
Machine Learning

Lecture. 12.

Mark Girolami

girolami@dcs.gla.ac.uk

Department of Computing Science
University of Glasgow

Lecture Twelve February 20, 2006 – p. 1/2



PCA

• Principal Component Analysis

Lecture Twelve February 20, 2006 – p. 2/2



PCA

• Principal Component Analysis

• Feature Extraction

Lecture Twelve February 20, 2006 – p. 2/2



PCA

• Principal Component Analysis

• Feature Extraction

• Dimensionality Reduction

Lecture Twelve February 20, 2006 – p. 2/2



PCA

• Principal Component Analysis

• Feature Extraction

• Dimensionality Reduction

• Data Compression

Lecture Twelve February 20, 2006 – p. 2/2



PCA

• Principal Component Analysis

• Feature Extraction

• Dimensionality Reduction

• Data Compression

• Data Visualisation
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Image Representation
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Image Representation

• 64× 64 grey-scale images with 642 = 4096 pixels

• Pixel values in the range 0− 28(256)

• Each image represented as a M = 4096× 1 dimensional
vector x

• Total number of possible images produced from
representation is 2564096

• Staggeringly large number i.e. 2564096 = 28×4096.
Number of atoms in the entire universe 2784

• Pixel representation very powerful - overfitting almost
certain
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Classification

• Discriminate between faces with and without spectacles
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Classification

• Discriminate between faces with and without spectacles

• Devise classifier based on image pixel values

•

log
P (C = 1|x)

P (C = 0|x)
= wTx

C = 1 ≡ Spectacles & C = 0 ≡ No Spectacles

• As w has dimension M = 4096× 1 with only 400
available samples overfitting is highly likely

• Alleviate problem by extracting a smaller number of
informative features
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Image Representation

• Consider the variability observed in the images.
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Image Representation

• Consider the variability observed in the images.

• Differences in pose (head on, facing diagonally, looking
up, down)

• Facial expression (grinning, smiling, scowling, open
mouthed etc)

• Wearing of glasses, presence of beard, male, female

• Shape of face, lighting, ......

• Variability in images due to a small number (smaller

than 2564096) of degrees of freedom
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Linear Subspace

• In other words the data lies in a lower-dimensional
feature space which accounts for all of the information
or variability in the images
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Linear Subspace

• In other words the data lies in a lower-dimensional
feature space which accounts for all of the information
or variability in the images

• By extracting these features from original representation
it may be possible to overcome potential generalisation
problems

• Images of faces may be described by a subspace of the
4096 dimensional pixel space
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Linear Subspace

• Assume M dimensional data actually lies within a P

dimensional subspace where P << M
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Linear Subspace

• Assume M dimensional data actually lies within a P

dimensional subspace where P << M

• Further assume that the subspace is linear

• Orthonormal basis vectors (coordinates) span subspace

i.e. {β1 · · ·βP} where each βp ∈ R
D

• Data point x approximated by linear combination of
basis vectors

xn ≈
P∑

p=1

unpβp = Bun

where D×P dimensional matrix B = [β1 · · ·βP ] and un

is a P × 1 dimensional vector.
Lecture Twelve February 20, 2006 – p. 8/2



PCA Derivation

• Consider limiting case of P = 1 i.e. data X is modeled
as residing around a 1-dimensional linear subspace β1
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• Consider limiting case of P = 1 i.e. data X is modeled
as residing around a 1-dimensional linear subspace β1

• Squared reconstruction error incurred by approximation
xn = u1nβ1 defined as

E =
1

N
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(xn − u1nβ1)
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PCA Derivation

• Consider limiting case of P = 1 i.e. data X is modeled
as residing around a 1-dimensional linear subspace β1

• Squared reconstruction error incurred by approximation
xn = u1nβ1 defined as

E =
1

N

N∑

n=1

(xn − u1nβ1)
2

• Taking derivatives with respect to each u1n and setting
to zero gives

∂E

∂u1n

= −
2

N
(βT

1 xn − u1n) = 0⇒ u1n = βT
1 xn
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PCA Derivation

• Plugging this value back into the expression for E yields

E =
1

N

N∑

n=1

(xn − u1nβ1)
2

=
1

N

N∑

n=1

xT
nxn − 2u1nβT

1 xn + u
2
1nβT

1 β1

=
1

N

N∑

n=1

xT
nxn − 2u2

1n + u
2
1nβT

1 β1

=
1

N

N∑

n=1

xT
nxn − u

2
1n =

1

N

N∑

n=1

xT
nxn − βT

1 xnx
T
nβ1
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PCA Derivation

• So to minimise our reconstruction error we require to
maximise

1

N

N∑

n=1

βT
1 xnx

T
nβ1 =

1

N
βT

1 XTXβ1 = βT
1 Ĉβ1
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PCA Derivation

• So to minimise our reconstruction error we require to
maximise

1

N

N∑

n=1

βT
1 xnx

T
nβ1 =

1

N
βT

1 XTXβ1 = βT
1 Ĉβ1

• Subject to βT
1 β1 = 1 where the sample covariance

matrix is denoted as Ĉ (remember that each X is zero
mean).
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Variance Maximisation

• Note that minimisation of reconstruction error by
maximisation of

1

N

N∑

n=1

βT
1 xnx

T
nβ1 =

1

N

N∑

n=1

u
2
1n

provides projections which have maximum variance so
are maximally informative.
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Variance Maximisation

• Note that minimisation of reconstruction error by
maximisation of

1

N

N∑

n=1

βT
1 xnx

T
nβ1 =

1

N

N∑

n=1

u
2
1n

provides projections which have maximum variance so
are maximally informative.

• Minimisation of reconstruction error requires to find
projection which maximises variance of projection -
retain as much information as possible.
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Variance Maximisation

• Remember that we are restricting each basis-vector to
have unit norm in which case we require to create the
Langrangian (Refer to the Week 5 notes)

βT
1 Ĉβ1 − λ1β

T
1 β1

and maximise with respect to β1.
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Variance Maximisation

• Remember that we are restricting each basis-vector to
have unit norm in which case we require to create the
Langrangian (Refer to the Week 5 notes)

βT
1 Ĉβ1 − λ1β

T
1 β1

and maximise with respect to β1.

• The corresponding vector of partial derivatives gives

∂

∂β1

= Ĉβ1 − λ1β1

• Setting to zero obtain an eigenvalue problem

Ĉβ1 = λ1β1 Lecture Twelve February 20, 2006 – p. 13/2



Variance Maximisation

• As the variance of the projection is defined βT
1 Ĉβ1 then

for βT
1 β1 = 1 it should be clear that the variance of the

projection is equal to λ1 the associated eigenvalue.
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Variance Maximisation

• As the variance of the projection is defined βT
1 Ĉβ1 then

for βT
1 β1 = 1 it should be clear that the variance of the

projection is equal to λ1 the associated eigenvalue.

• We have now found the direction β1 which maximises

the variance of the projection βT
1 x and correspondingly

minimises the reconstruction error

E =
1

N

N∑

n=1

(xn − u1nβ1)
2

This is referred to as the First Principal Direction and
the projections of the data in this direction are the
Principal Components in this direction.
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Finding Additional Directions

• Now we want to find another direction vector β2 which

will satisfy βT
1 β2 = 0 and βT

2 β2 = 1
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Finding Additional Directions

• Now we want to find another direction vector β2 which

will satisfy βT
1 β2 = 0 and βT

2 β2 = 1

• The approximations of points in data space will now take
the form of

xn ≈
P=2∑

p=1

unpβp

• Reconstruction error is

E =
1

N

N∑

n=1

(xn − u1nβ1 − u2nβ2)
2

it is straightforward to see that u2n = βT
2 xn
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Finding Additional Directions

• The reconstruction error can obtained as the following
where the orthonormal characteristics of both directions
has been exploited

1

N

N∑

n=1

xT
nxn − βT

1 xnx
T
nβ1 − βT

2 xnx
T
nβ2
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Finding Additional Directions

• The reconstruction error can obtained as the following
where the orthonormal characteristics of both directions
has been exploited

1

N

N∑

n=1

xT
nxn − βT

1 xnx
T
nβ1 − βT

2 xnx
T
nβ2

• It is clear that given β1 then we require to obtain a
solution for

Ĉβ2 = λ2β2

subject to the orthonormal constraints imposed.
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Projection and Deflation

• If β1 and β2 are orthonormal then

x = u1β1 + u2β2

= (xTβ1)β1 + (xTβ2)β2
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Projection and Deflation

• If β1 and β2 are orthonormal then

x = u1β1 + u2β2

= (xTβ1)β1 + (xTβ2)β2

• Where (xTβ2)β2 is the projection orthogonal to

(xTβ1)β1 so projection orthogonal to first principal
direction is

(xTβ2)β2 = (I− β1β
T
1 )x
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Projection and Deflation

• If β1 and β2 are orthonormal then

x = u1β1 + u2β2

= (xTβ1)β1 + (xTβ2)β2

• Where (xTβ2)β2 is the projection orthogonal to

(xTβ1)β1 so projection orthogonal to first principal
direction is

(xTβ2)β2 = (I− β1β
T
1 )x

• Applying this to all of the data gives

X(I− β1β
T
1 )T = X(I− β1β

T
1 )
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Projection and Deflation

• We can think of this operation as removing from the
D-dimensional data the component that lies in the
direction of the first principal direction. In other words
we are deflating the matrix X and thus reducing its rank
from D to D− 1 i.e. removing one direction component,
the principal direction.
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Projection and Deflation

• We can think of this operation as removing from the
D-dimensional data the component that lies in the
direction of the first principal direction. In other words
we are deflating the matrix X and thus reducing its rank
from D to D− 1 i.e. removing one direction component,
the principal direction.

• Consider then the covariance of this deflated data matrix
X̃ = X(I− β1β

T
1 ) i.e. 1

N
X̃TX̃

=
1

N
(I− β1β

T
1 )X̃TX̃(I− β1β

T
1 )

=
1

N

(
XTX− β1β

T
1 XTX−XTXβ1β

T
1 + β1β

T
1 XTXβ1β

T
1

)
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Projection and Deflation

• Taking this expression term by term we see that the
right hand term can be written as

β1

(
βT

1 XTXβ1

)
βT

1 = β1 (Nλ1)βT
1 = Nλ1β1β

T
1
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Projection and Deflation

• Taking this expression term by term we see that the
right hand term can be written as

β1

(
βT

1 XTXβ1

)
βT

1 = β1 (Nλ1)βT
1 = Nλ1β1β

T
1

• For
β1β

T
1 XTX = β1(Nλ1β

T
1 ) = Nλ1β1β

T
1
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Projection and Deflation

• Taking this expression term by term we see that the
right hand term can be written as

β1

(
βT

1 XTXβ1

)
βT

1 = β1 (Nλ1)βT
1 = Nλ1β1β

T
1

• For
β1β

T
1 XTX = β1(Nλ1β

T
1 ) = Nλ1β1β

T
1

• and
XTXβ1β

T
1 = Nλ1β1β

T
1
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Projection and Deflation

• Plugging these into the expression for the covariance we
obtain

C̃ =
1

N
X̃TX̃

=
1

N
XTX− λ1β1β

T
1 = Ĉ− λ1β1β

T
1
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Projection and Deflation

• Plugging these into the expression for the covariance we
obtain

C̃ =
1

N
X̃TX̃

=
1

N
XTX− λ1β1β

T
1 = Ĉ− λ1β1β

T
1

• Find the principal direction of deflated covariance matrix

C̃ by solving

C̃β2 = λ2β2
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Projection and Deflation

• Plugging these into the expression for the covariance we
obtain

C̃ =
1

N
X̃TX̃

=
1

N
XTX− λ1β1β

T
1 = Ĉ− λ1β1β

T
1

• Find the principal direction of deflated covariance matrix

C̃ by solving

C̃β2 = λ2β2

• Then βT
2 β2 = 1 and as X̃ resides in D − 1 dimensional

subspace orthogonal to the first principal direction β1

then βT
1 β2 = 0 must hold.
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Projection and Deflation

• We will see further on that continuing this joint matrix
deflation and solving of the associated eigenvalue
problems will provide a set of eigenvectors {β1 · · ·βD}
and associated eigenvalues {λ1 · · · λD} which provide an
orthonormal basis for the data which when truncated at
P << D will provide the minimum reconstruction error,
in the least squares sense, of the data.
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Reconstruction Error

• The overall data reconstruction error can be written as

E =
1

N

N∑

n=1


xn −

P∑

p=1

upnβp




2

=
1

N

N∑

n=1


xT

nxn −

P∑

p=1

βT
p xnx

T
nβp




=
1

N

N∑

n=1

xT
nxn −

P∑

p=1

λp
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Reconstruction Error

• Now if there is no truncation and P = D then E is
clearly zero in which case

0 =
1

N

N∑

n=1

xT
nxn −

P∑

p=1

λp −

D∑

p′=P+1

λp′

= E −
D∑

p′=P+1

λp′

⇒ E =
D∑

p′=P+1

λp′
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Reconstruction Error

• The reconstruction error is composed of the sum of the
eigenvalues associated with the principal components
discarded in the truncation
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Reconstruction Error

• The reconstruction error is composed of the sum of the
eigenvalues associated with the principal components
discarded in the truncation

• As the first principal component provides the largest
reduction in error and the second principal component
(PC) is obtained from the deflated covariance matrix

Ĉ− λ1β1β
T
1 then the reduction in error obtained by the

second PC will be smaller than that obtained from the
first as such λ1 ≥ λ2 ≥ λ3 · · · ≥ λD.
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Reconstruction Error

• The reconstruction error is composed of the sum of the
eigenvalues associated with the principal components
discarded in the truncation

• As the first principal component provides the largest
reduction in error and the second principal component
(PC) is obtained from the deflated covariance matrix

Ĉ− λ1β1β
T
1 then the reduction in error obtained by the

second PC will be smaller than that obtained from the
first as such λ1 ≥ λ2 ≥ λ3 · · · ≥ λD.

• This means that by studying the distribution of the
eigenvalues we can potentially identify the intrinsic
dimension of the data by assessing which dimensions
incur the main contributions to the overall
reconstruction error. Lecture Twelve February 20, 2006 – p. 24/2



Reconstruction Error

• If we define the D ×D matrix B whose columns are βp

and the D ×D diagonal matrix D whose elements are
each λp then the covariance matrix can be represented in
terms of the associated eigenvalues and eigenvectors as

Ĉ = BDBT

Lecture Twelve February 20, 2006 – p. 25/2



Illustrative Example

• Consider 200 samples of 2-dimensional data denoted by
the matrix X.
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distributions centered at [-2, -2] and [+2, +2]
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Illustrative Example

• Consider 200 samples of 2-dimensional data denoted by
the matrix X.

• The data is drawn from two 2-D isotropic Gaussian
distributions centered at [-2, -2] and [+2, +2]

• Generate a random 10× 2 matrix A and apply the

transformation Ỹ = XA such that the data has now
been projected from the original 2-D space into a 10-D
representation.
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Illustrative Example

• Consider 200 samples of 2-dimensional data denoted by
the matrix X.

• The data is drawn from two 2-D isotropic Gaussian
distributions centered at [-2, -2] and [+2, +2]

• Generate a random 10× 2 matrix A and apply the

transformation Ỹ = XA such that the data has now
been projected from the original 2-D space into a 10-D
representation.

• Finally we set Y = Ỹ + ε where ε is isotropic noise with
variance 2
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Illustrative Example
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Figure 1: A scatter diagram of the 2-D data.
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Illustrative Example

• Given this 10-D data let us perform PCA on the data
and study how the errors are distributed throughout the
ten dimensions by plotting the 10 eigenvalues λ1 · · · λ10.
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Illustrative Example

• Given this 10-D data let us perform PCA on the data
and study how the errors are distributed throughout the
ten dimensions by plotting the 10 eigenvalues λ1 · · · λ10.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Eigenvalue Number

E
ig

en
va

lu
e

Lecture Twelve February 20, 2006 – p. 28/2



Illustrative Example

• The face data matrix X has dimension 400× 4096 and
so the covariance matrix will have dimension
4096× 4096 which is huge relative to the number of
examples available.
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Illustrative Example

Ĉ = BDBT

⇒
1

N
XTX = BDBT

⇒
1

N
XTXB = BD

⇒
1

N
XXTXB = XBD

⇒
1

N
XXTU = UD

where we have defined U = XB. Now as there are only N

non-zero eigenvalues then we can see that

1

N
XXTU = UD
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Face Images
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Figure 2: The percentage reconstruction error as principal components are included

within the image representation.
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Face Images

Original Image
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Figure 3: The original image (left) and the reconstructed image (middle) after ten

principal components have been employed. The right hand plot shows how the error has

decreased for this particular face over the ten PC’s employed.

Lecture Twelve February 20, 2006 – p. 32/2



Face Images

Original Image
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Figure 4: The original image (left) and the reconstructed image (middle) after one

hundred principal components have been employed. The right hand plot shows how the

error has decreased for this particular face over the one hundred PC’s employed.
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Generalisation

• Recall that the variance of predictions made by linear
regression models on data points x∗ can be given as

σ
2xT

∗
(XTX)−1x∗

Lecture Twelve February 20, 2006 – p. 34/2



Generalisation

• Recall that the variance of predictions made by linear
regression models on data points x∗ can be given as

σ
2xT

∗
(XTX)−1x∗

• and as
XTX = NBDBT

Lecture Twelve February 20, 2006 – p. 34/2



Generalisation

• Recall that the variance of predictions made by linear
regression models on data points x∗ can be given as

σ
2xT

∗
(XTX)−1x∗

• and as
XTX = NBDBT

• then given that B is an orthonormal matrix such that
BTB = I then B−1 = BT we can write

Lecture Twelve February 20, 2006 – p. 34/2



Generalisation

• Recall that the variance of predictions made by linear
regression models on data points x∗ can be given as

σ
2xT

∗
(XTX)−1x∗

• and as
XTX = NBDBT

• then given that B is an orthonormal matrix such that
BTB = I then B−1 = BT we can write

•

(XTX)−1 =
1

N
BD−1BT =

1

N

D∑

p=1

1

λp

βpβ
T
p
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Figure 5: The differential gene expression levels of 243 genes measured at seven

time points.
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Figure 6: The projection of the differential gene expression levels of 243 genes onto

the first two principal directions.
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Computing a PCA

• The following iteration will converge to the principal
eigenvector of the covariance matrix C.
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Computing a PCA

• The following iteration will converge to the principal
eigenvector of the covariance matrix C.

xt = Cyt−1

yt =
xt√
xT

t xt

as t→∞ then yt → β1 and
√

xT
t xt → λ1. Covariance

matrix is deflated as detailed previously

C← C− λ1β1β
T
1 and the above iteration is applied to

the deflated matrix to obtain the second eigenvector and
associated eigenvalue. This is repeated until all the
eigenvector/value pairs are obtained.
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