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Math & Probability Basics

• Some of the basic maths and probability required for
Week 3 & 4 material
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Math & Probability Basics

A D-dimensional column vector defined as

x =














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x1

x2

x3
...

xD
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
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Math & Probability Basics

A D-dimensional row vector defined as transpose of
D-dimensional column vector

x
T =

[

x1 x2 x3 · · · xD

]
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Math & Probability Basics

Inner product of two vectors a
T
b defined as

a
T
b =

[

a1 a2 a3 · · · aD

]

×

















b1

b2

b3
...

bD

















= a1b1 + a2b2 + a3b3 + · · · + aDbD =
D

∑

i=1

aibi
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Math & Probability Basics

Euclidean norm or length of vector

||x|| =
√

xTx

Vector has unit norm if ||x|| = 1
The angle θ between two vectors a and b defined by

cos(θ) =
a

T
b

||a||||b||

If cos(θ) = 0, i.e. a
T
b = 0 then vectors are orthogonal
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Math & Probability Basics

A set of N D-dimensional vectors {x1,x2, · · · ,xN} are
linearly independent if no vector in the set can be written as
linear combination of any of the others.

A set of N linearly independent vectors span an
N -dimensional vector space

Any vector in this space can be represented by a linear
combination of these basis vectors. Basis in 3-D space

e1 =







1

0

0






, e2 =







0

1

0






, e3 =







0

0

1






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Outer Product

The outer-product of an N -dimensional vector a and an
M -dimensional vector b defined as

ab
T =













a1b1 a1b2 · · · a1bM

a2b1 a2b2 · · · a2bM
... · · · · · · ...

aN b1 aNb2 · · · anbM












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Matrix Derivatives

A scalar function of a D-dimensional vector x defined as f(x)
then the derivative of f(x) with respect to x is defined as

∂

∂x
f(x) =













∂f(x)
∂x1

∂f(x)
∂x2

...
∂f(x)
∂xD












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Matrix Derivatives

For example if f(x) = a
T
x then

∂

∂x
a

T
x =













a1

a2
...

aD













= a
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Matrix Derivatives

For a N -dimensional vector valued function f(x), where x is
D-dimensional the Jacobian matrix is defined as

∂

∂x
f(x) =









∂f1(x)
∂x1

· · · ∂f1(x)
∂xD

...
. . .

...
∂fN (x)

∂x1

· · · ∂fN (x)
∂xD








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Matrix Derivatives

Lets say we have a function f(x) =
(

a
T
x
)2

then

∂

∂x
f(x) =













2aT
xa1

2aT
xa2
...

2aT
xaD












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Matrix Derivatives

Now we can take the second partial derivatives

∂

∂x

(

∂

∂x
f(x)

)

=
∂

∂x













2aT
xa1

2aT
xa2
...

2aT
xaD













= 2













a2
1 a2a1 · · · aDa1

a1a2 a2
2 · · · aDa2

...
...

...
...

a1aD a2aD · · · a2
D













= 2aaT
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Matrix Identities

• The Determinant of a square N × N matrix M denoted
as det(M) or |M|provides useful information
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Matrix Identities

• The Determinant of a square N × N matrix M denoted
as det(M) or |M|provides useful information

• If columns of M are not linearly independent then
det(M) = 0, indicating that rank of matrix M is smaller
than N and M is not uniquely invertible

• det(M) is a measure of the volume deformation when M

is used as a linear transformation, large values indicating
large amounts of stretching

• det(M) =
∏N

n=1 λn where each λn are the eigenvalues of
M. (more on eigenvalues later)
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Matrix Identities

• The Determinant of a square N × N matrix M denoted
as det(M) or |M|provides useful information

• If columns of M are not linearly independent then
det(M) = 0, indicating that rank of matrix M is smaller
than N and M is not uniquely invertible

• det(M) is a measure of the volume deformation when M

is used as a linear transformation, large values indicating
large amounts of stretching

• det(M) =
∏N

n=1 λn where each λn are the eigenvalues of
M. (more on eigenvalues later)

• The trace of a matrix is the sum of its diagonal elements

trace(M) =
∑N

n=1 Mnn

Lecture One January 17, 2006 – p. 6/22



Matrix Identities

• If the determinant of the square matrix M is non-zero
then the inverse is denoted as M

−1 and MM
−1 = I

where I is the identity matrix
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Matrix Identities

• If the determinant of the square matrix M is non-zero
then the inverse is denoted as M

−1 and MM
−1 = I

where I is the identity matrix

• if M is non-square then the pseudo-inverse is given as

M
† =

(

M
T
M

)−1
M

T and so M
†
M = I.
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Matrix Identities

• An important class of linear equations take the form
Mx = λx in other words applying a transformation M

to the vector x simply amounts to a scaling by λ
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Matrix Identities

• An important class of linear equations take the form
Mx = λx in other words applying a transformation M

to the vector x simply amounts to a scaling by λ

• Solving for x and λ requires (M − λI)x = 0

• For M real and symmetric there are N solution (eigen)
vectors {e1, e2, · · · , eN} and corresponding coefficients

(eigenvalues) {λ1, λ2, · · · , λN} such that e
T

i ej = δij if
λi 6= λj
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Matrix Identities

• An important class of linear equations take the form
Mx = λx in other words applying a transformation M

to the vector x simply amounts to a scaling by λ

• Solving for x and λ requires (M − λI)x = 0

• For M real and symmetric there are N solution (eigen)
vectors {e1, e2, · · · , eN} and corresponding coefficients

(eigenvalues) {λ1, λ2, · · · , λN} such that e
T

i ej = δij if
λi 6= λj

• Eigenvectors form a basis of the N -dimensional space so
transformation by M performs scaling of λi along each
axis
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Probability

• Let X be a discrete random variable that can take on
any of D values from the set X = {v1, v2, · · · , vD}
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Probability

• Let X be a discrete random variable that can take on
any of D values from the set X = {v1, v2, · · · , vD}

• Probability that X takes value vi denoted as
pi = Pr(X = vi) = P (xi) for i = 1, · · · , D, known as
Probability Mass Function
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Probability

• Let X be a discrete random variable that can take on
any of D values from the set X = {v1, v2, · · · , vD}

• Probability that X takes value vi denoted as
pi = Pr(X = vi) = P (xi) for i = 1, · · · , D, known as
Probability Mass Function

• Probabilities pi must satisfy conditions pi ≥ 0 and
∑D

i=1 pi = 1
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Probability

• Rules of Probability for Discrete Variables
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Probability
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Probability

• Rules of Probability for Discrete Variables

• Two Variables X ∈ X & Y ∈ Y
• Probability P (x, y) ≥ 0 and

∑

x∈X

∑

y∈Y P (x, y) = 1

Lecture One January 17, 2006 – p. 10/22



Probability

• Rules of Probability for Discrete Variables

• Two Variables X ∈ X & Y ∈ Y
• Probability P (x, y) ≥ 0 and

∑

x∈X

∑

y∈Y P (x, y) = 1

• Then P (x) =
∑

y∈Y P (x, y) and P (y) =
∑

x∈X P (x, y)
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Probability

• Rules of Probability for Discrete Variables

• Two Variables X ∈ X & Y ∈ Y
• Probability P (x, y) ≥ 0 and

∑

x∈X

∑

y∈Y P (x, y) = 1

• Then P (x) =
∑

y∈Y P (x, y) and P (y) =
∑

x∈X P (x, y)

• P (x, y) = P (x|y)P (y) = P (y|x)P (x)
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Probability

• Rules of Probability for Discrete Variables

• Two Variables X ∈ X & Y ∈ Y
• Probability P (x, y) ≥ 0 and

∑

x∈X

∑

y∈Y P (x, y) = 1

• Then P (x) =
∑

y∈Y P (x, y) and P (y) =
∑

x∈X P (x, y)

• P (x, y) = P (x|y)P (y) = P (y|x)P (x)

• Bayes Rule

P (x|y) =
P (y|x)P (x)

∑

x∈X P (x, y)
=

P (y|x)P (x)
∑

x∈X P (y|x)P (x)
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Probability

• The expected value (mean, average) of the random

variable X is E{X} = µ =
∑D

i=1 vipi =
∑

x∈X xP (x)
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Probability

• The expected value (mean, average) of the random

variable X is E{X} = µ =
∑D

i=1 vipi =
∑

x∈X xP (x)

• More generally

E{f(X)} =
∑D

i=1 f(vi)pi =
∑

x∈X f(x)P (x)

• Now variance defined as

σ2 = E{(X − µ)2} =
∑

x∈X

(x − µ)2P (x)

= E{X2} − (E{X})2
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Probability

• Continuous random variables - cannot think of X taking
on a particular value
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• Continuous random variables - cannot think of X taking
on a particular value

• Think of probability that value of X = x falls in some
range [a, b]
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Probability

• Continuous random variables - cannot think of X taking
on a particular value

• Think of probability that value of X = x falls in some
range [a, b]

• No longer have probability mass function P (X = x) -
now probability density function p(X = x) use p(x) as
shorthand

Pr(x ∈ [a, b]) =

∫ b

a

p(x)dx
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Probability

• Continuous random variables - cannot think of X taking
on a particular value

• Think of probability that value of X = x falls in some
range [a, b]

• No longer have probability mass function P (X = x) -
now probability density function p(X = x) use p(x) as
shorthand

Pr(x ∈ [a, b]) =

∫ b

a

p(x)dx

• Density function must satisfy p(x) ≥ 0 and
∫ +∞

−∞
p(x)dx = 1

Lecture One January 17, 2006 – p. 12/22



Probability

• Expectations follow as before

E{X} = µ =

∫ +∞

−∞

xp(x)dx

and

σ2 = E{(X − µ)2} =

∫ +∞

−∞

(x − µ)2p(x)dx

= E{X2} − µ2
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Probability

• Important probability density function is Gaussian or
Normal
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Probability

• Important probability density function is Gaussian or
Normal

• Defined for single variable as

p(x) =
1√

2πσ2
exp

{

− 1

2σ2
(x − µ)2

}
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Probability

• Important probability density function is Gaussian or
Normal

• Defined for single variable as

p(x) =
1√

2πσ2
exp

{

− 1

2σ2
(x − µ)2

}

• Denoted as p(x) = Nx(µ, σ) in class notes
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Probability

• What about multiple variables e.g. X1, X2, · · · , XD
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Probability

• What about multiple variables e.g. X1, X2, · · · , XD

• Follows from results for discrete variables (exchange
integrals for summations)
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Probability

• What about multiple variables e.g. X1, X2, · · · , XD

• Follows from results for discrete variables (exchange
integrals for summations)

• Define p(x1, x2, · · · , xD) = p(x) ≥ 0 and

∫ x1=+∞

x1=−∞

· · ·
∫ xD=+∞

xD=−∞

p(x1, x2, · · · , xD)dx1dx2 · · · dxD

≡
∫

p(x)dx = 1
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Probability

• Consider case of two variables x and y joint probability is
p(x, y) and can be decomposed as

p(x, y) = p(x|y)p(y) = p(y|x)p(x)
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Probability

• Consider case of two variables x and y joint probability is
p(x, y) and can be decomposed as

p(x, y) = p(x|y)p(y) = p(y|x)p(x)

• If x and y are independent then probability of x will not
be conditional upon y, p(x|y) = p(x) and the probability
of y will not be conditional upon x, i.e. p(y|x) = p(y),
so p(x, y) = p(x)p(y)
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Probability

• Consider case of two variables x and y joint probability is
p(x, y) and can be decomposed as

p(x, y) = p(x|y)p(y) = p(y|x)p(x)

• If x and y are independent then probability of x will not
be conditional upon y, p(x|y) = p(x) and the probability
of y will not be conditional upon x, i.e. p(y|x) = p(y),
so p(x, y) = p(x)p(y)

• General case if all variables are independent then

p(x) = p(x1, x2, · · · , xD) =

D
∏

d=1

p(xd)
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Probability

• Back to two variables x and y joint probability is p(x, y)

p(x, y) = p(x|y)p(y) = p(y|x)p(x)
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Probability

• Back to two variables x and y joint probability is p(x, y)

p(x, y) = p(x|y)p(y) = p(y|x)p(x)

• So Bayes Theorem gives

p(x|y) =
p(y|x)p(x)

p(y)
, p(y|x) =

p(x|y)p(y)

p(x)
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Probability

• Back to two variables x and y joint probability is p(x, y)

p(x, y) = p(x|y)p(y) = p(y|x)p(x)

• So Bayes Theorem gives

p(x|y) =
p(y|x)p(x)

p(y)
, p(y|x) =

p(x|y)p(y)

p(x)

• and

p(x) =

∫

p(x, y)dy =

∫

p(x|y)p(y)dy

p(y) =

∫

p(x, y)dx =

∫

p(y|x)p(x)dx
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Probability

• First and Second Moments defined for random vector
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Probability

• First and Second Moments defined for random vector

• First Moment (Mean Vector) defined as

E{x} = µ =

∫

xp(x)dx
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Probability

• First and Second Moments defined for random vector

• First Moment (Mean Vector) defined as

E{x} = µ =

∫

xp(x)dx

• Second Moment (Covariance Matrix) multivariate
generalisation of variance

Σ =

∫

(x − µ)(x− µ)Tp(x)dx

= E
{

(x− µ)(x− µ)T
}
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Probability

Covariance matrix has form

Σ =

�
��
��
��
��
��
��
�

E{(x1 − µ1)(x1 − µ1)} · · · E{(x1 − µ1)(xD − µD)}

E{(x2 − µ2)(x1 − µ1)} · · · E{(x2 − µ2)(xD − µD)}

.

.

.

.
.
.

.

.

.

E{(xD − µD)(x1 − µ1)} · · · E{(xD − µD)(xD − µD)}

�
��
��
��
��
��
��
�
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Probability

Covariance matrix has form

Σ =

�
��
��
��
��
��
��
�

E{(x1 − µ1)(x1 − µ1)} · · · E{(x1 − µ1)(xD − µD)}

E{(x2 − µ2)(x1 − µ1)} · · · E{(x2 − µ2)(xD − µD)}

.

.

.

.
.
.

.

.

.

E{(xD − µD)(x1 − µ1)} · · · E{(xD − µD)(xD − µD)}

�
��
��
��
��
��
��
�

Σ =

�
��
��
��
��
��
��
�

σ2

1
σ12 · · · σ1D

σ21 σ2

2
· · · σ2D

.

.

.

.

.

.

.
.
.

.

.

.

σD1 σD2 · · · σ2

D

�
��
��
��
��
��
��
�
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Probability

• Multivariate Gaussian density function
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Probability

• Multivariate Gaussian density function

• Assume that D random variables are independent and
each has a Gaussian distribution p(xd) = Nxd

(µd, σd)
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Probability

• Multivariate Gaussian density function

• Assume that D random variables are independent and
each has a Gaussian distribution p(xd) = Nxd

(µd, σd)

• p(x1, · · · , xD) = p(x) =
∏D

d=1 p(xd) =
∏D

d=1 Nxd
(µd, σd)
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Probability

• Multivariate Gaussian density function

• Assume that D random variables are independent and
each has a Gaussian distribution p(xd) = Nxd

(µd, σd)

• p(x1, · · · , xD) = p(x) =
∏D

d=1 p(xd) =
∏D

d=1 Nxd
(µd, σd)

• and

p(x) =

D
∏

d=1

1
√

2πσ2
d

exp

{

− 1

2σ2
d

(xd − µd)
2

}

=
1

2π
D

2

∏D
d=1 σd

exp

{

−1

2

∑D

d=1

(

xd − µd

σd

)2
}
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Probability

• Define covariance matrix Σ as

Σ =

�
��
��
��
��
��
��
�

σ2

1
0 · · · 0

0 σ2

2
· · · 0

.

.

.

.

.

.

.
.
.

.

.

.

0 0 · · · σ2

D

�
��
��
��
��
��
��
�
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Probability

• Define covariance matrix Σ as

Σ =

�
��
��
��
��
��
��
�

σ2

1
0 · · · 0

0 σ2

2
· · · 0

.

.

.

.

.

.

.
.
.

.

.

.

0 0 · · · σ2

D

�
��
��
��
��
��
��
�

• So inverse of covariance matrix Σ
−1 is simply

Σ
−1 =

�
��
��
��
��
��
��
��
�

1

σ2
1

0 · · · 0

0 1

σ2
2

· · · 0

.

.

.

.

.

.

.
.
.

.

.

.

0 0 · · · 1

σ2
D

�
��
��
��
��
��
��
��
�
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Probability

• Using vector notation

∑D

d=1

(

xd − µd

σd

)2

= (x− µ)TΣ
−1(x − µ)
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Probability

• Using vector notation

∑D

d=1

(

xd − µd

σd

)2

= (x− µ)TΣ
−1(x − µ)

• Now for a diagonal matrix Σ then
∏D

d=1 σd = det(Σ)

Lecture One January 17, 2006 – p. 22/22



Probability

• Using vector notation

∑D

d=1

(

xd − µd

σd

)2

= (x− µ)TΣ
−1(x − µ)

• Now for a diagonal matrix Σ then
∏D

d=1 σd = det(Σ)

• The general form for a multivariate Gaussian follows as

p(x) =
1

(2π)
D

2 |Σ| 12
exp

{

−1

2
(x− µ)TΣ

−1(x − µ)

}

• This is the general form which holds even if Σ is not
diagonal.
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