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Mercer Kernel-Based Clustering in Feature Space

Mark Girolami

Abstract—This letter presents a method for both the unsupervised parti-
tioning of a sample of data and the estimation of the possible number of in-
herent clusters which generate the data. This work exploits the notion that
performing a nonlinear data transformation into some high dimensional
feature space increases the probability of the linear separability of the pat-
terns within the transformed space and therefore simplifies the associated
data structure. It is shown that the eigenvectors of a kernel matrix which
defines the implicit mapping provides a means to estimate the number of
clusters inherent within the data and a computationally simple iterative
procedure is presented for the subsequent feature space partitioning of the
data.

Index Terms—Data clustering, data partitioning, unsupervised learning.

I. INTRODUCTION

The unsupervised partitioning of a sample of data observations
into self-similar regions forms a significant area of research effort.
As it has been noted that many data sets have ellipsoidal clustered
structure “sum-of-squares” based methods of partitioning have proved
to be effective [4]. Clustering using Gaussian mixture models is also
extensively employed for exploratory data analysis. However, in
certain cases the number of Gaussian mixtures required to reasonably
model the data density far exceeds the natural number of clusters in
the data. This is of course the case when the clusters themselves are
non-Gaussian [7].

For the purposes of classification the problem of nonlinear separa-
bility of classes can be circumvented by mapping the observed data to
a higher dimensional space in a nonlinear manner so that each cluster
for each class unfolds into a simple form. This is the basis for non-
linear classification techniques such as radial basis function networks,
support vector (SV) machines [11], and certain forms of nonlinear dis-
criminant analysis [9]. If the nonlinear mapping is smooth and contin-
uous then the topographic ordering of the data in observation space will
be preserved in feature space, so that points clustered together in data
space will necessarily be clustered in feature space. It is therefore of
interest to consider the further notion of unsupervised data clustering
in a feature space which preserves the inherent data groupings and in
addition simplifies the associated structure of the data.

Section II reconsiders sum-of-squares clustering in data space while
Section III presents the clustering of data in a nonlinear feature space.
Section IV of this paper considers how the block diagonal structure of
a kernel matrix can be exploited in estimating the number of inherent
clusters within a data sample. Section V provides some demonstrative
simulations and Section VI provides conclusions and discussion.

II. A D ATA-SPACE CLUSTERING CRITERION

The sum-of-squares cost for a sample of data forms the basis for a
number of clustering methods [4], [1]. Given a finite set of observations
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of datum vectorxn; n = 1; . . . ; N wherexn 2 RD and givenK
cluster centers the within-group scatter matrix is defined as

SW =
1

N

K

k=1

N

n=1

zkn(xn �mk)(xn �mk)
T (1)

where the center for each group is defined asmk =
N�1
k

N

n=1
zknxn andNk = N

n=1
zkn. The variablezkn indicates

the membership of datumxn to clusterk, i.e.,zkn = 1 if xn 2 Ck
and 0 otherwise. One of the sum-of-squares criteria employed for
central clustering is the trace of the within-group scatter matrix
Tr(SW ). This measure implicitly imposes the assumption of
hyper-spherical clusters which is inherent in methods such as the
K-means algorithm [4]. TheK � N indicator matrixZ is such that
each element is either of two values 1 or 0, such thatzki 2 f0; 1g
8 k, i and K

k=1
zki = 1 8 i. The optimal partitioning of the data

sample is achieved by the following optimization:

Z = argmin
Z

Tr(SW ): (2)

Methods such as theK-means algorithm and its many variants are used
in the optimization of the above data space sum-of-squares clustering
criterion [4]. If the separation boundaries between clusters is nonlinear
then sum-of-squares methods such asK-means will fail. Semipara-
metric mixture-decomposition methods such as the recently developed
maximum-certainty partitioning [7] have been proposed to deal with
the problem of non-Gaussian clustered data. An alternative approach to
solving this problem is to adopt the strategy of nonlinearly transforming
the data into a high-dimensional feature space and then performing the
clustering within this feature space. However as the feature space may
be of high and possibly infinite dimension then directly working with
the transformed variables is an unrealistic option. However, as has been
exploited in the kernel principal component analysis (KPCA) method
of feature extraction it is unnecessary to work directly with the trans-
formed variables [10]. It is the inner-products between points which are
used and these can be computed using a kernel function in the original
data space. This observation provides for a tractable means of working
in the possibly infinite feature spaces [11], [10]. We now develop the
feature space sum-of-squares clustering method in the following sec-
tion.

III. FEATURE SPACE CLUSTERING

The implicit assumption of hyper-spherical or hyper-ellipsoidal clus-
ters is often restrictive and, similar to classification problems, a non-
linear mapping into some higher dimensional space which will provide
linear separation of classes is desirable [11]. Consider then a smooth,
continuous nonlinear mapping from data space to feature spaceF such
that

�: RD �! F x 7! X:

Denoting the within-group scatter matrix in feature spaceF asS�W
then the trace of the feature space scatter matrix is given by

Tr S�W =Tr
1

N

K

k=1

N

n=1

zkn �(xn)�m
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k �(xn)�m
�

k

T

=
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zkn �(xn)�m
�

k

T

�(xn)�m
�

k : (3)

The cluster center in feature space is now denoted by the following
expressionm�

k = N�1
k

N

n=1
zkn�(xn). It is interesting, and fortu-
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itous, to note thatTr(S�W ) takes the form of a series of dot products in
feature space. As noted in the previous section these feature space dot
products can easily be computed using Mercer kernel [11], [10] repre-
sentations in data spacek(xi; xj) = �(xi):�(xj). In other words by
employing a specific kernel function the dot product which it returns
implicitly defines the nonlinear mapping� to the feature space [11],
[10]. The feature space sum-of-squares criterion can now be written
solely in terms of elements of the symmetricN�N kernel matrixK =
fKijgi=1; ...;N; j=1; ...;N whereKij = k(xi; xj) � �(xi):�(xj)
andKij = Kj i

Tr S�W =
1

N

K

k=1

N

n=1

zknykn (4)

where

ykn = Knn �
2

Nk

N

j=1

zkjKnj +
1

N2
k

N

i=1

N

l=1

zkizklKil: (5)

By defining the following terms
k = Nk=N and,R(xjCk) =
N�2k

N

i=1

N

j=1
zkizkjKij where the notationR(xjCk) denotes

the quadratic sum of the elements which have been allocated to the
kth cluster, then some straightforward manipulation of (4) yields

Tr S�W =
1

N

K

k=1

N

n=1

zknKnn �

K

k=1


kR(xjCk): (6)

For kernels which depend on the difference(xi � xj) then the first
term in (6) will be a constant, indeed for the widely used RBF kernel
k(xi; xj) = expf�(1=c)kxi�xjk

2g the first term equals unity thus
(6) reduces to

Tr S�W = 1�

K

k=1


kR(xjCk): (7)

The implicit assumption of hyper-spherical clusters in the
sum-of-squares criterion is now based on the feature space rep-
resentation of the data which is defined by the specific kernel chosen.
The RBF kernel implicitly defines an infinite dimensional feature
space, this particular kernel has been extensively adopted in many
studies of both classification [11] and unsupervised learning [10].

If we now consider the RBF kernel specifically it is straightforward
to see that as

k
zk = 1 then0 < R(xjCk) � 1. In addition as

k

k = 1 then K

k=1

kR(xjCk) � 1 in which case the minimiza-

tion ofTr(S�W ) requires the maximization of K

k=1

kR(xjCk). It is

worthy of note that for an RBF kernel the following approximation,
which was originally utilized in [2], holds due to the convolution the-
orem for Gaussians

x

p(x)2 dx �
1

N2

N

i=1

N

j=1

Kij : (8)

This being the case then

R(xjCk) =
1

N2
k

N

i=1

N

j=1

zkizkjKij �
x2C

p(xjCk)
2 dx:

So the term defined asR(xjCk) can be considered as a nonparametric
approximation to the integral

x2C
p(xjCk)

2dx defined over thekth
cluster. As already stated this was originally proposed in [2] as a mea-
sure of distribution compactness based on a nonparametric estimate of

the probability density of the data. So in this particular caseR(xjCk)
provides a measure of the compactness of thekth cluster as defined
above. This is in contrast to the Euclidean compactness measure de-
fined by the sum-of-squares error computed in the original data space
given by equation (2). The desired sum-of-squares clustering in a fea-
ture space defined by an RBF kernel is therefore represented by the
following nonlinear optimization problem:

Z = argmin
Z

Tr S�W = argmax
Z

K

k=1


kR(xjCk): (9)

What becomes clear is that feature space clustering achieved by em-
ploying a kernel representation of the data removes the implicit as-
sumption of hyper-spherical or ellipsoidal clusters in data space. For
the particular case of the popular and widely used RBF kernel then the
optimization of the feature space criterion given by equation (9) is re-
quired. In considering the optimization of the clustering criterion (9)
it is proposed that the following lemma, originally detailed in [3], is
utilized.

Lemma: If the restrictionzki 2 f0; 1g 8 k, i is relaxed to0 �
zki � 1 8 k, i, i.e.,zki 2 [0; 1] with the summation constraint holding
then the minimum of a sum of squares clustering criterion(Tr(SW ) or
Tr(S�W )) is achieved with a matrixZ which has elements zero or one
only.

The complete proof is given in [3]. This lemma also has a proba-
bilistic interpretation in that the maximum certainty partitioning of data
will only occur when the partition posteriors are zero or one [7]. This
important lemma provides for the use of stochastic methods in opti-
mizing clustering criteria based on a binary indicator matrix.

IV. STOCHASTIC OPTIMIZATION

Stochastic methods for optimizing clustering criteria over a set of bi-
nary indicator variables have been suggested in [1] and [3]. In [1], a sto-
chastic method for minimizing the clustering cost based on determin-
istic annealing was developed. Essentially the cost associated with the
overall cluster assignments of the data sample are considered as random
variables which have a Gibbs distribution. The expected values, with
respect to the Gibbs distribution, of the indicator variables are then esti-
mated in an iterative manner [1]. We define the following feature space
cost or distortionDkj = 1� (1=Nk)

N

l
zklKjl. The termDkj is the

distortion or penalty associated with assigning thejth datum to thekth
cluster in feature space. Note that due to the specific use of the RBF
kernel the term(1=Nk)

N

l
zklKjl can be viewed as a nonparametric

Parzen estimate of the conditional probability of thejth datum given
thekth cluster, i.e.,̂p(xj jCk). So the penalty or cost associated with
assigning thejth datum to thekth cluster in an RBF kernel defined
feature space is given asDkj = 1� p̂(xj jCk), thus highly improbable
points allocated to a cluster will increase the overall clustering cost.
Now for an RBF kernel the following holds:

Tr S�W =1�
1

N

N

j

K

k

zkj

N

l

zkl
Nk

Kjl

=
1

N

N

j

K

k

zkjDkj

and minimization of the feature space “sum-of-squares” criterion
Tr(S�W ) corresponds to minimization of N

j

K

k
zkjDkj .

For a general data space sum-of-squares errorEkn (a squared dis-
tance of datum pointn to cluster centerk) [1] the overall clustering
costTr(SW ) = N�1 N

n

K

k
zknEkn can be minimized using the
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(a) (b) (c) (d)

Fig. 1. (a) The scatter plot of 100 points, composed of 20 datums drawn from five compact and well separated spherical Gaussian clusters. The iso-contours
show the lines of constant value of1�D , light colors indicate high values whereas dark colors indicate low values. This was generated using an RBF kernel of
width 0.1. (b) This plot shows the value of the binary indicator variablesZ after convergence of the iterative routine to optimize the feature space sum-of-squares
clustering criterion. Each row corresponds to a cluster center and the individual data points, ordered in terms of cluster membership (purely for demonstrative
purposes) run along the horizontal axis. The bars indicate a value ofz . It can be seen that there are no cluster assignment errors on this simple data set. (c) The
contour plot of the 100� 100 kernel matrix clearly showing the inherent block structure. The specific ordering has been used merely for purposes of demonstration
and does not affect the results given by the proposed method. (d) The contribution to1 K1 from the most significant terms� f1 u g . It is most obvious
that only five terms contribute to the overall value thus indicating that there are five dominant generators within the data sample.

following iterative procedure, which is reminiscent of an expectation
maximization (EM) algorithm

hzkni =
exp(��Enew

kn )
K

k =1

exp(��Enew
k n

)

(10)

and eachEnew
kn = kxn � hmkik

2 is re-computed using the new esti-
mates of the expected values of the indicator variableshzkni where

hmki =

N

i=1

hzkiixi

N

j=1

hzkji :

The parameter� controls thesoftnessof the assignments during opti-
mization [1]. The reader should refer to [1] and the references therein
for a detailed exposition and derivation of the iterative optimization of
the central clustering criterion, (2), in data space. This can be straight-
forwardly used for the proposed feature-space criterion. Employing the
distance from the cluster center in feature space defined by (5) and
noting thatKnn = 1 for the RBF kernel some straightforward manip-
ulation yields

hzkni =
exp(��ynewkn )
K

k =1

exp(��ynew
k n

)

=
�k exp(�2�D

new
kn )

K

k =1

�k exp(�2�Dnew
k n

)

(11)

where

�k = exp �
�

hN2

k i

N

i=1

N

j=1

hzkiihzkjiKij

= expf��hR(xjCk)ig

and as such the following iterative procedure (and direct feature space
analogs of the data space method) will find a minimum ofTr(S�W )
[(4)]

hzkni =
�k exp(�2�D

new
kn )

K

k =1

�k exp(�2�Dnew
k n

)

and

Dnew
kn =1�

1

hNki

N

l=1

hzkliKnl: (12)

As the parameter� !1 then the assignments become hard such that
hzkni 2 f0; 1g, i.e., only takes the values zero or one, in which case

this becomes the standard batch form of theK-means algorithm in the
feature space defined by the RBF kernelK. Note that the term�k is
indicative of the compactness of thekth cluster.

The main point of this proposed method, and indeed most clustering
methods is a knowledge of the number of clustersK. The following
section proposes a means of estimating the possible number of clusters
within the data sample based on the kernel matrix created from the
sample of points.

V. ESTIMATING THE NUMBER OF CLUSTERSUSING THE KERNEL

MATRIX

Whereas in data space aD � N dimensional data matrix requires to
be manipulated for the optimization of the sum-of-squares criterion, the
feature-space counterpart now requires the manipulation of anN � N
dimensional symmetric kernel matrixK. As each element of the kernel
matrix defines a dot-product distance in the kernel defined feature space
the matrix will have a block diagonal structure when there are definite
groupings or clusters within the data sample. This can be clearly seen
with a simple example using a two-dimensional (2-D) sample of 100
datum points of which 20 points are each drawn from five spherical
Gaussians of variance 0.1 with mean valuesf0, 0; 0.7, 0.7;�0.7, 0.7;
0.7,�0.7;�0.7,�0.7g. Fig. 1(a) shows the plot of the data points, the
contours show the lines of constant1�Dkj value for an RBF kernel, i.e.,
one minus the feature space cost. It is also worth commenting that these
contours are also lines of estimated equiprobability. Fig. 1(c) shows the
structure of the 100� 100 kernel matrix using an RBF kernel of width
0.1. The block structure of the matrix is most apparent. It should be
stressed here that the ordering of the points in the figure is purely for
illustrative purposes. However, it is to be noted that the eigenvectors of a
permuted matrix are the permutations of the original matrix and there-
fore an indication of the number of clusters within the data may be
given from the eigenvalue decomposition of the kernel matrix.

As noted in the previous sections the following finite sample approx-
imation can be made

x
p(x)2 dx � (1=N2) N

i=1

N

j=1
Kij which

can be written in vector/matrix notation as1TNK1N where theN�1 di-
mensional vector1N has elements of value 1/N. An eigenvalue decom-
position on the kernel matrix givesK = U�U

T where the columns
of the matrixU are the individual eigenvectorsui of K and the diag-
onal matrix� contains the associated eigenvalues denoted as�i. Then
we can write

1
T
NK1N = 1

T
N

N

i=1

�iuiu
T
i 1N =

N

i=1

�i 1
T
Nui

2

: (13)
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(a) (b) (c) (d)

Fig. 2. (a) The scatter plot of the “Ring Data,” 100 samples from a uniform distribution centered at the origin and 100 samples uniformly drawn from an annular
ring. (b) The outcome of the clustering method showing that there are no partition errors. (c) The contour plot of the associated kernel matrix (RBF width of 1.0),
again note the block diagonal structure. (d) The contribution to1 K1 from the most significant terms� f1 u g . It is most obvious that only two terms
significantly contribute to the overall value thus indicating that there are two dominant generators within the data sample.

The final form of (13) indicates that if there areK distinct clustered re-
gions within theN data samples then there will beK dominant terms
�if1

T

Nuig
2 in the summation. Therefore this eigenvalue decomposi-

tion method provides a means of estimating the possible number of
clusters within the data sample.

It is noted that what has been termed the kernel or Gram matrix [10]
in this paper and within the neural computing research community is
often referred to as the affinity or proximity matrix within the domain
of machine vision research [6]. This affinity matrix is directly analo-
gous to the kernel matrix discussed herein. The segmentation of images
into, for example, foreground figures and background is attempted by
utilizing the first eigenvector of the affinity/proximity matrix of a par-
ticular image [6]. However, no use is made of subsequent eigenvectors
in determining the possible number of distinct areas of the image in a
manner akin to the cluster number determination method proposed in
this letter and so this may indeed be an interesting area of further in-
vestigation.

The notion of clustering a data set after it has been nonlinearly
transformed into a possibly infinite dimensional feature space has been
proposed. A stochastic method for minimizing the trace of the feature
space within-group scatter matrix has been suggested. In the case of
the feature space whose dot-product is defined by the RBF kernel
then a specific form of stochastic iterative update has been developed.
The sum-of-squares error in the RBF defined feature space can be
viewed as the loss defined by the estimated conditional probability of
the datum coming from a particular cluster. The possible number of
clusters within the data can be estimated by considering the terms of
the eigenvalue decomposition of the kernel matrix created by the data
sample. The following section provides some preliminary simulations
for demonstrative purposes.

VI. SIMULATIONS

To briefly demonstrate the feature space method presented, one toy
simulation is given along with some examples provided in [5] and [7].
Fig. 1 shows the results of applying the method to a simple clustered
set of data, both the estimation of the number of clusters and the re-
sultant partitioning highlights the effectiveness of this method. Fig. 2
shows the results of applying this method to the 2-D Ring data which
originally appeared in [7]. This data is particularly interesting in that
the mean (or prototype) vectors in data space for each class coincide.
By performing the clustering in a kernel defined feature space the pro-
totypes are therefore calculated in this feature space, which means that
they do not necessarily have a pre-image in input space [10]. The im-
plication of this is that the mean vectors in feature space may not serve
as representatives or prototypes of the input space clusters. Both the es-
timation of the number of data generators and the eventual partitioning
show the performance of the method on distinctly nonlinearly sepa-

rable and nonellipsoidal data. These results are identical to the max-
imum-certainty approach proposed in [7].

Three standard test data sets1 are employed in the following simu-
lation. The Fisher Iris data is a well-known data collection consisting
of four measurements from 50 samples of three varieties of Iris (Ver-
sicolor, Virginica, Setosa). One of the classes (clusters) is linearly sep-
arable from the other two, while the remaining two are not linearly
separable. Fig. 3 shows both the clustering achieved and the estimated
number of clusters. The number of clusters is estimated correctly and
the partition error matches the state of the art results on this data re-
ported in [7], [5]. The next simulation uses the 13-dimensional Wine
data set. This data has three classes, varying types of wine, and the 13
features are then used to assign a sample to a particular category of
wine. This data has only been investigated in an unsupervised manner
in [7] where four partition errors were incurred. Fig. 3 shows the es-
timated number of data generators using the proposed method. There
are only three significant contributors thus indicating the presence of
three clusters within the data. Applying the feature space partitioning
method yields four errors. The final example is the Crabs data, which
consists of five physical measurements of the male and female of two
species of crab. Employing the method proposed in this paper correctly
estimates the number of possible data clusters.

The assessment of the contribution of each term�if1TNuig
2 to the

overall value requires some comment. In the case where the clusters in
the data are distinct then a pattern similar to that of Figs. 1 and 2 will
emerge and the contribution of each term will also be distinct. If, as
an example, we consider the Iris data, Fig. 3, it is clear that there are
two dominant terms strongly suggestive of the presence of two clusters.
However the inclusion of the third smaller term provides 99.76% of the
overall value indicating the possible presence of a third and less well
defined cluster grouping, as indeed is the case. The assessment of the
contribution of each term therefore requires to be considered on a case
by case basis.

VII. CONCLUSION AND DISCUSSION

This paper has explored the notion of data clustering in a kernel de-
fined feature space. This follows on from the Support Vector classifi-
cation methods which employ Mercer kernel representations of feature
space dot-products and the unsupervised method for performing fea-
ture space principal component analysis (KPCA) [11], [10]. Clustering
of data in a feature space has been previously proposed in an earlier
unpublished2 version of [10] where the standardK-means algorithm
was presented in kernel space by employing the kernel trick. As the
sum-of-squares error criterion for data partitioning can also be posed

1Iris, Wine, and Crabs data sets are all available from the UCI machine
learning repository.

2Available at http://www.kernel-machines.org/.



784 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 3, MAY 2002

(a) (b) (c) (d)

Fig. 3. (a) Clustering performance on the Iris data set indicating three partition errors. (b) The contribution to1 K1 from the most significant terms
� f1 u g for the Iris data. An RBF kernel of width 0.5 was used. The three dominant terms contribute 99.76% of the overall value strongly indicating the
existence of two highly dominant and one less dominant data generator, i.e., the existence of three possible clusters. (c) The values of� f1 u g for the Wine
data set (RBF width equals 10). Strongly indicating the presence of only three clusters. (d) The values of� f1 u g for the Crabs data set (RBF width equals
0.001). Strongly indicating the presence of only four clusters.

in a feature space and as this contains only dot-products of feature vec-
tors a very simple form of feature space clustering criterion arises. We
note that theK-means algorithm is thehard-clusteringlimiting case,
when� !1, of the deterministic annealing approach adopted in this
paper for optimizing the sum-of-squares clustering criterion.

The reader should note that central clustering by optimization of the
sum-of-squares criterion [see (2)] has an intuitive interpretation in that
the mean vectors act as representatives of the clusters. However, when
performing such clustering in a kernel defined feature space the associ-
ated mean vectors may not have a pre-image in the original data space
(the ring-data is such an example of this). The implication of this is that
the solution may break down, if the estimated centroid is replaced by
its nearest data vector.

When specifically considering the RBF kernel then the feature space
clustering cost has an interpretation based on nonparametric Parzen
window density estimation. It has been proposed that the block-diagonal
structure of the kernel matrix be exploited in estimating the number
of possible data generators within the sample and the subsequent
eigendecompostion of the kernel matrix can indicate the possible
number of clusters. Some brief simulations have been provided which
indicate the promise of this method of data partitioning and shows that it
is comparable with current state-of-the-art partitioning methods [5], [7].

The first point which can be raised regarding the proposed method
of data partitioning is with regard to the choice of the type of kernel
chosen in defining the nonlinear mapping. This is one of the major
questions which is under consideration regarding research being un-
dertaken on support vector and kernel methods. Clearly the choice of
kernel will be data specific, however in the specific case of data parti-
tioning then a kernel which will have universal approximation qualities
such as the RBF is most appropriate. Indeed this paper has shown that
the sum-of-squares criterion in an RBF kernel induced feature space is
equivalent to one minus the sum of the estimated conditional probabil-
ities of the data given the clusters. This is an appealing interpretation as
the Euclidean metric in data space is now replaced by the probability
metric in this specific feature space. So then the specific RBF kernel
provides a simple and elegant method of feature space data partitioning
based on a sum-of-squares criterion as defined in equation (9). If more
general nonlinear mappings are being considered (i.e., ones which do
not possess Mercer kernels) then great care must be taken to ensure
that the nonlinear transformation chosen does not introducestructure
which is not intrinsically inherent in the data.

The second point which can be raised about this method is then the
choice of the RBF kernel width. This particular concern is pervasive in
all methods of unsupervised learning, the selection of an appropriate
model parameter, or indeed model, in an unsupervised manner. Clearly
cross-validation and leave-one-out techniques are required to estimate
the width of the kernel in this method. The maximum certainty ap-
proach advocated in [7] requires the fitting of a semiparametric mix-

ture of Gaussians to the data to be clustered, as with the method under
consideration the number of Gaussian mixtures requires to be selected
a priori and heuristics or cross-validation methods require to be em-
ployed for this matter.

The complete eigenvalue decomposition of theN�N kernel matrix
scales asO(N3) and for a reasonably large dataset this may be pro-
hibitive. However, an iterative method for extractingM eigenvectors
from anN �N dimensional kernel matrix which scales asO(MN2)
is available [8]. As the number of possible clusters will be small in
comparison to the overall size of the data sample then computing the
important terms and their percentage contribution to the overall value
of 1TNK1N is much less costly than the complete decomposition of the
kernel matrix.

Once the kernel matrix has been defined then only one nonlinear
optimization is required in defining the partitioning. This is in contrast
to the method proposed in [7] where each candidate partitioning, the
outcome of a nonlinear optimization routine, is used in computing the
evidence for the partition based on the data. Therefore at least as many
nonlinear optimization routines as there are possible clusters will be
required. Only one nonlinear optimization is required in the method
proposed in this paper once the probable number of clusters has been
selected.
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