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Mercer Kernel-Based Clustering in Feature Space of datum vectox,.; n = 1, ..., N wherex, € R” and givenk

cluster centers the within-group scatter matrix is defined as
Mark Girolami

SVV = i Z Z < ‘n(xn - mk)(xn - ml«‘,)l (l)
Abstract—This letter presents a method for both the unsupervised parti- k=1 n=1

tioning of a sample of data and the estimation of the possible number of in- . .

herent clusters which generate the data. This work exploits the notion that Where Nt,he center for eaChV group is defined as, =

performing a nonlinear data transformation into some high dimensional N, ' 3", _; zknXn @ndNy, = 3, _, z4s. The variablex,, indicates

feature space increases the probability of the linear separability of the pat- the membership of datum,, to clusterk, i.e.,zx, = 1if x,, € C

terns within the transformed space and therefore simplifies the associated gnd 0 otherwise. One of the sum-of-squares criteria employed for

data structure. It is shown that the eigenvectors of a kernel matrix which central clustering is the trace of the within-aroup scatter matrix
defines the implicit mapping provides a means to estimate the number of 9 group

clusters inherent within the data and a computationally simple iterative 1r(Sw). This measure implicitly imposes the assumption of
procedure is presented for the subsequent feature space partitioning of the hyper-spherical clusters which is inherent in methods such as the

data. K -means algorithm [4]. Thél x N indicator matrixZ is such that
Index Terms—Data clustering, data partitioning, unsupervised learning. €ach element is either of two values 1 or 0, such thate {0, 1}
vk, iand ij:l zri = 1 Vi. The optimal partitioning of the data
sample is achieved by the following optimization:

K N
Zk

[

. INTRODUCTION

The unsupervised partitioning of a sample of data observations Z= arg mn Tr(Sw). 2

into self-similar regions forms a significant area of research effort.

As it has been noted that many data sets have ellipsoidal clustedgthods such as th-means algorithm and its many variants are used

structure “sum-of-squares” based methods of partitioning have proJ8dhe optimization of the above data space sum-of-squares clustering

to be effective [4]. Clustering using Gaussian mixture models is al§§t€rion [4]. If the separation boundaries between clusters is nonlinear
extensively employed for exploratory data analysis. However, [A€N sum-of-squares methods suchiasneans will fail. Semipara-
certain cases the number of Gaussian mixtures required to reasondMfic Mixture-decomposition methods such as the recently developed
model the data density far exceeds the natural number of clusterdl@Ximum-certainty partitioning [7] have been proposed to deal with

the data. This is of course the case when the clusters themselvestifroblem of non-Gaussian clustered data. An alternative approach to
non-Gaussian [7]. solving this problem is to adopt the strategy of nonlinearly transforming

For the purposes of classification the problem of nonlinear sepaf€ data into a high-dimensional feature space and then performing the

bility of classes can be circumvented by mapping the observed dat&t¢stering within this feature space. However as the feature space may
a higher dimensional space in a nonlinear manner so that each clu@@Pf high and possibly infinite dimension then directly working with
for each class unfolds into a simple form. This is the basis for noH!€ transformed variables is an unrealistic option. However, as has been
linear classification techniques such as radial basis function networR&ploited in the kernel principal component analysis (KPCA) method
support vector (SV) machines [11], and certain forms of nonlinear gief feature gxtractlon it is unnecessary to work directly Wlth the _trans-
criminant analysis [9]. If the nonlinear mapping is smooth and contif2'med variables [10]. Itis the inner-products between points which are
uous then the topographic ordering of the data in observation space Wfifd and these can be computed using a kernel function in the original
be preserved in feature space, so that points clustered together in §3{g SPace. This observation provides for a tractable means of working
space will necessarily be clustered in feature space. It is thereford'bfn€ Possibly infinite feature spaces [11], [10]. We now develop the
interest to consider the further notion of unsupervised data clusterf§Gture space sum-of-squares clustering method in the following sec-
in a feature space which preserves the inherent data groupings anteR:
addition simplifies the associated structure of the data.

Section Il reconsiders sum-of-squares clustering in data space while Ill. FEATURE SPACE CLUSTERING

Section Ill presents the clustering of data in a nonlinear feature spacerne implicit assumption of hyper-spherical or hyper-ellipsoidal clus-
Section IV of this paper considers how the block diagonal structure @ is often restrictive and, similar to classification problems, a non-
a kernel matrlx can be exploited |n.est|mat|ng the number of |nherqmear mapping into some higher dimensional space which will provide
clusters within a data sample. Section V provides some demonstrafjigar separation of classes is desirable [11]. Consider then a smooth,
simulations and Section VI provides conclusions and discussion.  continuous nonlinear mapping from data space to feature §paceh
that
II. A DATA-SPACE CLUSTERING CRITERION
, »R” —F x—X

The sum-of-squares cost for a sample of data forms the basis for a

number of clustering methods [4], [1]. Given a finite set of Observatior[ﬁenoting the within-group scatter matrix in feature spateas S“I/’V

then the trace of the feature space scatter matrix is given by
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itous, to note thalx(S§, ) takes the form of a series of dot products irthe probability density of the data. So in this particular cB$&|C}.)
feature space. As noted in the previous section these feature spacedmntides a measure of the compactness offithecluster as defined
products can easily be computed using Mercer kernel [11], [10] repehove. This is in contrast to the Euclidean compactness measure de-
sentations in data spaééx;, x;) = ®(x;).®(x;). In other words by fined by the sum-of-squares error computed in the original data space
employing a specific kernel function the dot product which it returngiven by equation (2). The desired sum-of-squares clustering in a fea-
implicitly defines the nonlinear mapping to the feature space [11], ture space defined by an RBF kernel is therefore represented by the
[10]. The feature space sum-of-squares criterion can now be writtetiowing nonlinear optimization problem:

solely in terms of elements of the symmethicx V kernel matrixK =

{Ixu}l 1,...,N;j=1,..,N WhereIx",vj = A',(XL', X]') = (I)(Xi).(:[)(Xj) K
andh;; = Ix] ; Z= alg min Tr (Sw> = arg max Z 7 R(x|Cr). 9)
z k=1
K N
Tr (S%) Z ZknYkn (4) What becomes clear is that feature space clustering achieved by em-
N k=1 n=1 ploying a kernel representation of the data removes the implicit as-

sumption of hyper-spherical or ellipsoidal clusters in data space. For
the particular case of the popular and widely used RBF kernel then the
optimization of the feature space criterion given by equation (9) is re-

Yien = Kunn — V Zﬂc;[km V Z mehz (5) quired. In considering the optimization of the clustering criterion (9)

where

= = it is proposed that the following lemma, originally detailed in [3], is
utilized.
By defining the following termsy, = Ni/N and, R(x|Cy) = Lemma: If the restrictionz,; € {0, 1} V&, i is relaxed to) <

N2, Z‘f:l zi2k;K;; Where the notationR(x|C) denotes zi; < 1V k,i,i.e.,z; € [0, 1] with the summation constraint holding
the guadratic sum of the elements which have been allocated to then the minimum of a sum of squares clustering crite(itr{ S ) or
kth cluster, then some straightforward manipulation of (4) yields ~ Tr(S%)) is achieved with a matriZ which has elements zero or one
only.

N K The complete proof is given in [3]. This lemma also has a proba-

Tr (S%)V> =N Z Z Zon Koun = Z WR(x|Ck).  (6) bilistic interpretation in that the maximum certainty partitioning of data

k=1 n=1 k=1 will only occur when the partition posteriors are zero or one [7]. This

important lemma provides for the use of stochastic methods in opti-

For kemels which depend on the differer(oe — x;) then the first mizing clustering criteria based on a binary indicator matrix.

term in (6) will be a constant, indeed for the widely used RBF kernel
k(x;, x;) = exp{—(1/e)||x;: — x;||*} the first term equals unity thus

(6) reduces to IV. STOCHASTIC OPTIMIZATION
Stochastic methods for optimizing clustering criteria over a set of bi-
Tr (S W) -1 Z T R(x|Ck). (7) nary indicator variables have been suggested in [1] and [3]. In [1], a sto-
chastic method for minimizing the clustering cost based on determin-
istic annealing was developed. Essentially the cost associated with the
The implicit assumption of hyper-spherical clusters in theverall cluster assignments of the data sample are considered as random
sum-of-squares criterion is now based on the feature space r@friables which have a Gibbs distribution. The expected values, with
resentation of the data which is defined by the specific kernel chosegspect to the Gibbs distribution, of the indicator variables are then esti-
The RBF kernel implicitly defines an infinite dimensional featurgnated in an iterative manner [1]. We define the following feature space
space, this particular kernel has been extensively adopted in maggt or distortiorD;; = 1 — (1/Nk)Z}N 211K j1. The termDy is the
studies of both classification [11] and unsupervised learning [10]. distortion or penalty associated with assigningtredatum to the:th
If we now consider the RBF kernel specifically it is straightforwardluster in feature space. Note that due to the specific use of the RBF
to see that a$", =1 then0 < R(x|Ck) < 1. In addition as kernel the tern{1/Ny,) 3°," 21 K'j; can be viewed as a nonparametric
Sen=1 thenzk 1 WR(x|Cx) < 1in which case the minimiza- Parzen estimate of the conditional probability of fte datum given
tion of Tr(S};) requires the maximization §F r_, 7R (x|Cx). Itis  the kth cluster, i.e.j(x;|C). So the penalty or cost associated with
worthy of note that for an RBF kernel the following aDDFOXimationassigning thgith datum to thekth cluster in an RBF kernel defined
which was originally utilized in [2], holds due to the convolution thefeature space is given &,; = 1 — 5(x;|C% ), thus highly improbable
orem for Gaussians points allocated to a cluster will increase the overall clustering cost.
Now for an RBF kernel the following holds:

i | XX
/ p(x).2 dx = N2 Z Z K;. 8 N K N
n(sh)=1- LSS Y Bk,

This being the case then ik l

N K
A ’- . ; D
R(x|Cy) = Vz Z Z”ﬂ‘hﬂw ~/ p(x|Cr)? dx. N Z Z “hiki

k=1 j=1 xeCy
and minimization of the feature space “sum-of-squares” criterion
So the term defined &8 (x|C} ) can be considered as a nonparametri€r(S}, ) corresponds to minimization CEN S 2Dy
approximation to the integrglxeck p(x|Cr)?dx defined over théth For a general data space sum-of-squares érqr(a squared dis-
cluster. As already stated this was originally proposed in [2] as a méance of datum poink to cluster centek) [1] the overall clustering
sure of distribution compactness based on a nonparametric estimateost Tr(Sw) = N~ Zf Z,’f Zkn Exn can be minimized using the
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Fig. 1. (a) The scatter plot of 100 points, composed of 20 datums drawn from five compact and well separated spherical Gaussian clusters. The iso-conto
show the lines of constant value bf- D, ;, light colors indicate high values whereas dark colors indicate low values. This was generated using an RBF kernel of
width 0.1. (b) This plot shows the value of the binary indicator varialllester convergence of the iterative routine to optimize the feature space sum-of-squares
clustering criterion. Each row corresponds to a cluster center and the individual data points, ordered in terms of cluster membership (puaigtfatidem
purposes) run along the horizontal axis. The bars indicate a valug oft can be seen that there are no cluster assignment errors on this simple data set. (c) The
contour plot of the 106k 100 kernel matrix clearly showing the inherent block structure. The specific ordering has been used merely for purposes of demonstration
and does not affect the results given by the proposed method. (d) The contributigr¥da » from the most significant terms; {1% u; }2. It is most obvious

that only five terms contribute to the overall value thus indicating that there are five dominant generators within the data sample.

following iterative procedure, which is reminiscent of an expectatiaihis becomes the standard batch form of freneans algorithm in the

maximization (EM) algorithm feature space defined by the RBF kerkel Note that the terna, is
S mew indicative of the compactness of théh cluster.
(zhn) = I&?XP(_"&E’““ (10) The main point of this proposed method, and indeed most clustering
S exp(—BE") methods is a knowledge of the number of clustirsThe following
k=1 section proposes a means of estimating the possible number of clusters

within the data sample based on the kernel matrix created from the

2
| sample of points.

and eachE ™ = ||x», — {my)||* is re-computed using the new esti-
mates of the expected values of the indicator variablges) where

Z (zhi)xi Z (257 MATRIX

i=1 =1

(o) { N }/{ N } V. ESTIMATING THE NUMBER OF CLUSTERSUSING THE KERNEL
mg) =

Whereas in data spacdax N dimensional data matrix requires to
The parametet controls thesoftnes®f the assignments during opti- e manipulated for the optimization of the sum-of-squares criterion, the
mization [1]. The reader should refer to [1] and the references ther%ture-space counterpart now requires the manipulation & anV
for a detailed exposition and derivation of the iterative optimization ¢fimensional symmetric kernel matd&. As each element of the kernel
the central clustering criterion, (2), in data space. This can be straigifatrix defines a dot-product distance in the kernel defined feature space
forwardly used for the proposed feature-space criterion. Employing tis matrix will have a block diagonal structure when there are definite
distance from the cluster center in feature space defined by (5) a§idupings or clusters within the data sample. This can be clearly seen
noting thatk',,, = 1 for the RBF kernel some straightforward manipith a simple example using a two-dimensional (2-D) sample of 100

ulation yields datum points of which 20 points are each drawn from five spherical
exp(—Fyre®) g exp(—24Drew) Gaussians of variance 0.1 with mean val§es0; 0.7, 0.7-0.7, 0.7;
(zkn) = — = — — (11) 0.7,-0.7;-0.7,—0.7}. Fig. 1(a) shows the plot of the data points, the
> exp(=Bys) > g exp(—28DpY) contours showthelines of constant Dy, ; value foran RBF kernel, i.e.,
k=1 k=1 one minus the feature space cost. Itis also worth commenting that these

contours are also lines of estimated equiprobability. Fig. 1(c) shows the
structure of the 10& 100 kernel matrix using an RBF kernel of width
N N L.
Ié] . 0.1. The block structure of the matrix is most apparent. It should be
eXP{— > <Zki><ﬂkj>f&ij}

where

Ak = (N?) stressed here that the ordering of the points in the figure is purely for

' : illustrative purposes. However, itis to be noted that the eigenvectors of a
= exp{=F{R(x|Ci))} permuted matrix are the permutations of the original matrix and there-
é%ree an indication of the number of clusters within the data may be
given from the eigenvalue decomposition of the kernel matrix.

As noted in the previous sections the following finite sample approx-
imation can be mad¢, p(x)* dx ~ (1/N?) Y/L, 7L, Ki; which

=1 j=1

and as such the following iterative procedure (and direct feature sp
analogs of the data space method) will find a minimumlofS ;)

(@]

(zhn) = — 2% exp(—24Dg;" can be written in vector/matrix notation &§ K1~ where theV x 1 di-
! K S mew mensional vectot x has elements of value 1/N. An eigenvalue decom-
wZ::1 o exp(—2Dys, position on the kernel matrix givd§ = UAU” where the columns
and of the matrixU are the individual eigenvectots of K and the diag-
;X onal matrixA contains the associated eigenvalues denotegd.ahen
D" =1— e ; (zr1) K1 (12) we can write

N N
As the paramete# — oo then the assignments become hard such that 10K1y = 1% {Z)\iuiuf } 1y = }:/\Z {l,lwuz} . (13)
=1

(zkn) € {0, 1}, i.e., only takes the values zero or one, in which case —
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Fig. 2. (@) The scatter plot of the “Ring Data,” 100 samples from a uniform distribution centered at the origin and 100 samples uniformly drawn fralaran an
ring. (b) The outcome of the clustering method showing that there are no partition errors. (c) The contour plot of the associated kernel matrith (BFBFOyid
again note the block diagonal structure. (d) The contributioh§d1 5 from the most significant terms;{1%u;}2. It is most obvious that only two terms
significantly contribute to the overall value thus indicating that there are two dominant generators within the data sample.

The final form of (13) indicates that if there akédistinct clustered re- rable and nonellipsoidal data. These results are identical to the max-
gions within theN data samples then there will B€ dominant terms imum-certainty approach proposed in [7].
X {1%u;}? in the summation. Therefore this eigenvalue decomposi- Three standard test data setse employed in the following simu-
tion method provides a means of estimating the possible numberlation. The Fisher Iris data is a well-known data collection consisting
clusters within the data sample. of four measurements from 50 samples of three varieties of\as- (

It is noted that what has been termed the kernel or Gram matrix [19¢olor, Virginica, SetosaOne of the classes (clusters) is linearly sep-
in this paper and within the neural computing research communitydgable from the other two, while the remaining two are not linearly
often referred to as the affinity or proximity matrix within the domairseparable. Fig. 3 shows both the clustering achieved and the estimated
of machine vision research [6]. This affinity matrix is directly analonumber of clusters. The number of clusters is estimated correctly and
gous to the kernel matrix discussed herein. The segmentation of imafigspartition error matches the state of the art results on this data re-
into, for example, foreground figures and background is attempted Bgrted in [7], [5]. The next simulation uses the 13-dimensional Wine
utilizing the first eigenvector of the affinity/proximity matrix of a par-data set. This data has three classes, varying types of wine, and the 13
ticular image [6]. However, no use is made of subsequent eigenvectt§dtures are then used to assign a sample to a particular category of
in determining the possible number of distinct areas of the image i4'e- This data has only been investigated in an unsupervised manner
manner akin to the cluster number determination method proposednr /] where four partition errors were incurred. Fig. 3 shows the es-

this letter and so this may indeed be an interesting area of further fiftatéd number of data generators using the proposed method. There
vestigation. are only three significant contributors thus indicating the presence of

The notion of clustering a data set after it has been nonlineaffyf€€ clusters within the data. Applying the feature space partitioning
transformed into a possibly infinite dimensional feature space has b&BRthod yields four errors. The final example is the Crabs data, which
proposed. A stochastic method for minimizing the trace of the feat f@NSiSts of five physical measurements of the male and female of two
space within-group scatter matrix has been suggested. In the casgR&ic!es of crab. Employing the_ method proposed in this paper correctly
the feature space whose dot-product is defined by the RBF kerfigfmates the number of possible data clusters.

TR T. .12
then a specific form of stochastic iterative update has been developedThe assessment of the contribution of each tarfil yu; }” to the

The sum-of-squares error in the RBF defined feature space can grall value requires some comment. In the case where the clusters in

viewed as the loss defined by the estimated conditional probabilityt(l;\‘e data are distinct then a pattern similar to .that of F|gs.. 1.and 2 will
inerge and the contribution of each term will also be distinct. If, as

the datum coming from a particular cluster. The possible number 8 example, we consider the Iris data, Fig. 3, it is clear that there are

clusters within the data can be estimated by considering the termstagf . .
W0 dominant terms strongly suggestive of the presence of two clusters.

e on e o e S o et h ncusio of e sl 1 e 9 7634 f e
for demonstrative purposes ove_rall value |nd|cat|n_g the p_os&ble_presence of a third and less well

) defined cluster grouping, as indeed is the case. The assessment of the
contribution of each term therefore requires to be considered on a case

VI. SIMULATIONS by case basis.

To briefly demonstrate the feature space method presented, one toy
simulation is given along with some examples provided in [5] and [7]. VII. CONCLUSION AND DISCUSSION
Fig. 1 shows the results of applying the method to a simple clusteredrys paper has explored the notion of data clustering in a kernel de-
set of data, both the estimation of the number of clusters and the fige | feature space. This follows on from the Support Vector classifi-
sultant partitioning highlights the effectiveness of this method. Fig. &ion methods which employ Mercer kernel representations of feature
shows the results of applying this method to the 2-D Ring data whighace dot-products and the unsupervised method for performing fea-
originally appeared in [7]. This data is particularly interesting in thaf, o space principal component analysis (KPCA) [11], [10]. Clustering
the mean (or prototype) vectors in data space for each class coincigeyata in a feature space has been previously proposed in an earlier
By performing the clustering in a kernel defined feature space the Pifipublished version of [10] where the standafd-means algorithm
totypes are therefore calculated in this feature space, which means {hat presented in kerel space by employing the kernel trick. As the

they do not necessarily have a pre-image in input space [10]. The igym-of-squares error criterion for data partitioning can also be posed
plication of this is that the mean vectors in feature space may not serve

as representatives or prototypes of the input space clusters. Both the €8s, Wine, and Crabs data sets are all available from the UCI machine
timation of the number of data generators and the eventual partitioniegrning repository.
show the performance of the method on distinctly nonlinearly sepa-<Available at http://www.kernel-machines.org/.
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Fig. 3. (a) Clustering performance on the Iris data set indicating three partition errors. (b) The contributifdtby from the most significant terms

A:{1% u;}?2 for the Iris data. An RBF kernel of width 0.5 was used. The three dominant terms contribute 99.76% of the overall value strongly indicating the
existence of two highly dominant and one less dominant data generator, i.e., the existence of three possible clusters. (c) The; {alfjes pf for the Wine

data set (RBF width equals 10). Strongly indicating the presence of only three clusters. (d) The valuesiph; }2 for the Crabs data set (RBF width equals
0.001). Strongly indicating the presence of only four clusters.

in a feature space and as this contains only dot-products of feature wece of Gaussians to the data to be clustered, as with the method under
tors a very simple form of feature space clustering criterion arises. \Wensideration the number of Gaussian mixtures requires to be selected
note that thel-means algorithm is thkard-clusteringlimiting case, a priori and heuristics or cross-validation methods require to be em-
whenjg — oo, of the deterministic annealing approach adopted in thigoyed for this matter.

paper for optimizing the sum-of-squares clustering criterion. The complete eigenvalue decomposition of e NV kernel matrix

The reader should note that central clustering by optimization of teeales ag)(N*) and for a reasonably large dataset this may be pro-
sum-of-squares criterion [see (2)] has an intuitive interpretation in thaibitive. However, an iterative method for extracting eigenvectors
the mean vectors act as representatives of the clusters. However, winem anN' x N dimensional kernel matrix which scales@sM N?)
performing such clustering in a kernel defined feature space the ass@xiavailable [8]. As the number of possible clusters will be small in
ated mean vectors may not have a pre-image in the original data spa@mmparison to the overall size of the data sample then computing the
(the ring-data is such an example of this). The implication of this is thamportant terms and their percentage contribution to the overall value
the solution may break down, if the estimated centroid is replaced bf1 7, K1y is much less costly than the complete decomposition of the
its nearest data vector. kernel matrix.

When specifically considering the RBF kernel then the feature spaceOnce the kernel matrix has been defined then only one nonlinear
clustering cost has an interpretation based on nonparametric Parmaptimization is required in defining the partitioning. This is in contrast
window density estimation. It has been proposed that the block-diagotmthe method proposed in [7] where each candidate partitioning, the
structure of the kernel matrix be exploited in estimating the numbeutcome of a nonlinear optimization routine, is used in computing the
of possible data generators within the sample and the subsequantlence for the partition based on the data. Therefore at least as many
eigendecompostion of the kernel matrix can indicate the possilienlinear optimization routines as there are possible clusters will be
number of clusters. Some brief simulations have been provided whiglguired. Only one nonlinear optimization is required in the method
indicate the promise of this method of data partitioning and shows thagbibposed in this paper once the probable number of clusters has been
is comparable with current state-of-the-art partitioning methods [5], [Helected.

The first point which can be raised regarding the proposed method
of data partitioning is with regard to the choice of the type of kernel REFERENCES
Chose.n In defmln.g the nonlme?r ma_pplng. Thl.s is one of the .maJor [1] J. M. Buhmann, “Data clustering and data visualization F&arning in
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kernel will be data specific, however in the specific case of data parti- %%)ratory data analysislEEE Trans. Computvol. 23, pp. 881-890,
zzg;’?gsﬂlﬁg aRlé?:r?Selmmggfg will haye universal apprOXImatlon qualities (jﬁ] A.D. Gordon and J. T. Henderson, “An algorithm for Euclidean sum-of-

ppropriate. Indeed this paper has shown that’ sqares classificationBiometrics vol. 33, pp. 355-362, 1977.

the sum-of-squares criterion in an RBF kernel induced feature space i$4] A. K. Jain and R. C. DubesAlgorithms for Clustering Data Upper
equivalent to one minus the sum of the estimated conditional probabil- ~ Saddle River, NJ: Prentice-Hall, 1988.
ities of the data given the clusters. This is an appealing interpretation ag®l T-W- Lee, M. S. Lewicki, and T. S. Sejnowski, “ICA mixture models
the Euclidean metric in data space is now replaced by the probability for unsupervised classification of non-Gaussian sources and automatic

—- ¢ - o context switching in blind signal separatiotEEE Trans. Pattern Anal.
metric in this specific feature space. So then the specific RBF kernel  Machine Intell, vol. 22, pp. 1-12, Oct. 2000.
provides a simple and elegant method of feature space data partitionin{f] G.L. Scottand H. C. Longuet-Higgins, “Feature grouping by relocaliza-
based on a sum-of-squares criterion as defined in equation (9). If more {If?sri]o?{ g‘gﬁp‘i%‘ggrs of t1h0e3pr1%xslmny matrix,” iRroc. British Machine
general nonlinear mappings are being considered (i.e., ones which d S.J. Rober{s, R. E'vrz-:-pr'son, and I Rezek, “Maximum certainty data parti-
not possess Mercer kernels) then great care must be taken to ensure tioning,” Pattern Recognitioyvol. 33, no. 5, 2000.
that the nonlinear transformation chosen does not introdtroeture [8] R. Rosipal and M. Girolami, “An expectation maximization approach
which is not intrinsically inherent in the data. ;0020228e3582mp°”e”t analysigyleural Comput.vol. 13, no. 3, pp.
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