
Machine Learning Module

Week 6

Lecture Notes 11 & 12

Probability Density Estimation

Mark Girolami
girolami@dcs.gla.ac.uk

Department of Computing Science
University of Glasgow

February 14, 2006

1



1 Probability Density Estimation

In Week 4 we saw that devising a classifier based on the discriminative prin-
ciple required an estimate of the class-conditional probabilities p(x|C = k)
for each class. The two examples of class-conditional probabilities we consid-
ered were the multivariate Gaussian which produced a quadratic discriminant
function and the Naive Bayes classifier based on Bernoulli probabilities for
the binary variables representing the presence or absence of words in a docu-
ment. Now in both of these cases we have assumed that the class-conditional
distributions are of a specific parametric form i.e. multivariate Gaussian and
multiple independent Bernoulli distributions. Each of these have a set of
parameters which, given our data which is available for training, has to be
estimated in some way. This then leads us onto the first and most straightfor-
ward method of Probability Density (or distribution if we are dealing with
discrete random variables) which is referred to as the Parametric form of
density estimation.

If, given our data, we are justified in making specific assumptions regard-
ing the parametric form of the distribution of our available features then our
task simply requires us to obtain estimates of the corresponding parameters
of the distribution.

2 Parametric Probability Density Estimation

As the class-conditional probability p(x|C = k) will take on a specific para-
metric form with a set of parameters θk with the subscript k denoting that
these parameters are associated with class k we can write p(x|θk) to denote
our class-conditional probability density. So how do we obtain estimates for
each set of θk ? In Week 2 we were introduced to the Maximum Likeli-
hood (ML) Principle and it is exactly this that we employ in obtaining our
parameter estimates.

2.1 Maximum Likelihood Estimation

A couple of examples will illustrate the method of parameter estimation
based on ML.

2



2.1.1 Multivariate Gaussian

If we have Nk examples from class k in our training data and we have sufficient
justification to assume that the D features we have are distributed as a
Multivariate Gaussian then the likelihood under this assumption is given as

Lk =

Nk∏

n=1

p(xn|θk) =

Nk∏

n=1

p(xn|µk
,Σk)

=

Nk∏

n=1

1√
(2π)D|Σk|

exp

{
−

1

2
(xn − µk)

TΣ−1
k

(xn − µk)

}

and as before we can work with the logarithm of the likelihood in which
case

logLk = −
NkD

2
log 2π −

N

2
log |Σk| −

1

2

Nk∑

n=1

(xn − µ
k
)TΣ−1

k
(xn − µ

k
)

as before we require to obtain the stationary points of the likelihood and
solve for our parameters in which case we take derivatives with respect to µ

k

and Σk.
Now we can expand the quadratic term on the right hand side of the

above expression and drop all terms which are not functions of µ
k

in which
case

∂

∂µ
k

logLk =
∂

∂µ
k

(
1

2

Nk∑

n=1

{
2µT

k
Σ−1

k
xn − µT

k
Σ−1

k
µk

}
)

Now remembering the vector derivatives from Week 2 (refer to the Matrix
Cookbook) we can obtain the required derivative as

∂

∂µ
k

logLk =

Nk∑

n=1

{
Σ−1

k
xn − Σ−1

k
µk

}

Setting the gradient to zero we then obtain

Nk∑

n=1

Σ−1
k

xn =

Nk∑

n=1

Σ−1
k

µ
k

= NkΣ
−1
k

µ
k

3



Now we can multiply both sides by the matrix Σk to obtain
∑

Nk

n=1 xn = Nkµk

finally given the Maximum-Likelihood estimate for the mean of the class-
conditional Multivariate Gaussian as

µ̂
k

=
1

Nk

Nk∑

n=1

xn

This is an intuitively appealing result as the Maximum-Likelihood estimate
of the mean is simply the sample mean estimate.

Now we can do the same for the ML estimate of the required covari-
ance matrix Σk. We need to exploit some standard results from the Matrix
Cookbook to proceed as we need the partial derivatives of the logarithm
of the determinant of a symmetric matrix i.e. from the expression of the
log-likelihood above

∂

∂Σk

Nk

2
log |Σk|

Now from Section 2.1.2 of the Matrix Cookbook we have the following equal-
ity

∂

∂Σk

|Σk| = |Σk| (Σk)
−1

we no longer require the explicit matrix transformation as (Σk)
−1 is sym-

metric. Now we know that the derivative of the logarithm of a scalar value
is one over the scalar value then we see that

∂

∂Σk

Nk

2
log |Σk| =

Nk

2|Σk|
|Σk| (Σk)

−1 =
Nk

2
Σ−1

k

Now back to the Cookbook, Section 2.2 expression third from bottom,
shows that

∂

∂X
aTX−1b = −X−1abTX−1

again we have dropped the matrix transpose as we are working with a sym-
metric matrix, using this expression then

∂

∂Σk

Nk∑

n=1

(xn − µ
k
)TΣ−1

k
(xn − µ

k
) = −

Nk∑

n=1

Σ−1
k

(xn − µ
k
)(xn − µ

k
)TΣ−1

k

4



plugging everything together then we obtain

∂

∂Σk

logLk = −
Nk

2
Σ−1

k
+

1

2

Nk∑

n=1

Σ−1
k

(xn − µ
k
)(xn − µ

k
)TΣ−1

k

So setting this gradient to zero, replacing the mean vectors with their ML
estimate and after a little manipulation we see that our estimate for the
class-conditioned covariance is, as we would expect

Σ̂k =
1

Nk

Nk∑

n=1

(xn − µ̂k)(xn − µ̂k)
T

We can apply the ML estimation method to any parametric form of proba-
bility density or distribution function in a straightforward manner. Of course
we can also adopt a Bayesian approach to estimating the parameters of a
density function by setting appropriate priors for the mean and covariance
terms. Resisting the temptation as much as possible we will not explore the
Bayesian approach further in this section.

2.2 Illustrative Examples

The ML estimates of the mean vector and covariance matrix of a multivariate
Gaussian turn out to be quite intuitive in that sample estimates emerge. As
an example the Matlab script gauss_density_est.m, which can be down-
loaded form the module website, provides and illustration of the ML estima-
tion of a multivariate Gaussian from an available sample of data. The script
allows you to generate a random sample of data drawn from a 2D Gaussian
with parameters

µ =

[
1.0
3.0

]
C =

[
1.5 0.6
0.6 0.4

]

We can now use the sample to obtain estimates for the required parame-
ters, see Figure (1), clearly as the sample size N → ∞ then the estimates
will converge to the true values1.

For a typical sample of size N = 30 the following estimates are obtained

µ̂ =

[
0.91
3.05

]
Ĉ =

[
2.20 0.90
0.90 0.53

]

1In actual fact the estimate of the covariance is biased and a normalisation of 1

N−1
is

required to remove this bias.

5



Given that the estimate of the covariance depends on our estimate of the
mean as well then we can expect to see some degree of higher variability in
the estimates of the covariance terms as indeed we do.

−2 0 2 4
1.5

2

2.5

3

3.5

4

4.5

−2 0 2 4
1.5

2

2.5

3

3.5

4

4.5

Figure 1: The left plot shows a random sample of 30 points drawn from a 2D
Gaussian, the iso-contours of estimated probability density are superimposed
on the plot. The iso-contours of probability density for the Gaussian with
the actual parameter values are given on the left hand plot superimposed
upon the iso-contours of estimated density.

Now this is excellent as if we are interested in devising a classifier we can
now plug these estimates of the mean values µ̂ and covariance Ĉ into our
class conditional densities to obtain p(x|µ̂

k
, Ĉk) which then allows one to

produce the posterior probabilities required to produce a discriminant.

2.3 Non-Gaussian Example

Let us now look at another example of data for which we, wrongly, will
assume that the density is also Gaussian. The data in fact will be drawn
from a mixture of two Gaussians. In Figure (2) we see a random sample of
30 points drawn, with equal probability, from two separate Gaussians each
which have mean and covariances of

6



µ1 =

[
0.5
2.0

]
C1 =

[
1.0 0.0
0.0 1.0

]

µ2 =

[
3.0
4.0

]
C2 =

[
1.0 0.0
0.0 1.0

]

So our data can be considered as coming from two sub-populations, or
there are two distinct generating processes each responsible for producing the
data we observe. A classic example is the discrimination of two species of
salt water crab based on a number of physical measurements from the shell.
Of course the examples from one species will include both male and female
and so the class conditional densities for each species would be well described
by a mixture of densities one describing the variability of the measurements
in the female sub-population of the species and the other for the males of the
species.

−2 0 2 4
0

1

2

3

4

5

6

−2 0 2 4
0

1

2

3

4

5

6

Figure 2: The left plot shows a random sample of 30 points drawn from
2 distinct 2D Gaussians, the iso-contours of estimated probability density
under the assumption that the density is a single 2D Gaussian, are superim-
posed on the plot. The right plot shows the same random sample with the
iso-contours of estimated probability density where the true functional form
has been employed i.e. two 2D Gaussians.

Now for the data we are considering in this example we know that there

7



are two Gaussians responsible for the data we see in Figure (2). We have
stated that each of the two Gaussians is equally probable for the generation
of data points which means that, on average, we would anticipate equal
proportions of data points coming from each Gaussian component.

If we measure the average likelihood of points spread uniformly across the
regions shown in the figures under the assumption of a probability density
function which is a single Gaussian then the average TEST likelihood is -3.261
whereas the averge TEST likelihood for the same points when a mixture of
two Gaussians has been assumed, and the associated parameters estimated,
turn out to be -3.123. This is higher than that achieved when assuming a
single Gaussian and so provides a superior predictive generative model of the
data. We will find that such forms of mixture of components is an impor-
tant class of probability density functions and the following section will now
consider these in some more detail. A Matlab script mix_gauss_density.m

is available on the course website to allow you to replicate these results.

3 Mixture Models

The probability density function for the case of two Gaussians can be repre-
sented as

p(x|θ) = πp(x|θ1) + (1 − π)p(x|θ2)

= πNx(µ1,C1) + (1 − π)Nx(µ2,C2)

where θ = {π, θ1, θ2} and each set of parameters is defined by θ1 = {µ1,C1}
and θ2 = {µ2,C2}.

The parameter π is the probability that a point x will be generated from
p(x|θ1) and so the probability that the point will be generated from p(x|θ2)
is 1 − π.

In the more general case where there are M components, of arbitrary
parametric form2 in our mixture model then the probability density will be
expressed as

p(x|θ) =
M∑

m=1

πmp(x|θm)

2The mixture components can take on any parametric form appropriate for the mod-

eling task at hand.

8



where now of course the whole parameter set is defined as θ = {π1 · · ·πM , θ1 · · ·θM}
and

M∑

m=1

πm = 1

as each πm is the probability that the mth component of the mixture will
produce a data point and so it must sum to one to be a valid probability
over the M selection events.

This form of mixture of parametric models is often referred to as a Semi-
Parametric Mixture Model and one of the main tasks ahead of us is the
estimation of the parameters of a mixture model θ = {π1 · · ·πM , θ1 · · ·θM}
which is not as straightforward a ML estimation of a parametric model and
we now consider this in some detail.

4 Parameter Estimation in Mixture Models

and the EM Algorithm

Suppose that we have a sample of data D = {x1 · · ·xN} and we have, with
some appropriate justification, assumed that the probability density is of a
semi-parametric form based on a mixture model of the form given above i.e
p(x|θ) =

∑
M

m=1 πmp(x|θm). Now then we need to estimate the parameters
of the model, well this looks to be a straightforward task.

To obtain estimates of each πm, which is the relative probability of data
being generated by each of the m components, then all we need to do is
count how many points from D were produced by each of the M components
and then simply normalise by the number of samples N . So if we count that
there are Nm points in D drawn from component m then

π̂m =
Nm

N

where each Nm can be obtained from

Nm =

N∑

n=1

zmn

where each zmn = 1 if the nth point was drawn from component m and
zmn = 0 otherwise.

9



We are now making some progress. What of the specific parameters of
each of the components θm?

Well this is also easy as all we need to do is obtain the estimates θ̂m

which maximise the likelihood of the data points which were drawn from
component m under the parametric form p(x|θm).

For example if the mixture components were Gaussians then the Maximum-
Likelihood estimate for the component mean vectors would simply be

µ̂m =

∑
N

n=1 znmxn∑
N

n=1 znm

=
1

Nm

∑

n∈m

xn

The expression for the covariance matrices for each component would
follow simply as

Σ̂m =
1

Nm

N∑

n=1

zmn(xn − µ̂m)(xn − µ̂m)T

and we are then finished.
There is one small difficulty which we have overlooked, we do not have

values for the indictor variables zmn on which we have relied.
This is a major difficulty as the fact that the variables zmn are hidden or

latent then our ML estimates cannot follow in the straightforward manner
we had anticipated.

In addition to the estimation problem we will have to impute the values of
the indictor values zmn which assign each data point to a mixture component
and this is a non-trivial problem. Bet you are glad you took the Machine
Learning module?

4.1 The EM Algorithm

The problem with our reasoning in the previous section was that we assumed
that we knew the value of the allocation or indicator variables zmn. So
what is needed is the joint likelihood of our data X = {x1 · · ·xN} and the
indicator variables Z = {z1 · · · zN} where each zn = {z1n · · · zMn}. Now given
the parameter values θ = {θ1 · · ·θM} we can marginalise over all possible
component allocations of the data such that

p(X|θ) =
∑

Z

p(X,Z|θ)

10



where the summation is over all possible values which Z may take on.
Now we use the following

log p(X|θ) = log
∑

Z

p(X,Z|θ)

= log
∑

Z

P (Z|X)
p(X,Z|θ)

P (Z|X)

There is an inequality for convex functions such as the logarithm which states
that log E{f(X)} ≥ E{log f(X)} now the above is an expectation with
respect to P (Z|X) and so we can write

log
∑

Z

P (Z|X)
p(X,Z|θ)

P (Z|X)
≥

∑

Z

P (Z|X) log
p(X,Z|θ)

P (Z|X)

=
∑

Z

P (Z|X) log p(X,Z|θ)

−
∑

Z

P (Z|X) logP (Z|X)

As the assumption that each xn is generated iid from each mth component
exclusively then the summation over all Z will be equal to a summation over
all n and m i.e.

LB =
∑

Z

P (Z|X) log
p(X,Z|θ)

P (Z|X)
=

M∑

m=1

N∑

n=1

P (m|xn) log
p(xn|θm)P (m)

P (m|xn)

=

M∑

m=1

N∑

n=1

P (m|xn) log p(xn|θm)P (m)

−
M∑

m=1

N∑

n=1

P (m|xn) log P (m|xn)

where now P (m|xn) is the probability that zmn = 1 and P (m) is the
probability that zmn = 1 for any n.

Lets just step back for a second. The data log-likelihood log p(X|θ) re-
quires marginalisation of the allocation variable for all data points n and all
values m. We have shown that a lower-bound on the marginal likelihood

11



can be obtained by introducing the P (m|xn) and using the inequality for
convex functions introduced above. The reason for this is that the allocation
variables Z are hidden from us, in other words we do not know which of
the mixture components generated a particular data point say xn. If we did
know Z then our job would be straightforward, as it is we do not know Z

and so we must infer them and then make our estimates of the parameters
θm.

The Expectation Maximisation (EM) algorithm is a general purpose method
for this particular problem where we would like to Maximise the likelihood of
the complete data (X & Z) so as to obtain estimates of the component para-
meters θm. However before performing the Maximisiation step we require to
obtain the Expected values of a set of hidden (unobserved or latent) binary
allocation variables zmn. Once we have obtained the Expected values of the
latent variables we can then perform the Maximisation step to obtain our
current parameter estimates. This EM interleaving is continued until some
convergence criterion is achieved.

4.1.1 Expectation Step

Taking functional derivatives of the lower-bound with respect to P (m|xn)
then

∂LB

∂P (m|xn)
= log P (m|xn) − log p(xn|θm)P (m) − 1

setting this to zero then we see that P (m|xn) ∝ p(xn|θm)P (m) and normal-
ising appropriately yields the distribution of the form

P (m|xn) =
p(xn|θm)P (m)

∑
M

m′=1 p(xn|θm′)P (m′)

You should now be able to see that this is the posterior distribution over
the mixture components m which generated xn, or the expected value of the
binary variable zmn.

Now that we have maximised the bound with respect to the Expected

value of the indicator variable we need to Maximise the bound with respect
to the parameter values.

12



4.1.2 Maximisation Step

The only terms in the bound LB which are dependent on the component
parameters are

M∑

m=1

N∑

n=1

P (m|xn) log p(xn|θm)P (m)

in which case we maximise the above with respect to each θm.
As an example assume that each p(xn|θm) is a multivariate Gaussian,

then expanding and retaining the elements dependent on the parameters we
obtain

−
1

2

M∑

m=1

N∑

n=1

P (m|xn) log |Σk|

−
1

2

M∑

m=1

N∑

n=1

P (m|xn)(xn − µm)TΣ−1
m

(xn − µm)

+
M∑

m=1

N∑

n=1

P (m|xn) log P (m)

Taking derivatives with respect to each µm of the above and solving yields

µ̂
m

=

∑
N

n=1 P (m|xn)xn∑
N

n=1 P (m|xn)

this is a nice result as if we compare the estimator which we obtain in the
case where we have perfect knowledge of the allocation variables zmn i.e.

µ̂
m

=

∑
N

n=1 zmnxn∑
N

n=1 zmn

so in the absence of the values zmn we employ the expected values, or the
posterior probabilities P (m|xn) which are obtained in the Expectation step.

Leaving you to have some fun with the derivation of the estimator for the
covariance matrices we obtain

Σ̂m =

∑
N

n=1 P (m|xn)(xn − µ̂
m

)(xn − µ̂
m

)T

∑
N

n=1 P (m|xn)

13



again we can see that we have replaced perfect knowledge of the allocation
variables with our current estimates of the posteriors P (m|xn), is’nt this
cool?

Finally we need an estimate for P (m) taking derivatives then we observe
that

P (m) ∝
N∑

n=1

P (m|xn)

This needs to be properly normalised and so

P (m) =
1

N

N∑

n=1

P (m|xn)

and so we are complete. Let us now summarise our EM algorithm for a
mixture of Gaussians.

E Step

P (m|xn) =
p(xn|θm)P (m)

∑
M

m′=1 p(xn|θm′)P (m′)

M Step

µ̂m =

∑
N

n=1 P (m|xn)xn∑
N

n=1 P (m|xn)

Σ̂m =

∑
N

n=1 P (m|xn)(xn − µ̂m)(xn − µ̂m)T

∑
N

n=1 P (m|xn)

P (m) =
1

N

N∑

n=1

P (m|xn)

Repeating the EM steps will maximise the lower-bound on the marginal
likelihood and thus allow us to estimate the parameters of a mixture density
despite having incomplete knowledge of the mixture allocations of each data
point.

5 Experiments

There is a Matlab file which you should download from the website Gauss_Mix_Data.mat
there is a matrix X which is of dimension 150 × 2. The data has been

14



generated by drawing points with equal probability from three possible 2D
Gaussians which have a common unit variance isotropic covariance i.e. I and
have means of [0, 0], [3, 3], [−3, 3]. There is also a 1500 × 2 dimensional data
set drawn from the same distribution which can be used to obtain values of
likelihood on independent test data.

So now we wish to estimate the probability density from which this sample
of data has been drawn. Armed with our newly acquired EM algorithm we
can set to work in estimating the mixture density. There is, as always, one
slight snag, our EM algorithm requires that we provide it with a value for
the number of components in the mixture. For now lets assume that we have
a good idea what this value is.

Running the Matlab script gauss_mix_em_demo.m will produce a dy-
namic view of how the estimate of the mixture density is evolving at each
EM-step. The final converged solution is shown in Figure (3).

−6 −4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

4

5

6

0 10 20 30 40 50
−4.4

−4.3

−4.2

−4.1

−4

−3.9

EM Iteration

D
at

a 
Lo

g−
Li

ke
lih

oo
d

Figure 3: The left plot shows a random sample of 150 points drawn from
3 distinct 2D Gaussians, the iso-contours of estimated probability density
under the assumption that the density is a mixture of three 2D Gaussians,
are superimposed on the plot. The right plot shows the data likelihood under
the mixture model at each EM step, it is clear that the likelihood does not
decrease at each step.

We mentioned the requirement to know the number of mixture compo-

15



nents in the model. One way to assess the required number of components
is to use cross-validation and score held-out data based on the likelihood. In
Figure (4) we see the likelihood of both test and training data under a mix-
ture model with a varying number of components. As we have now come to
expect the likelihood of the training data increases as the model complexity
increases whilst the testing likelihood falls after 3 to 4 components have been
added so it is clear that around 3 or 4 components are optimal for this data.

2 4 6 8 10
−4.1

−4.05

−4

−3.95

−3.9

−3.85

−3.8

Number of Components

D
at

a 
Li

ke
lih

oo
d

Train
Test

Figure 4: The likelihood obtained for training and testing data for various
numbers of mixture components. As expected the out of sample likelihood
decreases as too many components are used.

6 Conclusion

The EM algorithm is generic and any mixture of densities or distributions
can be provided with an EM algorithm for parameter estimation.

You should attempt to develop an EM algorithm for a mixture of Bernoulli
distributions for binary data where each component takes the parametric
form of

16



p(x|m) =
D∏

d=1

p
xnd

md
(1 − pmd)

(1−xnd)

and the overall mixture is

p(x) =

M∑

m=1

πm

D∏

d=1

p
xnd

md
(1 − pmd)

(1−xnd)

17


