
Root embedded object

Embedded object

Persistent root

Composite reference

Reference

Inter-persistent-root reference

Root object to copy

History track

Current state

Current state (computed)

drawing

group1 group2

shape1 shape2 shape3 shape4

style1

suppose we try to
implement history tracks
which expose an undo/
redo api for a subset of
the embedded objects.

In this example let’s do
history tracks for group1

and group2. (including
those objects referenced

by composite refs.)

history tracks

Root embedded object

Embedded object

Persistent root

Composite reference

Reference

Inter-persistent-root reference

Root object to copy

History track

Current state

Current state (computed)

drawing

group1 group2

shape1 shape2 shape3 shape4

style1

history tracks

1 Edit shape1

2 Edit shape4

3 Edit shape2

4 Edit shape3

persistent root
history: (persistent)

Suppose the user
performs the list of edits
in the table on the right.

Root embedded object

Embedded object

Persistent root

Composite reference

Reference

Inter-persistent-root reference

Root object to copy

History track

Current state

Current state (computed)

drawing

group1 group2

shape1 shape2 shape3 shape4

style1

history tracks

1 Edit shape1

2 Edit shape4

3 Edit shape2

4 Edit shape3

1 Edit shape1

3 Edit shape2

2 Edit shape4

4 Edit shape3

group1 track

group2 track

Suppose the user
performs the list of edits
in the table on the right.

Below, the group1 track
and group2 track tables
show the edits grouped

by history track

persistent root
history: (persistent)

Root embedded object

Embedded object

Persistent root

Composite reference

Reference

Inter-persistent-root reference

Root object to copy

History track

Current state

Current state (computed)

drawing

group1 group2

shape1

shape2 shape3 shape4

style1

history tracks

1 Edit shape1

2 Edit shape4

3 Edit shape2

4 Edit shape3

5 Move shape1 from group1 to group2

1 Edit shape1

3 Edit shape2

5 Delete shape1 from group1

2 Edit shape4

4 Edit shape3

5 Add shape1 to group2

group1 track

group2 track

One more edit added
here...

persistent root
history: (persistent)

Root embedded object

Embedded object

Persistent root

Composite reference

Reference

Inter-persistent-root reference

Root object to copy

History track

Current state

Current state (computed)

drawing

group1 group2

shape1

shape2 shape3 shape4

style1

history tracks: computed

1 Edit shape1

2 Edit shape4

3 Edit shape2

4 Edit shape3

5 Move shape1 from group1 to group2

1 Edit shape1

3 Edit shape2

5 Delete shape1 from group1

2 Edit shape4

4 Edit shape3

5 Add shape1 to group2

group1 track
(computed from context history)

group2 track
(computed from context history)

It’s not clear whether the list of changes
in each history track should be persistent or if it
should be computed at runtime. Suppose we
compute it

This means also computing the current state for the
tracks from the current state of the persistent root.

This should work fine if we ignore undo/redo; i.e. the
tracks are read-only. The track states are computed
by scanning backwards through the persistent root
history, starting from the persistent root current
state.

persistent root
history: (persistent)

Root embedded object

Embedded object

Persistent root

Composite reference

Reference

Inter-persistent-root reference

Root object to copy

History track

Current state

Current state (computed)

drawing

group1 group2

shape1

shape2 shape3 shape4

style1

history tracks: computed

1 Edit shape1

2 Edit shape4

3 Edit shape2

4 Edit shape3

5 Move shape1 from group1 to group2

1 Edit shape1

3 Edit shape2

5 Delete shape1 from group1

2 Edit shape4

4 Edit shape3

5 Add shape1 to group2

group1 track
(computed from context history)

group2 track
(computed from context history)

Computed: Problem #1
Suppose we want to undo the latest change on
track1, “Delete shape1 from group1.”

This involves making a commit to the persistent
root’s history.

We can’t undo “Delete shape1 from group1” on its
own because that would restore shape1, but there is
already an existing shape1.

The only way to perform the undo on track1 is to
also undo the last change on track2.

This is somewhat of a problem because it defeats the
whole purpose of history tracks (being able to undo/
redo changes in subsets of a persistent root,
independently of other tracks). My conclusion is, if we
want to be able to undo/redo independently on
history tracks, embedded objects can’t be shared
between them. However, we can’t enforce that in the
store if history tracks are just computed at runtime.

persistent root
history: (persistent)

Root embedded object

Embedded object

Persistent root

Composite reference

Reference

Inter-persistent-root reference

Root object to copy

History track

Current state

Current state (computed)

history tracks: computed

1 Edit shape1

2 Edit shape4

3 Edit shape2

4 Edit shape3

5 Move shape1 from group1 to group2

6 Undo Move shape1 from group1 to group2

1 Edit shape1

3 Edit shape2

5 Delete shape1 from group1

2 Edit shape4

4 Edit shape3

5 Add shape1 to group2

group1 track
(computed from context history)

group2 track
(computed from context history)

Computed: Problem #2

Once we make a commit which undoes the change in
group1 and group2, it’s not clear how to compute
the new state group1 and group2 tracks.
Remembering that only the “persistent root history”
is persistent, how would we compute that the next
undo on “group1 track” is implemented by reverting
commit #3?

I can imagine an algorithm that scans backwards
through the persistent root history, using a stack to
keep track of what edits have been undone or
redone, but it would not be simple.

persistent root
history: (persistent)

drawing

group1 group2

shape1 shape2 shape3 shape4

style1

Root embedded object

Embedded object

Persistent root

Composite reference

Reference

Inter-persistent-root reference

Root object to copy

History track

Current state

Current state (computed)

history tracks: computed

1 Edit shape1

2 Edit shape4

3 Edit shape2

4 Edit shape3

5 Move shape1 from group1 to group2

6 Undo Move shape1 from group1 to group2

1 Edit shape1

3 Edit shape2

5 Delete shape1 from group1

2 Edit shape4

4 Edit shape3

5 Add shape1 to group2

group1 track
(computed from context history)

group2 track
(computed from context history)

Computed: Problem #3

If the purpose of history tracks is to expose a undo/
redo API which would be connected directly to
undo/redo UI actions, one problem is that undo/
redos performed on tracks create regular commits in
the persistent root history. this means that if undo/
redo for the entire persistent root is also hooked up
to UI undo/redo actions, sometimes they will undo/
redo regular changes, but sometimes they will undo/
redo the undo/redo actions performed on tracks.

I think this will be really confusing. Cmd+Z should
never undo an undo performed earlier by Cmd+Z.

persistent root
history: (persistent)

drawing

group1 group2

shape1 shape2 shape3 shape4

style1

Root embedded object

Embedded object

Persistent root

Composite reference

Reference

Inter-persistent-root reference

Root object to copy

History track

Current state

Current state (computed)

history tracks: computed

1 Edit shape1

2 Edit shape4

3 Edit shape2

4 Edit shape3

5 Move shape1 from group1 to group2

6 Undo Move shape1 from group1 to group2

1 Edit shape1

3 Edit shape2

5 Delete shape1 from group1

2 Edit shape4

4 Edit shape3

5 Add shape1 to group2

group1 track
(computed from context history)

group2 track
(computed from context history)

Problem 2 is probably solvable, but it’s complex.

Problems 1 and 3 are not solvable without moving to
a different implementation of history tracks.

My conclusion from these problems is, if we want the
functionality of history tracks, we need to use real
persistent roots.

persistent root
history: (persistent)

drawing

group1 group2

shape1 shape2 shape3 shape4

style1

Root embedded object

Embedded object

Persistent root

Composite reference

Reference

Inter-persistent-root reference

Root object to copy

History track

Current state

Current state (computed)

drawing

group1

group2

shape1

shape2

shape3 shape4

style1

history tracks: implemented using persistent roots

1 Edit shape1

3 Edit shape2

5 Delete shape1 from group1

2 Edit shape4

4 Edit shape3

5 Add shape1 to group2

group1 persistent root
(persistent)

group2 persistent root
(persistent)

Splitting the original persistent root
into several smaller ones gives us the
independent undo/redo we want.

However, there are some
consequences (not necessarily
negative)

- more persistent roots for the user to
be aware of

- now that the persistent roots have
separate histories, it’s harder to treat
them as a single unit (tag, branch, etc)

- each persistent root takes on
“document semantics” - i.e. when
undoing the move of shape1 from
group1, group2 is not affected.

persistent root
history: (persistent)

Root embedded object

Embedded object

Persistent root

Composite reference

Reference

Inter-persistent-root reference

Root object to copy

History track

Current state

Current state (computed)

Conclusion

In the end, I don’t think history tracks make sense.
Within a persistent root, presenting controls to do

linear undo/redo on a subset of the objects is not practical. This makes sense,
given that the whole motivation for introducing persistent roots was to be able to make

isolated changes (including undo/redo) to subsets of objects in a store.

