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1 A Probabilistic View of Linear Regression
The data model which we have explored so far is of the form
t=f(z;w)+e (1)

where our observations or target values ¢ are modeled by a deterministic
function of our inputs, f(x; w), which may be contaminated by noise or some
error defined by €. We are now going to present a probabilistic interpretation
of the linear regression model which has far reaching consequences in terms
of data modeling.

1.1 Distribution of Noise Component

The noise term can be assumed to be Gaussian or Normally distributed with
mean zero and some variance o i.e. € ~ N (0,0). Now what this means is
that the target value t given the value of x will then be a constant value
f(x;w) with an additive zero-mean Gaussian variable so that ¢ given x will
be a Gaussian distribution with mean f(x;w) and variance o. It might help
to think of this as an information bearing signal, f(x; w), which is corrupted
with noise, €, upon transmission so that the noisy signal received is the sum
of both components.
This can be written as

ta ~ N (f (5 w), 0)

which reads as t given x has a Gaussian distribution with mean f(z;w) and
variance o. Likewise we can write

p(tlz) = N(f(z; w), 0)

which reads as the conditional probability distribution of ¢ given x is Gaussian
distribution with mean f(z;w) and variance o.

1.2 The Likelihood Principle

The question that we ask is How likely is it that I would have observed the
outputs given the inputs, the likelihood of observing the outputs is the con-
ditional probability of making all the observations. Now if we have made N
observations (xi1,t1),- -, (zn,tn) = (X,t) (where both vectors are N x 1)
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then we are interested in the joint probability of all the outputs conditioned
on all the input values i.e. p(t1,ts, -+, ty|x1, T2, -+, xx) which can be writ-
ten in vector format more compactly as p(t|x).

We now make a further assumption, which is not always satisfied or jus-
tified, that we make our observations independently of each other so that the
measurement we have just made does not affect the following measurement
we make. This assumption essentially is assuming statistical independence
between measurements.

The additional important assumption that we make is that the noise
corrupting our measurements always comes from the same distribution and
so our outputs will all be identically distributed.

Taken together these two assumptions can be stated as we assume that
the data is Independent and Identically Distributed often denoted as IID for
short.

Now with the IID assumption then the joint probability of our measure-
ments takes a factored! or product form. In which case

N
pltlx, w,0) = Hptm [TV (s w). )

We see from our likelihood function above that the likelihood depends on
the parameters of our model as the deterministic model response defines the
mean of each univariate Gaussian. So to make this dependency explicit we
have written the joint likelihood as p(t|x, w, o) indicating that the targets,
t, are dependent on the inputs x, as well as the model parameters, w, and
the variance of the additive noise o. This explicit conditioning will become
very important in later work and it should become second nature to you as
the course develops.

!Two random variables have a joint distribution P(X,Y) = P(X|Y)P(Y) =
P(Y|X)P(X), now if the variables are independent of each other then the value which
X or Y takes will have no influence on Y or X and so the conditional distributions
P(X|Y) = P(X) and P(Y|X) = P(Y), which means that the joint disribution is sim-
ply the product of the marginal terms i.e. P(X,Y) = P(X)P(Y). This extends to any
arbitrary number of variables.



1.3 Maximum Likelihood

We now want to select the model parameters? w & o which will make our
observations most likely and so we need to maximise the likelihood func-
tion above with respect to all parameters. In actual fact we will maximise
the logarithm of the likelihood function as the log-likelihood is more conve-
nient to work with analytically® and as the logarithm is a convex function
the estimated arguments w & & which maximise the log-likelihood will also
maximise the likelihood. So lets do it.

N
L =logp(tlx,w,o) = Zlogp(tn\xn,w,a)

n=1

= ZlOgN(f(xn7W>7U)

al 1 1
= lo exp | ——=|tn — f(zn; W)|?
> tox e (gt — S W)

N 1 &
= —Elog27r—Nloga— Tﬂ;|tn_f($n;W)|2

We now only need to take derivatives and solve for the stationary points
of the log-likelihood

oL 1 &
— = = Z(tnxn — XX, W) =0
ow 0* i

Lets use the N x (K + 1) dimensional matrix X which stacks all the column
vectors X, row-wise then

1
g—fv = E(XTt — XTXw) =0

2Notice that the variance of the noise is also a model parameter which is not as obvious
within the classical Least-Squares presentation.

3This is not the only reason as the log-likelihood has a direct connection to information
theory and so the amount of information encoded by the model can be defined using the
log-likelihood. We will not pursue these parallels further in this course.
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and so the mazimum-likelihood solution for w follows simply as w = (XTX) I XTt,
So we see that the Least-Squares solution is also the maximum-likelihood so-
lution when all distributional assumptions are made explicit.

The Hessian matrix of second-order partial derivatives follows as

9L R
owowT _EX X

which is strictly negative and so we have indeed obtained the maximum of
the likelihood.

It is left to the student to show that the mazimum-likelihood estimate for
the noise variance follows as

~ 1
= (b= XW)(t - XW)

= %tT (I-X(X'X)"'X") ¢
= % (tTt —t't)

and that this is indeed a maximum by showing that the curvature of the
likelihood at the stationary point ¢ is always negative and equals

oL? 2N? 2N

dodo  (t—XwW)(t—XW) o2

Show that the expression for the maximum of the log-likelihood is given
by the following

N
) (1+log2m) — Nlogo

You should be able to see that the log-likelihood will monotonically in-
crease in value as the reconstruction error decreases which means that the
log-likelihood computed on the training data otherwise known as the in-
sample likelihood will always favour more complex models.



1.4 Uncertainty in Estimates & Predictions

We can also describe the variability of our maximum-likelihood estimate w
by writing out the covariance of the estimate

covi{w} = E{&w'} — E{W}E{¥"}

where the expectations are taken with respect to the distribution of the data
t. Now remember that the Least-Squares and so the Maximum-Likelihood
estimators are unbiased in which case the expected value of our estimate will
be the true parameter value i.e. E{w} = w. We require to obtain

—~2 o~ —~

B{wwT)} = / p(t|X){fg0/\ “’i“él}dw
W1 W w1

= (X™X) " XTE{ttT}X (XTX) "

Now as the noise is assumed to have zero-mean and variance o2 then

B{tt"} = Xww'X"T —2E{e}X"w + ¢’1
= Xww' X" 4+ 0%

and so using this result in the above we finally obtain
cov{w} =ww' + o2 (XTX)_1 —ww' = o’ (XTX)_1

It is interesting to note that from the expression for the Hessian matrix of

partial derivative that
. 2L\
co{w} = - (m)

where the negative Hessian of partial derivatives is defined as the Information
matrix. We will not pursue this further but it is important to know that we
now have both an estimator for the unknown parameters and a measure of
the uncertainty (or spread or variability) in our estimate. This is particularly
important when making prediction regarding unseen events as we can now
say more than just what our predicted value is but what range of values may
be expected. The tighter the range of values the more confident we can be
of our predictions.



So to make a mew prediction then our maximum-likelihood estimate and

the associated variance around this estimate i.e. t,e, & 02, Where

~
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Figure 1: The blue solid line indicates the true noise free functions and the
black dots are the actual observed noisy realisations of the data. The solid
red line indicates the estimated function with the error-bars indicating the
variance (uncertainty) in the estimated functional response at each of the
data points ie ¢, & o2 .

Figure (1) shows a linear fit (K = 1) and a cubic fit (K = 3) to noisy real-
isations of the function 5% — 2% + x it is interesting to see how the error-bars
decrease as the model becomes sufficiently flexible to model the underlying
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function. The following Matlab script (max_like_.demo.m) will generate such
plots.

clear

Range = 10;
Max_Model_Order = 10;
noise_var = 100;

L=[1;
x = [-Range/2:0.2:Range/2]’;
N=size(x,1);

f =5%xx."3 - x.72 + x;
f n =f + noise_var*randn(size(x));
[i,jl=sort(x); X=x.70;

for k=1:Max_Model_Order
X=[X x.7k];
w_hat inv (X’ *xX)*X’*f_n;
f_hat X*w_hat;
sigma_hat = mean((f_n - f_hat)."2);
sigma = sigma_hat*diag(X*inv(X’*X)*X’);

L = [L; -N*xlog(sqrt(sigma_hat)) - 0.5%N*(1 + log(2*pi))];

plot(i,f(j),’b’);
hold on
plot(i,f_n(j),’.k’, ’MarkerSize’,15)
errorbar(i,f_hat(j),sigma(j),’-r.’)
hold off
pause(1)

end

figure
plot(1:Max_Model_Order,L,’dr--’);



It is also interesting to view the corresponding log-likelihood score for
K =1 to 10 as obtained from the Matlab script (Figure (2)).
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Figure 2: The Maximum Likelihood score for polynomial models from K =
1 to K = 10. Perhaps unsurprisingly the likelihood score monotonically
increases with K.

The covariance of the parameter estimates can also be used to assess how
relevant certain parameters are but we shall look at this later in the course.

1.5 Conclusion

This section has introduced the usage of the likelihood principle in devising
linear regression models. However, the Maximum-Likelihood framework is
entirely general and can be employed whenever a probabilistic representation
of a model can be defined. We have seen that the introduction of probabilis-
tic semantics provides a far richer tool-set than simple least-squares in that
uncertainty in estimates can be given. However maximum-likelihood is not
without its problems as we have seen in the previous experiment maximising
likelihood will lead to overfitting unless predictive-likelihoods using CV are
monitored in the model fitting process.

The following section now introduces the Bayesian method applied to
linear regression modeling.



2 The Bayesian Approach

Now we have come some way by presenting our model identification problem
within a likelihood based framework and this is particulary powerful. How-
ever, at the end of the day the question we really would like to answer is not
so much how likely the data is given our model but what is the likelihood
of the model parameters given the data. This is essentially an inversion of
the probabilities associated with the likelihood principle and relies on Bayes
inversion rule to achieve this.

Bayes rule is simple to understand but it has wide implications as to what
sort of questions potentially could be posed and answered which led to an
enormous amount of controversy amongst statisticians. Today however it is
widely accepted that Bayesian methods of inference are particularly powerful
and the development and standard usage of Bayesian methods are widespread
within the Machine Learning community:.

2.1 Posterior Inference

So in Likelihood methods we are interested in how likely the data is given
our model and associated parameters p(t|x, w, o) but as we really want to
know about the model given the data then the quantity we should concerned
with is p(w, o|x, t).

Now for two random variables X & Y the joint probability p(X,Y)
can be decomposed in two ways such that P(X,Y) = P(X|Y)P(Y) =
P(Y|X)P(X). So this then allows us to make the inversion P(Y|X) =
P(X |Y)% which allows to to take a prior belief about the truth of Y ob-
tain some evidence X about Y which will have a probability P(X|Y") and so
we can now update our belief in the face of the new evidence such that our
prior P(Y) can be updated to P(Y|X) refered to as our posterior belief.

Let’s then dive in and look at our linear regression model within the
Bayesian formalism.

Firstly we will assume that we know what the noise variance, o2, is for
the sake of clarity in presentation of the main ideas, a full Bayesian analysis
would also do inference on both the regression coefficients and noise variance
but the analysis becomes cluttered with details which do not help in getting
over the important concepts.

Now remember that we know the value of o and the input data X is given
to us so there is no uncertainty in these and as such we will only reason about
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the target values t and the parameters w so the joint probability of everything
associated with our model can be written and decomposed as below.

p(t, W|X7 a‘) = p(t|X, W, O‘)p(W) = p(W|t, X, O‘)p(t|X, 0)

So using the expressions above we can invert our probabilities to obtain

p(w)
p(wlt, X, o) p(t’X7W’a)p(t|X,0)

So our posterior distribution over the parameter values can be seen to
be taking the data likelihood (which we maximised to obtain our MLE)
p(t|X, w, o) and weighting with it the prior parameter probability distri-
bution p(w)?* and normalising with p(t|X, o) which is called the marginal
likelihood®. So our posterior distribution for the parameters can be seen as
the prior belief being updated after we observe our data so in other words.

likelihood X prior

osterior = . —
P marginal likelihood

2.2 Defining the Prior

Let us say that our model parameters are simply w = wg, w; now what
range of values would we expect the parameters to reasonably take prior to
seeing any data?, are there any values or ranges of values that would be more
desirable than others? What we are now doing is defining our prior for the
model parameters.

Let’s say that before seeing any data we would prefer some parameter
values to be small, this is a sensible strategy especially when there are many
possibly redundant parameter values. We are perfectly free to make whatever
assumptions are most appropriate at this point and in this instance we will
assume that all our parameter values will follow a Gaussian distribution with
a mean of zero and a standard deviation of . This encodes that we would
prefer small parameter values a priori, we also assume that the parameters

are a priori independent of each other so wy ~ N (0, «) and likewise w; ~
N(0, ). So p(w]a) = Ny (0, )Ny, (0, ) = Nyw(0, A) where A = al.

4Note in this case there is no conditioning on X or o as we set the prior before seeing
any data.

>This term arises from p(t|X,o0) = [ p(t|w,X,o)p(w)dw where we integrate out or
marginalise the model parameters
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2.3 From the Prior to the Posterior

Now we know® that the likelihood is an N-dimensional multivariate Gaussian
Hivzl N, (W'x,,0) = Ny (Xw, o) and so we can write the posterior as

B M(XW, O'I)Nw(0> A)
p(wlt, X, 0,0) = S Ne(Xw, o)V (0, A)dw

There are many standard results for combinations and manipulations of
multivariate Gaussians (refer to the course website for references) which can
be applied in cases such as this. But in this case (and only in this case) we
will work through this long-hand so that students get a feel for the mechanics
of such manipulations.

The first thing to note is that the product of two Gaussians is also a
Gaussian and the marginal form of the product of two Gaussians is also
Gaussian so we can then see that the posterior p(wlt, X, o, a) will take the
form of a Gaussian as well. We can drop the dependence on the denominator
as it is not a function of w and collecting the terms dependent on w then we
can write

N (Xw, 0T) N (0, A)
p(t|X, o)

p(wlt, X, 0,0) =

1 1
X exp <_ﬁ(t —Xw)T(t — Xw) — §WTA_1W)

1 1 1
X exp <—§WT <—2XTX + A‘1> w + —QWTXTt)
o o

Now the exponential term of a multivariate Gaussian can be written as
1 1 1
(W) 2T (W —p) = —ow D w A wIN T - o'

Comparing the components which depend on w then

1 .
I (—2XTX + A-l) =2 =0(X"X+0°A)"
o

1 .
S o= SXTt=p= (XTX+0%A7Y) T X
o

6If you are not convinced do not take my word for it work it out long-hand
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and as A = al then we see that the required posterior over the parameters
is a multivariate Gaussian such that

p(wlt, X, 0,a) =N (p, X)

where
o2 \ 7! o2 \ 7!
n= (XTX + —I) X't and T = o2 (XTX + —I)
(6] (6]

This is a lovely result as we can now see that our posterior uncertainty

about the model parameters w is fully defined by this multivariate Gaussian
distribution.

Prior Likelihood
U — 1
” .
0.5 / \ 0.5
;oo || Q I =0
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Figure 3: Top Left shows the prior distribution with the black-spot high-
lighting the true parameter values. The top right plot shows the likelihood
and we can see that it is concentrated around the true values. The bottom
left shows the corresponding posterior and finally the bottom right shows the
data the true function and the estimated one when o is known and «, the
prior variance, is set to unity.

Figure (3) demonstrates the updating of the prior to the posterior via the
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likelihood for a simple model. The Matlab code to generate the above plots
is available in the Week 3, Laboratory Folder, brdemo.m.

2.4 Bayesian Predictive Distributions

Now whilst in the Maximum Likelihood framework the MLE is plugged in to
obtain predicted target values for a new data point in the Bayesian frame-
work we can use our posterior distribution to average (or integrate) over our
uncertainty in the possible parameter values.

Ep(w|t,X,o,a) {tnew|xnew} = Ep(W|t7X,U,Oé) {Xleww}

= xlew/wp(whz,X,a,a)dw
o2 \ !

= XZewu’ = Xlew (XTX + _I) XTt
a

The posterior variance in our prediction can be obtained as

Var(tnew|xnew) = Ep(w|t,X,o,a) {tiew|xnew} - Ez(w\t,x,a,a) {tnew|xnew}

= Xlepr(w\t,X,o) {WWT} Xnew — (Xlepr(wH:,X,o) {W})2

2 -1
o
T 2T T
= Xnewzxnew =0 Xpew (X X + EI) Xnew

2.5 The Prior Provides Regularised Solutions

We should compare this with the maximum likelihood predictions and we
find that the effect of the prior probability over the parameters enters into
the solution via the 2—21 term. Now as a — oo then we will recover the MLE
prediction and this makes sense because the width of our Gaussian prior
p(w|a) will increase as « increases which means that we will become less
precise about the prior values which the parameters should take and in the
limit they will all become equally likely a priori. This has what is referred
to as having a reqularising effect on the solution.

The Matlab script regdemo.m generates noisy data which has a simple
underlying linear function. The prior variance « is varied from the value 10
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Figure 4: The top chart shows the in-sample likelihood as a function of the
prior variance and we can see a drop in likelihood as the regularising effect of
the prior becomes significant. The bottom chart shows how the out-of-sample
predictive likelihood varies with o with a significant increase in performance
at a specific a value. This is a nice example of the effect that bias & variance
has on a predictive model.

to 0.1, giving a small to large range of regularisation effect. The likelihood
of the training data is computed as is the likelihood of independent test
data (the predictive likelihood) for each value of prior variance. The results
are shown in Figure (4) and it is clear that for large values of variance we
have the maximum likelihood solutions performance however as the prior
variance decreases and the regularization takes effect whilst we see a drop
in the data likelihood, as we are introducing a bias, the predictive likelihood
increases sharply at a particular value of a. So although we are sacrificing
some bias here as can be seen by the drop in data likelihood we gain by seeing

a drop in the variance as can be seen by the increase in predictive likelihood.
Wonderful!.
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3 Conclusion

Introducing the Bayesian methodology has been an important part of our
module. The linear regression examples here are nice and illustrative as the
posterior and marginal distributions all take the a nice analytic form i.e.
a multi-variate Gaussian. However the majority of realistic applications in
Machine Learning do not permit such nice analytic forms for the posteriors,
as the following weeks lectures will show. Lots of fun awaits us when we start
to look at other Machine Learning methods where nice closed form Bayesian
analysis is not possible.
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