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1 Laboratory Exercise

In this session we will now use our knowledge of probabilistic linear mod-
eling to look at a richer class of function approximators than the simple
polynomial-based methods.

1.1 Radial Basis Expansions

So far we have used linear models of the form

t =

M
∑

m=1

wmxm

which provide a polynomial basis expansion of the functions we are attempt-
ing to model. There are however many forms of basis functions which we
could decide to use (casting your mind back to first year maths you may re-
member the Fourier basis composed of multiples of sine and cosine functions).
One basis which is particularly useful is the Radial Basis Function which is
defined as

φ(x) = exp
(

−β|x − µ|2
)

using this basis we can define flexible models of the form

t =

M
∑

m=1

wmφm(x) =

M
∑

m=1

wm exp
(

−β|x − µm|
2
)

Now of course we have introduced additional parameters into our model in
the form of each location parameter µm and the common spread or influence
parameter β which will have to be estimated in some way. On the other
hand given that we have N data points in our sample then we can define our
model as

t =
N

∑

n=1

wnφn(x) =
N

∑

n=1

wn exp
(

−β|x − xn|
2
)

So now we are taken a little radial-basis bump and placing one onto each
of our data-points weighting each of the responses with a wn and summing
to obtain our model response. We will see that this provides a highly flexible
method for modeling and we have only introduced one additional parameter
(commonly called a hyper-parameter). Such a radial-basis model can be
viewed as a Kernel Machine which we will meet later in the course.
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1.2 Modeling the Sinc Function

The sinc function is defined as

f(x) =
sin(x)

x

and is a relatively simple function but is of interest as the scale of the response
if location dependent and as such modeling this function, with a finite amount
of data, using polynomial basis expansions is doomed to failure. However
using the radial-basis function introduced above it is fairly straightforward
to provide a good predictive model for this function.

1.3 Exploring the Influence of Radial-Basis Width in

Solutions

The following simple Matlab script (the file wk3 lab 1 sol.m is available in the
week 3 laboratory folder) will generate training and testing data sets where
noisy observations of the sinc function are simulated and these are used to
obtain the posterior mean and associated posterior variance predictions at
each of the test points. Use this code to see the effect that the Radial-Basis
width parameter has on the predictive quality achieved. Print out some
illustrative plots.

Range = 20;

N=30;

sigma = 0.25;

xt = [-Range/2:0.1:Range/2]’;

xt(find(xt == 0))=[];

ft = sin(xt)./xt;

x = Range.*rand(N,1) - Range/2;

f = sin(x)./x;

[i,j] = sort(x);

e=sigma*randn(N,1);

t = f + e;

alpha = 100;
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k=0.15;

X=kernel_func(x,x,’gauss’,k,k)’;

Xt=kernel_func(x,xt,’gauss’,k,k)’;

pos_cov = sigma*inv(X’*X + (sigma/alpha)*eye(N));

mu=pos_cov*X’*t./sigma;

pred_mean = Xt*mu;

pred_cov=diag(Xt*pos_cov*Xt’);

hold on

plot(i,t(j),’k.’);

plot(xt,ft)

plot(xt,pred_mean,’r’)

plot(xt,pred_mean+sqrt(pred_cov),’r’);

plot(xt,pred_mean-sqrt(pred_cov),’r’);

1.4 Exploring the Influence of the Prior on the Solu-

tion

From your experience in the previous section you should now be aware that
the radial-basis width has an enormous influence on the predictive capability
of the model. How does the prior variance affect the model performance for
a given Radial-Basis width parameter? Discuss you qualitative findings.

1.5 Using Cross Validation to Select the Optimal Prior

and Radial-Basis Hyper-Parameters

In a real application there is no possibility to generate test-sets on which
to assess how good your model is and we introduced LOOCV as a general
model assessment and selection method. In our model we now have a pair
of hyper-parameters which will index the possible model set, so we will have
quite a large number of α & β combinations to consider.

Write a Matlab script which will do the following

1. Generate a train and test set for the sinc function for a pre-set and
known noise level.

2. For a range of α & β values compute
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(a) the MSE on the training data

(b) the MSE on the test data

(c) the LOOCV MSE

3. Identify the α, β pair that yields the minimum train, test and LOOCV
errors

4. How well does LOOCV do in terms of locating optimal α, β pairings?

Write up your findings in the form of a report.

2 Radial-Basis Function in Matlab

You will notice that you require an auxilliary Matlab function which creates
the N ×N matrix of basis-function responses. A naive way of implementing
this is to loop over all N data points and populate the X matrix as follows

for i = 1:N

for j=1:N

X(i,j) = exp(-h*(x(i) - x(j))^2);

end

end

Of course as you will have no doubt noticed the radial-basis function is
symmetric in its arguments (hence the name radial-basis) and so we can
reduce the computational cost of populating the matrix from O(N 2) to
O(0.5N(N − 1)) so we could use

for i = 1:N

for j=i:N

X(i,j) = exp(-h*(x(i) - x(j))^2);

X(j,i) = X(i,j);

end

end

Now Matlab performance degrades when loops are used and if at all
possible Matlab code should be vectorised as much as possible so converting
for loops to vector operations will yield a significant increase in performance.
The function kernel-func.m is in vectorised form.
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