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Cluster Analysis

• Data Segmentation

• K-Means Clustering Algorithm

• Kernel Based K-Means Clustering Algorithm

• Relation with EM Algorithm

• Image Segmentation Examples
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Cluster Analysis

• What does this scatter plot tell you?
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Figure 1: A sample of 200 examples of objects described by two attributes. Each

dot represents a sample as defined by attribute 1 & 2, it should be obvious that there

appears to be two groupings of objects which each share and internal cohesiveness and

are somewhat separated from each of the other groups.
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Cluster Analysis

• Cluster analysis aims to identify coherent structures in
data
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Cluster Analysis

• Cluster analysis aims to identify coherent structures in
data

• How is coherence of groupings to be measured?

• How are coherent groupings to be identified?

• Simple algorithm - K-Means clustering

• Direct connection with EM algorithm
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K-Means Algorithm

• Data points xn ∈ R
D
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K-Means Algorithm

• Data points xn ∈ R
D

• Assume at most K possible groupings or clusters

• Binary indicator variables associated with each data
point and cluster zkn ∈ {0, 1}

• Similarities with density estimation

• Less complex as no function is required
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Cluster Quality

• Measure of internal cohesiveness of the points allocated
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Cluster Quality

• Measure of internal cohesiveness of the points allocated

• How close points are to the cluster average

• Define a measure of cluster compactness as the total
distance from the cluster mean in other words

∑

xn∈Ck

||xn − mk||
2 =

N
∑

n=1

zkn||xn − mk||
2

where the cluster mean is defined as

mk =
1

Nk

∑

xn∈Ck

xn

and Nk =
∑N

n=1
zkn is the total number of points

allocated to cluster K Lecture Thirteen February 27, 2006 – p. 6/2



Cluster Quality

• The total goodness of the clustering will then be based
on the sum of the cluster compactness measures for
each of the K clusters. Using the indicator variables zkn

then we can define the overall cluster goodness as

EK =
N

∑

n=1

K
∑

k=1

zkn||xn − mk||
2

So we have our overall measure of cluster quality the
next step is to devise an algorithm which will allow us to
optimise this.
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Criterion Optimisation

• Two sets of parameters - the cluster mean values mk

and the cluster allocation indicator variables zkn
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Criterion Optimisation

• Two sets of parameters - the cluster mean values mk

and the cluster allocation indicator variables zkn

• Optimise our criterion over each set of variables by
holding one set fixed - similar to EM

• Given current zkn optimal value of mean vectors mk

simply the estimates based on data points allocated to
each cluster

• Therefore given each zkn we obtain our K-means by

mk =

∑N
n=1

zknxkn
∑N

n′=1
zkn′
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Criterion Optimisation

• Now given each of our new mk we need to update the
values of our indicator values zkn.
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Criterion Optimisation

• Now given each of our new mk we need to update the
values of our indicator values zkn.

• From the expression for EK we can see that each xn

should be assigned to the cluster k for which it has the
shortest distance to the cluster centre

• That is ||xn −mk||
2 is the smallest for all values of

k = 1 · · ·K

• So zkn = 1 for k which yields the minimum of
||xn − mk||

2
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Criterion Optimisation

• Once these values have been redefined then we can go
back and revise our estimates of each mk and continue
this iteration until EK converges to some steady value.
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Criterion Optimisation

• Once these values have been redefined then we can go
back and revise our estimates of each mk and continue
this iteration until EK converges to some steady value.

• This is very simple algorithm and is the K-Means
Clustering algorithm for which a simple Matlab
implementation is available for download form the class
website.

Lecture Thirteen February 27, 2006 – p. 10/2



Illustration

• Image of a ’wee dog’ looking out to sea
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• Image of a ’wee dog’ looking out to sea

• Image is a small 100 × 100 colour JPG thumbnail and
we can represent each pixel in the image as a
three-dimensional vector corresponding to the Red,
Green & Blue channels of the JPEG image

• Segment the image into self consistent regions
corresponding to the background or foreground (i.e. the
dog) then we need to cluster the pixels together based
on their Red, Green & Blue representations
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Illustration

• Image of a ’wee dog’ looking out to sea

• Image is a small 100 × 100 colour JPG thumbnail and
we can represent each pixel in the image as a
three-dimensional vector corresponding to the Red,
Green & Blue channels of the JPEG image

• Segment the image into self consistent regions
corresponding to the background or foreground (i.e. the
dog) then we need to cluster the pixels together based
on their Red, Green & Blue representations

• Employ K-Means to segment image
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Illustration
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Figure 2: The image of a dog looking out to sea, the right hand image shows the

areas of the original image which have been allocated to one of four possible clusters. We

have managed to segment the image based on the regions corresponding to water, grass,

road, dog
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K-Means Issues

• The converged solution will vary with initial conditions
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K-Means Issues

• The converged solution will vary with initial conditions

• The algorithm relies on a value of K being supplied by
user

• As we shall see later K-Means relies on splitting feature
space using linear hyper-planes

• Nonlinear feature dependencies exist then K-Means will
fail.
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K-Means Issues
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Figure 3: The data is generated such that two consistent clusters both share

the same mean but are distributed as a Gaussian cloud and uniformly within a unit

width annulus centered at the origin. The left hand plot shows the clustering using the

standard K-Means algorithm. It fails to obtain a reasonable clustering. The right hand

plot shows the clustering obtained by using Kernel K-Means clustering. A more sensible

segmentation of the data is obtained.

Lecture Thirteen February 27, 2006 – p. 14/2



Kernel K-Means

• The clustering criterion upon which the K-Means
algorithm is based is can be written as follows

EK =

N
∑

n=1

K
∑

k=1

zkn||xn − mk||
2

=
N

∑

n=1

K
∑

k=1

zkn(xn − mk)
T(xn − mk)

=
N

∑

n=1

K
∑

k=1

zkn

(

x
T
nxn − 2mT

k xn + m
T
k mk

)
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Kernel K-Means

• Note that

m
T
k xn =

1

Nk

N
∑

m=1

zkmx
T
mxn
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Kernel K-Means

• Note that

m
T
k xn =

1

Nk

N
∑

m=1

zkmx
T
mxn

• and

m
T
k mk =





1

Nk

N
∑

p=1

zkpxp





2

=
1

N2

k

N
∑

p=1

N
∑

l=1

zkpzklx
T
p xl
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Kernel K-Means

Eφ
K =

N
∑

n=1

K
∑

k=1

zkn||φ(xn) − m
φ
k
||2

=
N

∑

n=1

K
∑

k=1

zkn







φ(xn)Tφ(xn)−
2

Nk

∑N
m=1

zkmφ(xm)Tφ(xn)+
1

N2

k

∑N
p=1

∑N
l=1

zkpzklφ(xp)
Tφ(xl)







=

N
∑

n=1

K
∑

k=1

zkn







K(xn,xn)−
2

Nk

∑N
m=1

zkmK(xm,xn)
1

N2

k

∑N
p=1

∑N
l=1

zkpzklK(xp,xl)







=
N

∑

n=1

K
∑

k=1

zknδkn
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Kernel K-Means

• The first point to notice is that the clustering criterion
can be written solely in terms of the kernel functions
computed at each of the data point pairs
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updating of cluster mean values of required
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Kernel K-Means

• The first point to notice is that the clustering criterion
can be written solely in terms of the kernel functions
computed at each of the data point pairs

• An algorithm can be developed which only requires the
step of updating the indicator variables zkn as no explicit
updating of cluster mean values of required

• An implementation of Kernel K-means clustering is
available at the course website.

• Now we have a kernel-based clustering method which
will allow us to segment our data in a nonlinear manner -
(hoop & blob)
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Kernel K-Means

• We have generalised our K-means algorithm to a more
flexible representation which takes account of nonlinear
relationships
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Kernel K-Means

• We have generalised our K-means algorithm to a more
flexible representation which takes account of nonlinear
relationships

• There is, of course, a small price to pay for this flexibility

• The kernel function used may well have a parameter (or
a number of parameters) of its own - which will need to
be chosen in some way - so we have added an additional
layer of parameters into our representation
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Kernel K-Means

• We have generalised our K-means algorithm to a more
flexible representation which takes account of nonlinear
relationships

• There is, of course, a small price to pay for this flexibility

• The kernel function used may well have a parameter (or
a number of parameters) of its own - which will need to
be chosen in some way - so we have added an additional
layer of parameters into our representation

• This weeks laboratory session will explore these two
forms of clustering in some detail
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EM & K-Means Clustering

• In Week 6 we developed an EM algorithm for a Gaussian
Mixture model. Lets have another look at this algorithm
and make some simplifying assumptions
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EM & K-Means Clustering

• In Week 6 we developed an EM algorithm for a Gaussian
Mixture model. Lets have another look at this algorithm
and make some simplifying assumptions

• Assume that the covariance for each mixture component
is simply an identity matrix which is fixed

• There is no need to estimate the covariance matrices as
these are set

• Now lets think of the posterior probabilities of data
points being allocated to a Gaussian component
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EM & K-Means Clustering

• Now lets think of the posterior probabilities of data
points being allocated to a Gaussian component

• In this case ( where each Σk is an identity then in the
E-step each

E{zkn} = P (k|xn) ∝ exp

(

−
1

2
||xn −mk||

2

)
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EM & K-Means Clustering

• Now lets think of the posterior probabilities of data
points being allocated to a Gaussian component

• In this case ( where each Σk is an identity then in the
E-step each

E{zkn} = P (k|xn) ∝ exp

(

−
1

2
||xn −mk||

2

)

• The M-step boils down to

mk =

∑N
n=1

P (k|xn)xn
∑N

m=1
P (k|xn)
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EM & K-Means Clustering

• If we make a hard decision about the expected value of
zkn based on the maximum of posterior we should be
able to see that the maximum posterior corresponds to
the minimum of ||xn − mk||

2 which is exactly what we
are doing in K-means
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zkn based on the maximum of posterior we should be
able to see that the maximum posterior corresponds to
the minimum of ||xn − mk||

2 which is exactly what we
are doing in K-means

• So if we choose zkn based on the maximum posterior our
M-step is precisely the cluster centre updates for
K-means clustering
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EM & K-Means Clustering

• If we make a hard decision about the expected value of
zkn based on the maximum of posterior we should be
able to see that the maximum posterior corresponds to
the minimum of ||xn − mk||

2 which is exactly what we
are doing in K-means

• So if we choose zkn based on the maximum posterior our
M-step is precisely the cluster centre updates for
K-means clustering

• K-Means clustering can be obtained directly from the
EM algorithm from a mixture of unit radius spherical
Gaussians where at the E-step a hard decision about
component membership is made
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