wkx
k and varying values of K will be considered.

We will estimate the bias
2 and variance for this model by using sample

averages for the required expectations. Let’s start with the expression for
bias

2 =
∫
|E{T |x}−EP (D){f(x;w)}|2p(x)dx, now we draw 1000 test samples

from p(x) and use these samples to compute the sample average so that
1

1000

∑N

n=1 |E{T |xn} − EP (D){f(xn;w)}|2 ≈ bias
2. We require E{T |xn} for

3The Gaussian probability density for a single variable is defined as p(x) =
1

√

2πσ
exp

(
− 1

2σ2 |x − µ|2
)

and is denoted in shorthand as Nx(µ, σ).

8

each xn, and being in the fortunate, and highly unlikely, position of knowing
the actual true function then we can compute E{T |xn} = 5x3

n−x2
n+xn so we

are making progress. The final element we need for our estimate of bias
2 is

EP (D){f(xn;w) and this can be easily obtained by drawing 100 data samples
(Dm)m=1,··· ,100, where each sample Dm comprises of 50 training sample pairs

(xl, tl)l=1,··· ,50, and these are used to obtain the corresponding least-squares
estimate ŵ(m) for each sampled data set. With these we can then obtain
the estimate EP (D){f(xn;w) ≈ 1

100

∑100
m=1 f(xn;w(m). These can then be

plugged together to obtain our estimate of the bias
2.

The same procedure can be followed to obtain the estimate of variance

and follows as below.

∫
EP (D)

{
|EP (D){f(x;w)} − f(x;w)|2

}
p(x)dx ≈

1

1000

1000∑

n=1

1

100

100∑

m=1

(
1

100

100∑

l=1

f(xn;w(l)) − f(xn;w(m))

)2

A simple implementation of the above procedure in Matlab yields the
bias

2 & variance estimates for polynomial models of order K = 1 to K = 8
(Figure 2). The theory predicts that as the model becomes more flexible the
bias

2 will decrease however there is a corresponding increase in the variance

of the models, giving an estimate of the overall expected loss which finds a
minimum at a model complexity of K = 3, which happily is the correct order
of the actual function being estimated.

Before we sit back feeling that this little piece of analysis provides us with
a means of assessing the predictive performance of models of varying orders of
representational complexity, lets have a brief sanity check. The bias-variance
decomposition is an important theoretical analytic tool as it demonstrates
that despite more complex models being able to better describe the available
data the variation, in terms of generalisation capability, (how will predic-
tions made on new and previously unseen data be adversely affected by this
flexibility?) will increase. Given that in real modeling situations the chances
that the true model lies in the functional class selected (we have been using
the additive polynomial class so far) are almost negligble it is then clear that
driving the model bias as low as possible is clearly an unwise strategy to fol-
low. The Least-Squares estimator happens to be an unbiased estimator and

9

2 4 6 8
0

2000

4000

6000

8000

10000

B
ia

s2

2 4 6 8
0

1000

2000

3000

4000

5000

Polynomial Order

V
ar

ia
nc

e

2 4 6 8
0

2000

4000

6000

8000

10000

12000

B
ia

s2 +
 V

ar
ia

nc
e

Figure 2: The leftmost plot shows the estimated bias
2 for a polynomial model

indexed on the horizontal axis by polynomial order, the middle plot shows
the corresponding estimated variance, whilst the rightmost plot gives the
cumulative effect of both bias

2 + variance. The details to note are that as the
complexity of the model increase the bias

2 continually decrease providing an
increasingly superior fit to the data. On the other hand the variance increase
with model complexity with the net effect being that the minimum of bias

2

+ variance (the expected loss minus the constant term) is achieved at K = 3
which is the correct complexity for the function being approximated.

indeed of all unbiased estimators it is the one with the smallest variance4.
This of course makes the rather huge assumption that the model structure is
correct and in most applications within Machine Learning this is very seldom
the case5.

The main problem with the practical use of the bias-variance decompo-
sition is that it cannot really be used in practice as we do not have access to
the true function nor do we have any way of sampling from p(x, t) or P (D)
as these are also unknown. However, there is a technique which provides
an estimate of model performance on unseen data that is straightforward to
implement and of great practical importance and usefulness and we present

4The famous Gauss-Markov theorem proves that the Least-Squares estimator is BLUE
- Best Linear Unbiased Estimator, proofs are fairly straightforward and if you are loosing
sleep regarding such a proof come and see me.

5George Box the chemist and statistician has said All Models are Wrong but Some are

Useful which then suggests that choosing unbiased BLUE estimators of model parameters
is perhaps not the wisest of choices. Further lectures will explore this point further.

10

this in the following section.

3 Cross-Validation

We require a measure of the expected loss to provide an indication of the gen-
eralisation ability of our predictive models and the empirical loss based on a
finite sample is a useful estimate of expected loss. As the previous section has
highlighted via the bias-variance decomposition increasing model complexity
will reduce model bias reflected in a lower training error. However the train-

ing error is obtained from the same data that is used for parameter estimation
and hence will provide an optimistic estimate of the achievable test error. A
number of methods have been proposed to provide a more pessimistic and
hopefully realistic indicator of test error such as the Akaike Information Cri-

terion (AIC), Minimum Description Length (MDL) and Vapnik-Chernovenkis

Dimension (VC). We will not focus on these methods as they are of limited
practical use, instead we will focus on the simplest and possibly most useful
method of estimating test error, that is cross-validation.

Cross-validation directly estimates the generalisation (test) error quite
simply by holding out a fraction of the available training data and using this
to obtain a prediction error. Computing a Leave-One-Out cross-validation
(LOOCV) error is quite simply computed as follows.

3.1 Leave-One-Out Cross Validation

Given a data set D = (x1, t1), · · · , (xN , tN) comprising of N input-target pairs
we remove one input and target pair, say (xi, ti) from the available sample
so creating the data sample D−i. We now use D−i to induce our learning
machine whatever it happens to be, at the moment the only learning machine
we have met is our Least-Squares based Linear Regression, in which case

ŵ−i =
(
XT

−iX−i

)−1
XT

−it−i

where the (N−1)×(K+1) matrix with the ith row removed is denoted by
X−i, the (N−1)×1 dimensional column vector with the ith element removed
is denoted by t−i and ŵ−i denotes our least-squares parameter estimate based
on the data sample D−i.

11

For the held-out input-target pair (xi, ti) we can compute the correspond-
ing loss L(ti, f(xi; ŵ−i)) which in our case here would be the squared-error
loss |ti − ŵT

−ixi|2 where xi is the ith row of X.
Now we can perform this procedure N times cycling through all the data

and leaving each one out in turn and so our LOO estimate of the generalisa-
tion error or expected loss will simply be

Lcv =
1

N

N∑

i=1

L(ti, f(xi; ŵ−i))

=
1

N

N∑

i=1

|ti − ŵT

−ixi|2

Cross-Validation is entirely general with regard to the loss function for
which it can estimate the expectation.

3.1.1 Experimental Demonstration

Fifty input-target pairs from a noisy third-order polynomial function are
sampled and these are used to learn a polynomial regression function. A
further 1000 input-target pairs are used as an independent test set with
which to compute the overall test error. In addition we use the LOOCV
estimator as described above to estimate the expected test-error. A range
of polynomial orders are considered from order 1 (linear model) up to 10th
order (highly flexible model and for each model-order the training error, test
error and LOOCV error are computed.

The results are shown in Figure (3) and it can be seen that the training
error continues to decrease as the model complexity increases i.e. we are
obtaining a better fit to the training data which is a mixture of the underlying
functional response and the additive measurement noise. When we look at
the test error then it is clear that once the model becomes more flexible
there is corresponding decrease in test error followed by a slow increase as
we should now be expecting. However if we look at the LOOCV error then
we see that it tends to reflect the obtained test error at the various model
orders which is exactly what we would hope for. Note that the error-bars are
one standard error which is the standard deviation of the LOOCV estimate
divided by

√
N .

12

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Polynomial Order

M
S

E

Training Error
Test Error
LOOCV Error

Figure 3: The Training, Testing and Leave-One-Out error curves obtained
for a noisy cubic function where a sample size of 50 is available for training
and LOOCV estimation. The test error is computed using 1000 independent
samples.

So we now have a useful surrogate measure for expected loss in our
LOOCV and this is a tool which we shall make regular use of throughout the
rest of this course.

3.1.2 Computational Scaling & K-Fold Validation

The good news is that we have a means of estimating our expected test error
from the training data alone and this provides a useful way to explore and
assess various alternative models for a particular prediction task. However,
let us have a look at a simple Matlab function for computing the LOOCV
error for a Least-Squares linear regression model.

13

function [cv_err, cv_std] = cross_val(x,f)

N = size(x,1);

CV = [];

for n=1:N

X = x;

t = f;

X(n,:) = [];

t(n) = [];

Xt = x(n,:);

tt = f(n);

w_hat = inv(X’*X)*X’*t;

f_t = Xt*w_hat;

CV = [CV; (f_t - tt).^2];

end

cv_err = mean(CV);

cv_std = std(CV);

The first thing to note is that we are looping N times and within the
loop we have to perform our training method which in this case is obtaining
the Least-Squares solution which requires a matrix inversion that scales as
O((K + 1)3) where K + 1 is the dimension of the matrix being inverted.
Matrix multiplications will contribute O(N(K + 1)2 + 2N(K + 1)3) scaling
so the overall dominant scaling for LOOCV is O(N 2(K + 1)3). As either K

or N become large we can see that LOOCV can become rather expensive
computationally. Indeed some of the methods which we will meet later in
the course are dominated by O(N 3) scaling where N is the training set size
so LOOCV for these methods will cost a staggering O(N 4).

To alleviate this problem somewhat rather than using leave-one-out we
can leave out 10% of the data as test data and use the remaining 90% for
training, this means that only 10-folds of the data and so 10 training repeats
are required which will be far less costly than 1% & 99% data splits.

14

