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1 Principal Component Analysis: Motivation

We have been asked to devise a linear classifier to discriminate between
individuals who wear spectacles and those who do not based on a 64 × 64
dimensional 8-bit grey-scale image of their faces. There are 400 examples of
various faces in the Matlab file olivettifaces.mat and some of these are
shown in Figure (1).

Figure 1: A sample of 68 faces from the file olivettifaces.mat showing the
variability of the images based on, for example, pose and lighting.

Now as each 64×64 grey-scale image has 642 = 4096 pixels taking integer
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values in the range 0 − 28(256) then each image can be represented as a
M = 4096 × 1 dimensional vector x and the whole collection of N = 400
images can be stored in the N = 400×M = 4096 dimensional matrix X.

If we were to use a discriminative classifier of the form

log
P (C = 1|x)

P (C = 0|x)
= wTx

,where C = 1 ≡ Spectacles and C = 0 ≡ No Spectacles, then we see that
as w has dimension M×1 there are a large number of parameters to estimate.
Given that there are only 400 examples from which to identify these para-
meters it is clear that we will run the risk of overfitting our classifier to the
available images (cast your mind back to Week 2 lectures on Generalisation).
This is a problem.

Consider the variability observed in the images. From the small example
shown in Figure (1) we can see that differences in pose (head on, facing diag-
onally, looking up, down), facial expression (grinning, smiling, scowling, open
mouthed etc), wearing of glasses, presence of beard, shape of face, lighting
and so forth, account for the inherent variability in this data. It would then
appear that the variability in the image data available could be attributed
to a relatively small number of degrees of freedom (pose, expression and so
forth).

As we have 64×64 dimensional grey scale images the total number of pos-
sible images which could be produced from such a representation is 25640961.
A few thousand example faces would be enough to be able to identify a face
in general.

This leads us to consider the notion that the images of faces may well
be described by a subspace of the 4096 dimensional pixel space. In other
words the data lies in a lower-dimensional feature space which accounts for
all of the information or variability in the images. If we can somehow extract
these features from our original representation X then it may be possible to
overcome the potential generalisation problem we face.

1This is a staggeringly large number i.e. 2564096 = 28×4096 which is vastly larger than
the number of atoms in the entire universe 2784.
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2 PCA Linear Sub-Spaces

We are assuming that our M dimensional data actually lies within a P dimen-
sional subspace where P << M . It will be further assumed that the subspace
is linear such that a set of linearly independent orthonormal2 basis vectors
(coordinates) span this subspace i.e. {β1 · · ·βP} where each βp ∈ R

D. So
each data point x can be approximated by a linear combination of these basis
vectors

xn ≈
P∑

p=1

unpβp = Bun

where the D × P dimensional matrix B = [β1 · · ·βP ] and un is a P × 1
dimensional vector. We can consider this as a descriptive model of our data
where points un in a P -dimensional space defined by {β1 · · ·βP} generate
corresponding points xn in the original M -dimensional data space.

2.1 PCA Derivation

Consider the limiting case where P = 1, i.e. that the data X is modeled as
residing around a 1-dimensional linear subspace β1. Assume that the data
X has zero mean.

The squared reconstruction error incurred when making the approxima-
tion xn = u1nβ1 is defined as

E =
1

N

N∑

n=1

(xn − u1nβ1)
2

taking derivatives with respect to each u1n and setting to zero gives

∂E

∂u1n

= −
2

N
(βT

1 xn − u1n) = 0⇒ u1n = βT

1 xn

2For a set of vectors, {β
1
· · ·βP }, to be orthonormal they must satisfy two conditions,

(1) that the norm (vector length) of each vector is one i.e. βT

i βi = 1. (2) that βT

i βj =
0 ∀ i 6= j
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plugging this value back into the expression for E yields

E =
1

N

N∑

n=1

(xn − u1nβ1)
2

=
1

N

N∑

n=1

xT

nxn − 2u1nβ
T

1 xn + u2

1nβT

1 β1

=
1

N

N∑

n=1

xT

nxn − 2u2

1n + u2

1nβ
T

1 β1

=
1

N

N∑

n=1

xT

nxn − u2

1n

=
1

N

N∑

n=1

xT

nxn − βT

1 xnx
T

nβ1

So to minimise our reconstruction error we require to maximise

1

N

N∑

n=1

βT

1 xnx
T

nβ1 =
1

N
βT

1 XTXβ1 = βT

1 Ĉβ1

subject to βT

1 β1 = 1 where the sample covariance matrix is denoted as Ĉ

(remember that each X is zero mean).

2.2 Variance Maximisation

It is interesting to note that minimisation of reconstruction error by maximi-
sation of

1

N

N∑

n=1

βT

1 xnx
T

nβ1 =
1

N

N∑

n=1

u2

1n

provides projections which are maximally informative.
Remember that we are restricting each basis-vector to have unit norm in

which case we require to create the Langrangian (Refer to the Week 5 notes)

βT

1 Ĉβ1 − λ1β
T

1 β1

and maximise with respect to β1. The corresponding vector of partial deriv-
atives gives
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∂

∂β1

= Ĉβ1 − λ1β1

and setting to zero then we have a standard eigenvalue problem to solve i.e.

Ĉβ1 = λ1β1

As the variance of the projection is defined βT

1 Ĉβ1 then for βT

1 β1 = 1 it
should be clear that the variance of the projection is equal to λ1 the associated
eigenvalue. We will discuss how to numerically solve this eigenvalue problem
in the following section.

We have now found the direction β1 which maximises the variance of the
projection βT

1 x and correspondingly minimises the reconstruction error

E =
1

N

N∑

n=1

(xn − u1nβ1)
2

This is referred to as the First Principal Direction and the projections of
the data in this direction are the Principal Components in this direction.

2.3 Finding Additional Directions

Now we want to find another direction vector β2 which will satisfy βT

1 β2 = 0
and βT

2 β2 = 1 such that the two vectors {β1, β2} will form a 2-D orthonormal
basis for our data. The approximations of points in data space will now take
the form of

xn ≈

P=2∑

p=1

unpβp =

and so we wish that the reconstruction error will be maximally reduced

E =
1

N

N∑

n=1

(xn − u1nβ1 − u2nβ2)
2

it is straightforward to see that u2n = βT

2 xn and so following on from above
the reconstruction error can now be obtained as the following where the
orthonormal characteristics of both directions has been exploited
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1

N

N∑

n=1

xT

nxn − βT

1 xnx
T

nβ1 − βT

2 xnx
T

nβ2

It is clear that given β1 then we require to obtain a solution for

Ĉβ2 = λ2β2

subject to the orthonormal constraints imposed. The following sub-section
considers how we can achieve this in a practical way by exploiting some
simple geometry.

2.4 Projection and Deflation

If β1 and β2 are orthonormal then

x = u1β1 + u2β2

= (xTβ1)β1 + (xTβ2)β2

where (xTβ2)β2 is the projection orthogonal to (xTβ1)β1 in which case we
can write the projection orthogonal to that of the first principal direction as

(xTβ2)β2 = (I− β1β
T

1 )x

Applying this to all of the data gives

X(I− β1β
T

1 )T = X(I− β1β
T

1 )

We can think of this operation as removing from the D-dimensional data
the component that lies in the direction of the first principal direction. In
other words we are deflating the matrix X and thus reducing its rank from
D to D − 1 i.e. removing one direction component, the principal direction.

Consider then the covariance of this deflated data matrix X̃ = X(I −
β1β

T

1 )

1

N
X̃TX̃ =

1

N
(I− β1β

T

1 )X̃TX̃(I− β1β
T

1 )

=
1

N

(
XTX− β1β

T

1 XTX−XTXβ1β
T

1 + β1β
T

1 XTXβ1β
T

1

)
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Taking this expression term by term we see that the right hand term can
be written as

β1

(
βT

1 X
TXβ1

)
βT

1 = β1 (Nλ1) βT

1 = Nλ1β1β
T

1

For
β1β

T

1 X
TX = β1(Nλ1β

T

1 ) = Nλ1β1β
T

1

and
XTXβ1β

T

1 = Nλ1β1β
T

1

plugging these into the expression for the covariance we obtain

C̃ =
1

N
X̃TX̃

=
1

N
XTX− λ1β1β

T

1

= Ĉ− λ1β1β
T

1

If we then find the principal direction associated with the deflated covari-
ance matrix C̃ by solving the eigenvalue problem

C̃β2 = λ2β2

then of course βT

2 β2 = 1 and as the data X̃ resides in the D − 1 di-
mensional subspace orthogonal to the first principal direction β1 then by
definition βT

1 β2 = 0 must hold.
We will see further on that continuing this joint matrix deflation and solv-

ing of the associated eigenvalue problems will provide a set of eigenvectors
{β1 · · ·βD} and associated eigenvalues {λ1 · · ·λD} which provide an ortho-
normal basis for the data which when truncated at P << D will provide the
minimum reconstruction error, in the least squares sense, of the data.
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2.5 Components of Reconstruction Error

The overall data reconstruction error can be written as

E =
1

N

N∑

n=1

(
xn −

P∑

p=1

upnβp

)2

=
1

N

N∑

n=1

(
xT

nxn −

P∑

p=1

βT

p xnx
T

nβp

)

=
1

N

N∑

n=1

xT

nxn −
P∑

p=1

λp

Now if there is no truncation and P = D then E is clearly zero in which
case

0 =
1

N

N∑

n=1

xT

nxn −
P∑

p=1

λp −
D∑

p′=P+1

λp′

= E −
D∑

p′=P+1

λp′

⇒ E =
D∑

p′=P+1

λp′

and therefore the reconstruction error is composed of the sum of the
eigenvalues associated with the principal components discarded in the trun-
cation. As the first principal component provides the largest reduction in
error and the second principal component (PC) is obtained from the de-

flated covariance matrix Ĉ − λ1β1β
T

1 then the reduction in error obtained
by the second PC will be smaller than that obtained from the first as such
λ1 ≥ λ2 ≥ λ3 · · · ≥ λD.

This means that by studying the distribution of the eigenvalues we can
potentially identify the intrinsic dimension of the data by assessing which
dimensions incur the main contributions to the overall reconstruction error.
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It also follows that

C̃ = 0 = Ĉ−

D∑

p=1

λpβpβ
T

p ⇒ Ĉ =

D∑

p=1

λpβpβ
T

p

so if we define the D × D matrix B whose columns are βp and the D × D

diagonal matrix D whose elements are each λp then the covariance matrix
can be represented in terms of the associated eigenvalues and eigenvectors as

Ĉ = BDBT

2.6 Illustrative Example

Consider 200 samples of 2-dimensional data denoted by the matrix X. The
data is drawn from two 2-D isotropic Gaussian distributions centered at [-2,
-2] and [+2, +2]. A plot is given in Figure(2) and the data was produced
using the Matlab command

X=[randn(100,2)+2.*ones(100,2);2.*randn(100,2)-2.*ones(100,2)];

−8 −6 −4 −2 0 2 4 6
−8
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−4

−2

0

2

4

6

Figure 2: A scatter diagram of the 2-D data.

Now we generate a random 10×2 matrix A and apply the transformation
Ỹ = XA such that the data has now been projected from the original 2-
D space into a 10-D representation. Finally we set Y = Ỹ + ε where ε is
isotropic noise with variance 2.

10



Given this 10-D data let us perform PCA on the data and study how
the errors are distributed throughout the ten dimensions by plotting the
10 eigenvalues λ1 · · ·λ10. The matlab command eig performs the required
eigenvalue decomposition3 and the little segment of code below will produce
the bar chart in Figure (3).

X=[randn(100,2)+2.*ones(100,2);2.*randn(100,2)-2.*ones(100,2)];

plot(X(:,1),X(:,2),’r.’)

A=randn(10,2);

Y=X*A’;

Y=Y+randn(200,10).*2;

[V,S]=eig(cov(Y));

bar(flipud(diag(S)))

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Eigenvalue Number

E
ig

en
va

lu
e

Figure 3: A bar chart of the eigenvalues λ1 · · ·λ10 for the 10-D data created
from the procedure given above.

3We will be introduced to an algorithm for computing the eigenvectors and eigenvalues
of a covariance matrix in the following section - just in case you were getting worried about
being too reliant on the suite of functions which Matlab provides
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The eigenvalues are [69.4287, 31.9839, 5.1432, 5.0361, 4.3781, 3.9894,
3.8538, 3.4494, 3.1129, 3.0384]. It should be clear that there are two principal
directions which account for the majority of the reconstruction error with the
first two accounting for over 76% of the total error, or put another way the
total variance and hence information in the data. This strongly suggests that
the data exists around a 2-D subspace and hence the main structure in the
data has an intrinsic dimension of two.

Let us now revisit our collection of images of faces. Our data matrix X

has dimension 400× 4096 and so the covariance matrix will have dimension
4096× 4096 which is huge relative to the number of examples available. Of
course this matrix will only have rank N = 400 and so we will only be able
to extract 400 principal components in which case we employ the following
trick

Ĉ = BDBT

⇒
1

N
XTX = BDBT

⇒
1

N
XTXB = BD

⇒
1

N
XXTXB = XBD

⇒
1

N
XXTU = UD

where we have defined U = XB. Now as there are only N non-zero eigen-
values then we can see that

1

N
XXTU = UD

solves the eigenvalue problem for the matrix 1

N
XXT 4 where U has dimension

N ×N and D is an N ×N dimensional diagonal matrix. So having obtained
U and D by noting that

1

N
XXTUD−1 = U = XB

4You may notice that this is a matrix of inner products x
T

i xj which could of course be
generalised to some kernel defined inner-product k(xi,xj) and so opens up the possibility
of performing PCA in a nonlinear space defined by the kernel function k(., .).
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Then the D ×N dimensional matrix of eigenvectors B follows simply as

B =
1

N
XTUD−1

Remember that throughout we have assumed that X has zero-mean.
Armed with this alternative method for computing a PCA when D >> N

let us now consider the 400 non-zero eigenvalues for the database of images.
The Matlab script faces_demo.m is available for download from the class
webpage and it illustrates PCA applied to the images of faces in the file
olivettifaces.mat.

Figure (4) shows the cumulative reduction in reconstruction error when
increasing the number of principal components used to model the images.
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Figure 4: The percentage reconstruction error as principal components are
included within the image representation.

The first thing to note is that an error of 20% is achieved when only
200 eigenvectors are employed. So this means that of the 4096 dimensions
available a feature space of dimension less than 5% of this will capture around
80% of the variance in the images or will incur a 20% error. This is a massive
amount of representation compression.

In Figure (5) the original image of a single face from the database is
shown, the middle plot shows the reconstructed facial image i.e. xn =∑P

p=1
upnβp when the first ten (P = 10) PC’s are employed. Features such

as spectacles around the eyes have been captured but there are still more
specific details required.
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Figure 5: The original image (left) and the reconstructed image (middle)
after ten principal components have been employed. The right hand plot
shows how the error has decreased for this particular face over the ten PC’s
employed.

Figure (6) now shows how the reconstruction has progressed when P =
100, it is much more recognizable as the original face, however rather than
using a 4096 dimensional feature representation a smaller 100 dimensional
feature representation is required.

3 PCA Applications

It is clear that PCA can be employed in extracting linear feature sets from
high-dimensional data is such a way that the maximum amount of data
variance can be retained. This is a particularly important and in many cases
useful application of PCA.

3.1 Improving Generalisation Performance

Recall that the variance of predictions made by linear regression models on
data points x∗ can be given as

σ2xT

∗ (XTX)−1x∗

and as
XTX = NBDBT
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Figure 6: The original image (left) and the reconstructed image (middle)
after one hundred principal components have been employed. The right
hand plot shows how the error has decreased for this particular face over the
one hundred PC’s employed.

then given that B is an orthonormal matrix such that BTB = I then B−1 =
BT we can write

(XTX)−1 =
1

N
BD−1BT =

1

N

D∑

p=1

1

λp

βpβ
T

p

So we see that directions which have small eigenvalues λp will make a large
contribution to the variance of the estimate due to the 1

λp

term occurring in

the expansion. Therefore employing a smaller number of PC’s by discarding
the directions with small eigenvalues will reduce the prediction variance and
hence improve the generalisation performance.

However, as we have a set of target values it would seem sensible that
rather than seeking variance maximising projections to seek projections which
maximise the covariance between the projection and the target values. There
are a number of methods such as Partial Least Squares and Canonical Cor-
relation Analysis which identify such directions. Nevertheless PCA is a very
useful method of feature extraction and prediction variance control.
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3.2 High Dimensional Data Visualisation

If the PC’s capture the variability in the data projection onto the first number
of PC’s may enable visualisation of inherent data structure such as data
clumps and clusters. As an example consider the microarray data shown in
Figure (7) which measures the differential expression level of 243 genes (from
the yeast organism) at 7 different time points.
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Figure 7: The differential gene expression levels of 243 genes measured at
seven time points.

By performing PCA on the expression data and then plotting the projec-
tions of the temporal profile of each gene onto the first two PC’s we obtain
a scatter plot shown in Figure

We can see straightaway that there are two natural groupings of genes
whose temporal profiles varies in a similar manner. It is difficult to identify
this natural grouping from the original data.

4 Latent Semantic Analysis

Vector Space models for documents based Information Retrieval rely on a
measure of similarity between a query q and some document d where both
the document and query representations are based on weighted functions
of the counts of the occurrence of dictionary terms and q, d ∈ R

|D| where
|D| denotes the number of terms in the dictionary. The cosine similarity is
typically employed

sim(q,d) =
qTd

|q||d|
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Figure 8: The projection of the differential gene expression levels of 243 genes
onto the first two principal directions.

Now as the number of terms in the dictionary can be in the range of 10 to
30 thousand an argument can be made that there exists a lower-dimensional
semantic space which captures the variability in the usage of terms which
is in some way meaningful. If this is the case then the similarity matching
would benefit from operating in the semantic space rather than the term
space. In that case if we have a document collection represented as a vector
space where there are N documents then the document by term matrix can
be defined as D ∈ R

N×|D|. A query will be defined as q ∈ R
|D| and so the

similarity of all documents to the query will be proportional to qD.
Now the document by term matrix D can be approximated such that D ≈

UδSδV
T

δ where the subscript δ denotes the number of principal components
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which are retained. Projecting the document collection into the principal
subspace of dimension δ gives Uδ = DVδS

−1

δ now a query can be projected
into this subspace such that qδ = S−1

δ VT

δ q and so scoring of documents
against the query would take place in the latent semantic space such that

sim(q,D) ≡ qT

δ UT

δ

= qTVδS
−1

δ S−1

δ VT

δ DT

= qT∆DT

where ∆ = VδS
−2

δ VT

δ acts to provide an appropriate scaling of the original
coordinate axes in term space based on the structure of the latent semantic
space as defined by the δ principal eigenvectors.

There is evidence to suggest that for some document collections and query
sets Latent Sematic Analysis can provide superior scoring than a straightfor-
ward cosine measure in term space.

5 Computing a Principal Component Analy-

sis

Up till now we have let the magic of Matlab compute our PCA for us. Now
we will learn of one numerical method which will provide the eigenvectors
and associated eigenvalues of a covariance matrix.

It can be shown that the following iteration will provide convergence to
the principal eigenvector of the covariance matrix C.

xt = Cyt−1

yt =
xt√
xT

t xt

as t → ∞ then yt → β1 and
√

xT
t xt → λ1. Now once the first eigenvector

has been identified the covariance matrix is deflated as detailed previously

C← C− λ1β1β
T

1

and the above iteration is applied to the deflated matrix to obtain the sec-
ond eigenvector and associated eigenvalue. This is repeated until all the
eigenvector/value pairs are obtained.

18



The following Matlab script provides a simple implementation of the
above algorithm.

function [B,D]=power_pca(C)

%A little routine to compute PCA given a covariance matrix C

N = size(C,1);

threshold = 1e-3; Max_Its = 1000;

%loop round all dimensions of the covariance matrix

for n=1:N

%initialise the principal eigenvector and set norm to unity

x = randn(N,1);

y = x./sqrt(x’*x);

%monitor convergence

err = 1e20;

its = 1;

%main loop to compute single eigenvector

while (err > threshold) | (its < Max_Its)

x = C*y;

y_new = x./sqrt(x’*x);

err = sum((y_new - y).^2);

y = y_new;

%set eigenvalue

D(n) = sqrt(x’*x);

%increment counter

its = its + 1;

end

%set the column vectors to be the found eigenvectors

B(:,n) = y_new;

%deflate the covariance matrix

C = C - D(n)*y_new*y_new’;

end

D=diag(D);
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