OM5



Goals

e ability to have multiple persistent roots in
a store, each with pointer-based undo/

redo (i.e. undo is just changing a single value, no diff/merge required).

The early ObjectMerging prototypes only support pointer-based undo on
the whole repository, or selective undo (diff/merge required) on subsets
of it, like git.

e guaranteed isolation between persistent
roots.



Goals

e Unify branch, copy, and persistent root -

most users won't use branching. copying documents needs to be the
same thing as branching.

e aBranch = a copy of a persistent root

e Persistent root = thin grouping
mechanism for branches



Goals

o well-specified data format for objects in
the store “property list” is not good enough.



Store Structure

e DAG forest describing the history
relationships between commits

oe 000

O O
O Commit

The content of the commits in these DAGs is
probably unrelated



Commit Structure

e Each commitis identified by a UUID

e A commit contains a tree of Store Items

‘

i\‘ @ Storeitem

Root store

e item
o e




Store ltem Structure

e Each store item has a UUID and a set of
key/value pairs. Keys are unicode strings.



Store ltem Structure

Value type
/\
Primitive Multivalued
KCOPrimitiveTypelnt64 a primitive type
kCOPrimitiveTypeDouble plUS the fOuOWing
kCOPrimitiveTypeString
kCOPrimitiveTypeFullTextIndexableString ﬂagSZ
kCOPrimitiveTypeBlob kCOContainerOrdered YES/NO
kCOPrimitiveTypeCommitUUID kCOContainerAllowsDuplicates | YES/NO
kCOPrimitiveTypePath
kCOPrimitiveTypeEmbeddedItem




Commit Structure

e The tree structure of store items is
defined by values of type
kCOPrimitiveTypeEmbeddedItem

-----
===
-
-

UUIDOI

Neun
l\

UUID1
UUID?2

UUIDO
attribute value type
“My .
name Documents” String
icon UUID1 Embedded Item
(Unordered Unique
contents (UUID?2, UUID3) | Container of Embedded

ltem)




Commit Structure

e The set of items in a commit is defined by looking at
the root item and including all of its Embedded
Items, and those items embedded items, etc.

®
i e = no floating” items allowed

'/ l\‘ o ltisillegal for the same item to

‘/ Ne be Embedded in multiple
places






Store Structure

e Now we can store item trees iIn commits,
organized by their history relationship

/,O

P

O 'CKOO

O Commit

e How do we represent the “current state” of
the store? Persistent roots? Pointer-based

undo?




Persistent Root

e |ust a tree of store items with a known structure/
iInterpretation.

e Chosen to give us all of the properties we want...

e thin grouping mechanism for branches, which
can be copied in/out trivially.

e Copying a branch/persistent root has the
desired semantics (copy can be subsequently modified without
affecting the source) “for free”



Persistent Root
Example

attribute value type
UUIDO g *

“My .
name . String
UUID1 UuUID?2 Documents

(Unordered Unique
contents (UUID1, UUID?2) | Container of Embedded

[temn)

type “persistentRoot” String

Path (a weak

currentBranch UUID1
reference)

This identifies a persistent root called "My Documents”
with two branches. The current branch is UUIDI.



Persistent Root
Example

These are implementation
details of undo/redo

This is the important part... it says that the contents of

{

currentVersion UUID X

UUID1
attribute value type
name “Default Branch” String
type “branch” String

Commit UUID

Commit UUID

tail UUID Z

Commit UUID

the persistent are stored in the commit with UUID X




