
OM5



Goals

• ability to have multiple persistent roots in 
a store, each with pointer-based undo/
redo (i.e. undo is just changing a single value, no diff/merge required). 
The early ObjectMerging prototypes only support pointer-based undo on 
the whole repository, or selective undo (diff/merge required) on subsets 
of it, like git.

• guaranteed isolation between persistent 
roots.



Goals

• Unify branch, copy, and persistent root - 
most users won’t use branching. copying documents needs to be the 
same thing as branching.

• a Branch ≅ a copy of a persistent root

• Persistent root ≅ thin grouping 
mechanism for branches



Goals

• well-specified data format for objects in 
the store “property list” is not good enough. 



Store Structure
• DAG forest describing the history 

relationships between commits

Commit

The content of the commits in these DAGs is 
probably unrelated



Commit Structure

• Each commit is identified by a UUID

• A commit contains a tree of Store Items

Store item

Root store 
item



Store Item Structure

• Each store item has a UUID and a set of 
key/value pairs. Keys are unicode strings.



Store Item Structure

kCOPrimitiveTypeInt64

kCOPrimitiveTypeDouble

kCOPrimitiveTypeString

kCOPrimitiveTypeFullTextIndexableString

kCOPrimitiveTypeBlob

kCOPrimitiveTypeCommitUUID

kCOPrimitiveTypePath

kCOPrimitiveTypeEmbeddedItem

Value type

Primitive Multivalued

kCOContainerOrdered YES/NO

kCOContainerAllowsDuplicates YES/NO

a primitive type 
plus the following 

flags:



Commit Structure

• The tree structure of store items is 
defined by values of type 
kCOPrimitiveTypeEmbeddedItem

UUID1

UUID2

UUID3

attribute value type

name “My 
Documents”

String

icon UUID1 Embedded Item

contents (UUID2, UUID3)
(Unordered Unique 

Container of Embedded 
Item)

UUID0

UUID0



Commit Structure

• The set of items in a commit is defined by looking at 
the root item and including all of its Embedded 
Items, and those items’ embedded items, etc.

• ⇒ no “floating” items allowed

• It is illegal for the same item to 
be Embedded in multiple 
places



❅



Store Structure
• Now we can store item trees in commits, 

organized by their history relationship

Commit

• How do we represent the “current state” of 
the store? Persistent roots? Pointer-based 
undo?



Persistent Root

• Just a tree of store items with a known structure/
interpretation.

• Chosen to give us all of the properties we want...

• thin grouping mechanism for branches, which 
can be copied in/out trivially.

• Copying a branch/persistent root has the 
desired semantics (copy can be subsequently modified without 

affecting the source) “for free”



Persistent Root 
Example

UUID1 UUID2

attribute value type

name “My 
Documents”

String

contents (UUID1, UUID2)
(Unordered Unique 

Container of Embedded 
Item)

type “persistentRoot” String

currentBranch UUID1 Path (a weak 
reference)

UUID0

UUID0

This identifies a persistent root called “My Documents”
with two branches. The current branch is UUID1.



Persistent Root 
Example

UUID1 UUID2

attribute value type

name “Default Branch” String

type “branch” String

currentVersion UUID X Commit UUID

head UUID Y Commit UUID

tail UUID Z Commit UUID

UUID0

UUID1

{These are implementation 
details of undo/redo

This is the important part... it says that the contents of 
the persistent are stored in the commit with UUID X


