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e Simple binary linear discriminant on 2-d feature vector
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Discriminative classifiers directly provide a discriminant

function of the form f(x;w) = w! ¢(x)

Simple binary linear discriminant on 2-d feature vector
T
g(x;wa, w1, wp) = wars +wW1T1 + Wo =W X + W

If target values +1 test g(x;ws, wy,wp) positive or
negative so f(x;ws, w1, wy) = sign(w'x + wp)

For N data points (x1,%1) - (Xx,tn) assume classes
completely linearly separable then training data correctly
classified if

ta(W'x4+wp) >0V n=1---N
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* Many possible solutions

Flgu re ].: The samples of two classes denoted by sold circles and squares can be
separated perfectly with no miss-classifications by a number of possible w some examples
of which are drawn on this cartoon.
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* Upper-bound on generalisation error inversely CLASEON
proportional to perpendicular distance from separating
hyperplane, w and hyperplane through closest points

from both classes

e (Called the margin so to minimise bound on generalisation
error we seek to maximise the margin of our classifier
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* Distance of x to hyper-plane H defined by all points
that satisfy w'x + wg = 0 is given by

* |f x] and x5 are closest points from each class to w
margin of separation is

wixt+wyg wixb+wy w' o, .
- = (X1 —x)
[wl| [wl] [wl]
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e SVM discriminant is sign(wx 4 wy) decision made
invariant to arbitrary rescaling of w'x + wyq

* Define canonical hyper-plane w such that

WTXT + wp = 1 and WTX§ + wp = —1 in which case the

. . . 2
margin is now simply Twl]

* Maximise margin need to minimise ||w|| subject to all
the points being correctly classified
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* The SVM optimisation can be written as

1
min—HwH2
2

subject to
to(Wix+wy)>1Vn=1---N

and by finding the solution to the above we will be using
the w in our classifier which will minimise the bound on
the achievable generalisation error.
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* Given a constrained optimisation problem of the form

subject to

gi(W)
hi(w)

min f(w)
< 0¢=1---K
= 0 12=1---M
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* Given a constrained optimisation problem of the form

min f(w)
subject to

gi(W) 0 1=1---K
hZ(W) = 0 1=1---M

* Form the Lagrangian function as

M
L(W 8 /3 Z@zgz ) T Zﬁzhz(w
1=1
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* Find maximum of L(w, «, 3) with respect to w denoted

as 0(cv, B)
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* Find maximum of L(w, «, 3) with respect to w denoted

as 0(cv, B)

* Then solve the optimisation problem

max 0(a, 3)

subject to
OziZO Vi=1---K
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* The Lagrangian function for SVM, noting only one set of
inequality constraints and no equality constraints then

N
1
L(w,wy, ) = —HWH2 + oy, (1 — tn(WTXn + wo))
2 n=1
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* The Lagrangian function for SVM, noting only one set of
inequality constraints and no equality constraints then

N
1
L(w,wy, ) = §Hw\|2 —- Z Qi (1 — tn (W' x, + wo))

n=1

e Have defined each ¢;(w) =1 — t,,(W'x,, +wy) <=0
which comes from our original constraint.
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e Stationary point of £L(w,wq, &) so

N N

9,
2 (w0, 0) = W3t = 0w = 3t

n=1 n=1

* and
0 al =
_L : : = — t — O e t — O
Owy (W, w0, €) ;&n " ;&n ’
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e Stationary point of £L(w,wq, &) so

N N

9,
2 (w0, 0) = W3t = 0w = 3t

n=1 n=1

* and
0 al =
_L : : = — t — O e t — O
Owy (W, w0, €) ;&n " ;&n ’

* Using above define () so plug-in results to
L(w,wp, ).
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* Using result w = ij:l antnX, we should see that

1, 1 1 1 (& A (&
—||w||* = §W W = 5 Z anlnX,, Z U tmXom
n=1 m=1

1 N N
= 5 S: S: anamtntmxlxm

n=1m=1
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* Now the second component of our Lagrangian needs to

be considered

T
g ap (1=t (W' % + wp))
N N N
n=1 n=1 n=1
N N
L E : E : T
n=1 n=1
= E Oy, — 5 5 O O tn th Xm,

nlml
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nlml
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* So combining the two parts we obtain

Zan — = Y S‘ O O Uy, th Xm

nlml

* This has to be maximised with respect to all «,,, the
constraints that a,, >0 V n=1---N and the
additional constraint which emerges from our stationary

conditions that is 25:1 ply =
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* SVM optimisation problem

max Z Oy — — S‘ S‘ O O Uy th Xm

nlml

subject to
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* SVM optimisation problem

N N
max E Oy — — SJ O, O tn th Xm,
n lm 1

subject to

|V
-
<
S
]
—_
=

Ul
N
Zantn = 0
n=1

* There are a number of ways to solve this problem and
we will employ a simple quadratic optimisation solver
which is written in Matlab.
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* A significant number of the «a,, parameters are returned
as having zero value from the optimisation
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* The a,, which have non-zero values are important and as
they are associated with each vector in the training
sample x,, these are referred to as the Support Vectors
as the support the decision boundary between the two
classes
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e Now discriminant function can be written as

f(Xnew§ W, w()) — Sign(WTXnew + w())
N
= sign Z tn@nx;zrxnew + wWo
n=1
= sign Z tn@nxlxnew —+ Wo
nesSV

— sign Z O K (Xp, Xpew) + Wo
nesSVv
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Figure (2) shows the SVM decision plane and the support
vectors for this little toy data set.
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Flgu re 2. The SVM decision plane separating examples from two classes along
with the support vectors which are highlighted. Note that there are only three non-zero
a components and so only three points in the data set which are supporting the decision

surface.
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* For the case where the samples from the two classes
may not be completely linearly separable then the SVM
optimisation problem can be posed in such a way as to
take these possible errors into account.
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* For the case where the samples from the two classes
may not be completely linearly separable then the SVM
optimisation problem can be posed in such a way as to
take these possible errors into account.

* |t turns out that a very simple change to the SVM
optimisation is required and it changes the positivity
constraint from «,, > 0 to 0 < a,, < C, for all n, where
C' is a box constraint parameter
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* For the case where the samples from the two classes
may not be completely linearly separable then the SVM
optimisation problem can be posed in such a way as to
take these possible errors into account.

* |t turns out that a very simple change to the SVM
optimisation is required and it changes the positivity
constraint from «,, > 0 to 0 < a,, < C, for all n, where
C' is a box constraint parameter

* Hyper-parameters consist of C' and kernel parameters if
any e.g. 8 from RBF kernel - LOO needed
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Flgu re 3: The left hand plot shows the test error achieved for varying values of C
when using a polynomial order kernel function. The right hand plot shows the training
data and the decision surface. The support vectors are highlighted and they can all be

seen to be clumped around the decision surface.
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Test Error

Kernel Width

Flgu re 4: The percentage error achieved by an SVM using a Radial Basis Kernel
function with a width parameter ranging from 0.01 to 4.0 in step sizes of 0.05. For each
of these ranges a value of C' was selected from 1 to 4 and we can see that the minimum

test error of 9.0% was achieved with hyper-parameter values of C =1 and 3 = 1.4.
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