
1﻿

completelyUPDATED &

EX
TENDED

STILL FOR FREE
9 th

Edition

2Services and Tools for All Mobile Platforms

Enough Software GmbH + Co. KG
Sögestrasse 70
28195 Bremen

Germany
www.enough.de

Please send your feedback, questions or sponsorship requests to:
developers@enough.de

Follow us on Twitter: @enoughsoftware

Services and Tools for All Mobile Platforms

published by:

9th Edition October 2011
This Developer Guide is licensed under the

Creative Commons Some Rights Reserved License.

Design and Artwork by Andrej Balaz (Enough Software)
Character Artworkby Johanna Kromp (www.organisiertekunst.de)

http://twitter.com/enoughsoftware

1

Introduction
The mobile galaxy is still evolving. Since our last edition Google
purchased Motorola Mobility, HP discontinued webOS, MeeGo
will be replaced by the new Linux-based Tizen OS and of course
new SDKs came out for iOS, Qt, Windows Phone, bada and other
platforms. So we have updated the whole guide for you once
again. We have added new content on topics such as accessibil-
ity, operator billing and market shares. And: we kicked out the
chapter about webOS, since the future of the platform is unsure.
You will neither find a MeeGo chapter anymore – maybe we’ll
have a Tizen chapter in the 10th edition?

However, those of you who used to develop webOS or MeeGo
apps will probably appreciate this book even more now: It gives
you an objective overview on all the remaining mobile platforms.
So read through the pages to find out what your next playground
will be! If you are still afraid of making the wrong decision and
taking a dead-end road, you are probably thinking about cross-
platform programming. If this is the case, then refer to the dedi-
cated chapter right away and learn more about multi-platform
solutions and the limitations of this approach.

If you are not a developer but a decision maker who is won-
dering how to enter the mobile arena, this book is also a good
entry point. You may be asking yourself if you should spend
your budget on an iOS app or a mobile website? You want to
know what your programmers are talking about when they are
complaining about fragmentation and too many platforms?
If so, you will find the answers in the pages that follow.

Whatever is your role in the mobile galaxy, please continue
spreading the word about this project or even better, get in-
volved as a writer or a sponsor!

Robert + Marco / Enough Software
Bremen, October 2011

3An Overview Of Application Platforms

An Overview Of
Application Platforms
There is a wide selection of platforms with which you can realize
your mobile vision. This section describes the most common en-
vironments and outlines their differences. More detailed descrip-
tions follow in the platform-specific chapters.

Native Applications

There are many mobile platforms used in the market – some
are open source, some are not. The most important native plat-
forms are (alphabetically) Android, bada, BlackBerry, Black-
Berry Tablet OS (QNX), iOS, Symbian, and Windows Phone.
All these platforms enable you to create native applications
without establishing a business relationship with the respective
vendor.

The main benefits of programming apps natively include bet-
ter integration with the platform’s features and often better per-
formance. Typical drawbacks are the effort and complexity of
supporting several native platforms (or limiting your app to one
platform).

Most mass market non-smartphones are, however, equipped
with embedded operating systems that do not offer the opportu-
nity to create native applications. Examples include but are not
limited to Nokia Series 40, Samsung SGH and Sony Ericsson Java
Platform phones.

The following table provides an overview of the main mobile
platforms:

Language(s)Platform Remarks

Android Java, C, C++ Open Source OS (based on Linux)
developer.android.com

bada C, C++
Samsung’s mobile platform running
on Linux or RealTime OS
developer.bada.com

BlackBerry Java, Web Apps
Java ME compatible, extensions
enable tighter integration
blackberry.com/developers

MeeGo Qt, C++, others
Intel and Nokia guided open source
OS (will be replaced by Tizen)
meego.com/developers

webOS
HTML, CSS,
JavaScript, C

Supports widget style
programming, (based on Linux),
probably dead since it has been
abandoned by HP
developer.palm.com

Symbian
C, C++, Java,
Qt, Web Apps,
others

Currently the longest running of all
smartphone OSs
www.forum.nokia.com/symbian

Windows
Phone

C#, VB.NET Silverlight, XNA frameworks
create.msdn.com

Windows
Mobile

C#, C

.NET CF or Windows Mobile API,
most devices ship with Java ME
compatible JVM
developer.windowsmobile.com

iOS Objective-C, C Requires Apple Developer Account
developer.apple.com/iphone

BlackBerry
Tablet OS
(QNX)

ActionScript,
C++, HTML, CSS,
JavaScript

Java announced
blackberry.com/developers

http://developer.android.com
http://developer.bada.com
http://blackberry.com/developers
http://meego.com/developers
http://developer.palm.com
http://www.forum.nokia.com/symbian
http://create.msdn.com
http://developer.windowsmobile.com
http://developer.apple.com/iphone
http://blackberry.com/developers

5

6An Overview Of Application Platforms

Java ME (J2ME)

Around 80% of all mobile handsets worldwide support the mobile
Java standard (Java ME formerly known as J2ME), making it by
far the most widely distributed application environment. In con-
trast to many other environments, Java ME is a standard rather
than a product, which can be implemented by anyone (who pays
Oracle the corresponding license fees that is). Standardization is
the strength of Java ME but at the same time it’s the source of
many fragmentation problems.

On many feature phones, Java ME is the only way to real-
ize client side applications. With the increasing penetration of
smartphones, Java ME has lost importance, at least in the US and
Europe. However, for many emerging economies it remains the
main option to target the mass market.

Flash

Historically, Flash Lite was the mobile edition of Flash, an older
version of Adobe’s web Flash product with ActionScript 2.0 sup-
port. Adobe is phasing out Flash Lite for mobile and simply using
the full version of Flash.

Flash is favored by many designers, since they know the tools
already and it can be used to create engaging, powerful user
interfaces (UIs). It’s relatively easy to code thanks to the Ac-
tionScript language, which is very similar to JavaScript.

The drawbacks of Flash on mobile devices used to be poor
performance, suboptimal integration into host devices and small
market share in comparison to Java ME. However, all these things
are improving: There are millions of feature phones supporting
Flash today and many smartphones and tablets can support some
Flash content including MeeGo, Symbian, iOS (through Adobe
AIR), Android and BlackBerry devices.

7

BREW

The Binary Runtime Environment for Wireless (BREW) is a feature
phone programming environment promoted by Qualcomm1.

BREW services are offered by more than 60 operators in 28
countries, but it’s most popular within the US with CDMA devices
launched by Verizon, US Cellular and Metro PCS, among others.
While previous versions supported C development only, the
Brew Mobile Platform (Brew MP), supports applications written
in Java, Flash, TrigML or native C code2.

Widgets and Web Apps

The main advantage of widget environments is they offer simple,
straightforward programming based on web markup and scripting
languages.

There are, however, several widget environments and some
require a player to be installed. This situation is changing, with
a trend towards standardization, based on W3C standards. The
move to standard web technology based widgets is alleviating
the main drawback of widgets: lack of integration with the un-
derlying platform. The standards-based environments are in-
creasingly offering APIs that enable widgets to access device
data, such as location or contacts, among others. All these en-
vironments use XML, a script language (usually Java Script) and
a page description language (usually HTML) to realize a widget.

1)  www.brewmp.com
2)  developer.brewmp.com

http://www.brewmp.com
http://developer.brewmp.com
http://www.brewmp.com
http://developer.brewmp.com

8
8

This table provides an overview of popular widget frameworks:

Language(s)Environment Remarks

Symbian
Web Runtime
(WRT)
Widgets

XML, HTML, CSS,
JavaScript

Standard web technology based
widgets, with a proprietary
packaging standard. JavaScript
APIs offer high degree of access to
platform features.
www.forum.nokia.com/Develop/Web

PhoneGap
HTML, CSS,
JavaScript

Cross platform web app platform
www.phonegap.com

BlackBerry
Webworks

HTML, CSS,
JavaScript

blackberry.com/developers

Sony Ericsson
WebSDK

HTML, CSS,
JavaScript

Based on PhoneGap
developer.sonyericsson.com

WAC
XML, HTML,
JavaScript, CSS

A joint initiative by Vodafone,
China Mobile and other compa-
nies are pushing the W3C widget
standard
wacapps.net/developers

Series 40
web apps

XML, HTML, CSS,
JavaScript

Web apps for the proxy based
Series 40 Browser enabling UI
manipulation on a device through
JavaScript. W3C packaging stan-
dard used.
www.forum.nokia.com/webapps

Samsung XML, HTML, CSS,
JavaScript

innovator.samsungmobile.com

http://www.forum.nokia.com/Develop/Web
http://www.phonegap.com
http://blackberry.com/developers
http://developer.sonyericsson.com
http://www.wacapps.net/developers
http://www.forum.nokia.com/webapps
http://innovator.samsungmobile.com

9

Websites

The browsing of web pages is supported by most phones, so
in principle this should be the environment of choice to get
the widest possible reach (after SMS text messaging). However,
the sheer number of browsers and their varying feature sets can
make this approach challenging. Some browsers are very power-
ful and support CSS as well as JavaScript, others are less sophis-
ticated and support XHTML only. Thankfully the old WAP standard
with its WML pages doesn’t play any significant role nowadays.

The main drawback of web pages is that they are available
when the device is online only and their access to device fea-
tures is extremely limited.

With the introduction of HTML5 and new mobile browsers that
support its features, this situation is improving: Offline browsing
and new device APIs are now becoming available for mobile web-
sites, such as location information in the Opera Mobile browser
or Nokia Browser for N9. The main benefits of the mobile web as
a platform are the ease of development and that, generally, you
control the deployment.

SMS Text Messaging

Almost everybody who has a mobile phone is also texting.
Texting limits interactions to less than 160 characters; and it can
be quite costly to send out text messages in bulk. On the posi-
tive side, SMS enjoys a global audience of all ages. It also plays
an important role in emerging markets, for example its use for
payments is common in these markets.

10Programming Android Apps

Programming Android Apps
The Android platform is developed by the Open Handset
Alliance led by Google and has been publicly available since No-
vember 2007.

Android is an operating system, collection of preinstalled ap-
plications and an application framework (Dalvik) supported by a
comprehensive set of tools. Since the platform is supported by
many hardware manufacturers, it is the fastest growing smart-
phone operating system. During the second quarter of 2011,
more than 50% of all smartphones shipped in the US were based
on Android1. Although the acquisition of Motorola’s handset
business by Google in late 2011 could affect the platforms use
by other manufacturers, it is not expected to. Android is also
used in tablets, media players, set-top boxes, desktop phones
and car entertainment systems. Some non-Android devices are
also able to run Android Applications, such as RIM’s Playbook
with its virtual machine called App player2.

The platform continues to evolve rapidly with the regular ad-
dition of new features, every 6 months or so. For example, An-
droid 2.3 (code named “Gingerbread”) introduced NFC and VOIP
communication, better game development and a much more.

Android 3.0 (“Honeycomb”) has been designed with deploy-
ment on tablets and other devices with larger screens in mind.

With the next Android OS version (“Ice Cream Sandwich”),
Google is bringing together the separated tablet and telephone
systems and introducing many new features.

1)  www.npd.com/press/releases/press_110822a.html
2)  www.theregister.co.uk/2011/03/25/rim_playbook_android/

http://www.theregister.co.uk/2011/03/25/rim_playbook_android/
http://www.npd.com/press/releases/press_110822a.html
http://www.theregister.co.uk/2011/03/25/rim_playbook_android/

11

Prerequisites

The main programming language for Android is Java. But beware,
only a subset of the Java libraries is supported and there are lots
of platform specific APIs. You can find answers to your What and
Why questions in the Dev Guide1 and to your How questions in
the reference documentation2.

To get started, you need the Android SDK3, which is available
for Windows, Mac OS X and Linux. It contains the tools needed
to build, test, debug and analyze applications. You will prob-
ably also want a good Java IDE. Eclipse or IntelliJ seem a good
choice. These IDEs offer good support for development, deploy-
ment and – importantly – library projects that enable the sharing
of code and resources between projects.

Command line tools and Ant build scripts are also provided so
you can create almost any development and build process.

1)  developer.android.com/guide
2)  developer.android.com/reference
3)  developer.android.com/sdk

http://developer.android.com/guide
http://developer.android.com/reference
http://developer.android.com/sdk
http://developer.android.com/guide
http://developer.android.com/reference
http://developer.android.com/sdk

12Programming Android Apps

Implementation

An Android application is a mix of activities, services, message
receivers and data providers declared in the application mani-
fest. An activity is a piece of functionality with an attached
user interface. A service is used for tasks that should run in the
background and is therefore not tied directly to a visual repre-
sentation. A message receiver handles messages broadcast by
the system or other applications. A data provider is an interface
to the content of an application that abstracts from the underly-
ing storage mechanisms. An application may consist of several
of these components, for instance an activity for the UI and a
service for long running tasks.

Communication between the components is done by intents.
An intent bundles data, such as the user’s location or an URL,
with an action. These intents trigger behaviors in the platform.
For instance, the intent of showing a web page will open the
browser activity. The powerful thing about this building-block
philosophy is that functionality can be replaced by another ap-
plication, as the Android system always uses the preferred ap-
plication for a specific intent.

For example, the intent of sharing a web page triggered by a
news reader app can open an email client or a text messaging
app depending on the user’s preference and the applications in-
stalled: Any application that declares the sharing intent as their
interface can be used.

To aid development, you have may tools at your disposal in
the SDK, the most important ones are:

—— android: To create a project or manage virtual devices and
versions of the SDK.

—— adb: To query devices, connect and interact with them
(and virtual devices) by moving files, installing apps and
such like.

13Programming Android Apps

—— emulator: To emulate the defined features of a virtual
device. It takes a while to start, so do it once and not for
every build.

—— ddms: To look inside your device or emulator, watch log
messages and control emulator features such as network
latency and GPS position. It can also be used to view
memory consumption or kill processes. If this tool is
running, you can also connect the Eclipse debugger to a
process running in the emulator.

These four tools and others – such as tools to analyze method
trace logs, inspect layouts and test apps with random events or
backup functionality – can be found in the tools directory of
the SDK.

The user interface of an application is separated from the
code in Android-specific xml layout files. Different layouts can
be created for different screen sizes, country locales and device
features without touching the Java code. To this end, localized
strings and images are organized in separate resource folders.
IDE plug-ins are available to help manage all these files.

If you are facing issues, such as exceptions being thrown,
be sure to check the ddms log. It enables you to check if
you have omitted to add necessary permissions, such as
android.permission.INTERNET. using the uses-permission
flags1.

If you are going to use Honeycomb related layout features for
large screens like Fragments2, be sure to add the Android Com-
patibility package from Google. It’s available through the SDK
& AVD Manager and helps to develop for Android 3.0+ without
causing problems with Android 1.63 to Android 2.3 deployment.

1)  developer.android.com/reference/android/Manifest.permission.html
2)  developer.android.com/guide/topics/fundamentals/fragments.html
3)  android-developers.blogspot.com/2011/03/fragments-for-all.html

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/guide/topics/fundamentals/fragments.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/guide/topics/fundamentals/fragments.html
http://android-developers.blogspot.com/2011/03/fragments-for-all.html

14Programming Android Apps

If you are implementing your application against Android
3.1+, you will be able to make homescreen widgets resizable
and connect via USB to other devices, such as digital cameras,
gamepads and many others.

Testing

The first step to test an app is to run it on the emulator or de-
vice. You can the debug it, if necessary, through the ddms tool.
All versions of the Android OS are built to run on devices without
modification, however some hardware manufacturers might have
changed pieces of the platform1. Therefore, testing on a physical
device is paramount.

Automated Testing
To automate testing, the Android SDK comes with some capable
and useful testing instrumentation2 tools. Tests can be written
using the standard JUnit format using the Android mock objects
that are contained in the SDK.

The Instrumentation classes can monitor the UI and send sys-
tem events such as key presses. You can test then for the status
of your application after these events have occurred. The auto-
mated tests can be run on virtual and physical devices. Open-
source testing frameworks, such as Robotium3 can complement
your other automated tests. Robotium can even be used to test
binary apk files, if the source is not available. A maven plugin4
and a helper for the continuous integration of a Hudson server
may also assist your testing5.

1)  For an overview see e.g. www.androidfragmentation.com
2)  developer.android.com/guide/topics/testing/testing_android.html
3)  code.google.com/p/robotium
4)  code.google.com/p/maven-android-plugin/
5)  wiki.hudson-ci.org/display/HUDSON/Android+Emulator+Plugin

http://developer.android.com/guide/topics/testing/testing_android.html
http://code.google.com/p/robotium
http://code.google.com/p/maven-android-plugin/
http://wiki.hudson-ci.org/display/HUDSON/Android+Emulator+Plugin
http://www.androidfragmentation.com
http://developer.android.com/guide/topics/testing/testing_android.html
http://code.google.com/p/robotium
http://code.google.com/p/maven-android-plugin/
http://wiki.hudson-ci.org/display/HUDSON/Android+Emulator+Plugin

15Programming Android Apps

Signing

Your application will always be signed by the build process,
either with a debug or release signature. You can use a self-sign-
ing mechanism, so you can avoid signing fees (and security).
The same signature is required for updates to your application.

Distribution

After you have created the next killer application and tested it,
you should place it in the Android Market. This is a good place
to reach both customers and developers of the Android platform,
to browse for new exciting apps, and to sell your own apps. It
is also used by other app portals as a source for app metadata.
To upload your application to the Android Market, start at
market.android.com/publish.

You are required to register with the service using your
Google Checkout Account and pay a $25 registration fee. Once
your registration is approved, you can upload your application,
add screenshots and descriptions and publish it.

Make sure that you have defined a versionName, versionCode,
an icon and a label in your AndroidManifest.xml. Furthermore,
the declared features in the manifest (uses-feature nodes) are
used to filter apps for different devices. As there are lots of com-
peting applications in Android Market, you might want to use
alternative application stores. They provide different payment
methods and may target specific consumer groups1.

Android 1.6 upwards also supports in-app purchase. This al-
lows you to sell extra content, feature sets and such like from
within your app, using the existing infrastructure of the Android
Market2.

1)  www.wipconnector.com/index.php/appstores/tag/android
2)  developer.android.com/guide/market/billing/index.html

http://market.android.com/publish
http://developer.android.com/guide/market/billing/index.html
http://developer.android.com/guide/market/billing/index.html
http://www.wipconnector.com/index.php/appstores/tag/android
http://developer.android.com/guide/market/billing/index.html

16

Programming bada Apps
bada is Samsung’s proprietary Smartphone platform, it is

based on open-source tools and software. bada was introduced
in late 2009 and the first version of the SDK was released to
the public in June 2010. Samsung’s main intention in introduc-
ing bada, was to add a new platform to the existing market to
accommodate the anticipated need for smartphone features in
low-end market. Because bada can run either on top of a Linux
kernel, for high-end devices, or on real-time OS kernels, for low-
end devices, all market segments can be served.

To reach their target, Samsung puts a high priority on devel-
oper support and training. There is a huge documentation and
guide library available from the developer site . This site offers
a forum, premium support and direct access to Samsung bada
experts as well.

Samsung’s Application store gives developers a route to mar-
ket and includes features such as sales and download statistics,
advertisement and a direct feedback channel for customers. The
store is accessible to customs by three methods, the website
www.samsungapps.com, a client application on bada smart-
phones and a PC client called Samsung’s Kies.

Samsung’s app store is available in over 120 countries world-
wide and had over 100 million downloads in its first 10 month;
the store was launched in June 2010. Applications can be offered
as paid apps or free. It is possible to generate revenue by placing
advertisements in your apps too. In the case of a purchased app,

http://www.samsungapps.com

17Programming bada Apps

you will receive 70% of sales, which is the same offer as most
other popular mobile application stores. Currently there are six
bada-based devices available with the Wave 3 being the current
flagship device and Wave 578, the first device with NFC available
running bada 2.0 OS.

Getting Started

You get start with bada by registering at developer.bada.com,
there is no charge for this. Next, download the bada SDK, which
is available for Microsoft Windows computers only. The SDK in-
cludes the bada IDE (based on eclipse CDT), aemulator and a
GNU toolchain.

In September 2011, Samsung released bada 2.0. One of the
key features is multitasking, which makes real background ser-
vices possible. In addition, bada 2.0 supports Near Field Com-
munication as well as the possibility for easy ad-hoc WiFi-P2P
network setup from within the SDK.

Other interesting features include enhancements to the UIX
with speech-to-text (STT) and text-to-speech (TTS), as well as
support for 3D sound with OpenAL. Support for web-based ap-
plications is extended, with support for more JavaScript frame-
works, HTML5 and a lot of API‘s from the WAC 2.0 standard with-
in the Webcontrol.

Another interesting new feature is the MIME-type registra-
tion for applications, so that you can register applications to
the system for handling specific file or media types such as MP3.

Before starting to program a developer should be familiar with
the application manifest, which is a unique application profile
and is needed for the debugging and testing of applications on
devices and distributing apps through the store. A manifest can
be generated and managed on developer.bada.com and is found
under the menu item “My Application”.

http://developer.bada.com
http://developer.bada.com

18Programming bada Apps

Implementation

After creating an application manifest you can start with app
development using bada SDK/IDE. The IDE has a plentiful library
of example code, which can be copied with one click into your
own workspace. These examples are a great way to get familiar
with the features of Bada and its programming paradigm.

Native bada apps are developed in C++. Some restrictions ap-
ply however, for example, the language does not use exceptions.
Instead, it returns values and a combination of macros are used
for error handling and RTTI is turned off, so that dynamic_cast
does not work on bada.

When creating bada apps, you need to understand memory
management basics, because the language often leaves this up
to you. For example, the app will have to delete any pointer re-
turned by a method ending in ‘N’. You should also make sure that
each new variables has a delete method:

MyType* var = new MyType(); // call delete
MyType* array 0 new MyType[10]; // call delete[]
MyType type, stackarray[];
// variable on stack will be destroyed by
//scope, no delete

The API uses some parts of STL, so while Samsung says that
STL can be used in code, be aware that the current STL imple-
mentation shipping with bada is missing some components. This
can be addressed by using STLPort for full STL support. Similarly
you can port modern C++ Libraries, such as Boost, to work on
bada, but the lack of RTTI and exceptions can make it challeng-
ing work.

The bada API itself is wrapped in a number of namespaces.
The API offers UI Control and Container classes, but there are no

19Programming bada Apps

UI Layout management classes, so the UI elements must be posi-
tioned by hand or within the code. A UI layout for the landscape
and/or the portrait mode is also the your responsibility. The API
provides most standard classes for XML, SQL or Network and a
pretty complete framework. You should make use of the callbacks
for important phone events in the application class, such as low
battery level or incoming calls.

When writing games for bada, the SDK supports OpenGL ES
1.1 and 2.0. The SDK wraps parts of OpenGL for use in its own
classes, making it easy to port existing OpenGL code to bada.

The central resource for bada developers is developer.bada.com.
The biggest independent bada website and forum is currently
BadaDev.com, which has a good library of great tutorials about
coding for bada. There is an IRC channel #bada at irc.freenode.net,
and of course there are groups for bada developers on most so-
cial networks.

Testing

The bada API offers its own logging class and an AppLog meth-
od; you should make extensive use of logging in debug builds.
The AppLog will show up in the IDE. The IDE allows for testing
and debugging in the simulator or on a device. As mentioned
earlier in this guide, we strongly recommend testing on real de-
vices. Without device testing you cannot be sure how the app
will perform on a device and, in rare cases, code that worked
perfectly on the simulator will not do so on the handset.

Samsung provides the bada Remote Test Lab (RTL), which is
available for all registered developers, and can be installed as
an Eclipse-plugin.

Tools and frameworks for unit testing are available within the
IDE/SDK. For details about these tools, check out the “bada Tu-

http://developer.bada.com
http://www.badadev.com

torial.Development Environment.pdf” included in the documents
folder in the SDK base directory.

Another new tool that was introduced with bada 2.0 SDK is a
code coverage and performance-monitoring tool, which enables
code optimizations.

Distribution

App distribution is through Samsung‘s apps store and it is the
only distribution channel. As with Apple’s App Store, there are
quite strict acceptance rules for apps submitted and you can find
out more in the “Samsung Apps Publisher Guide“. The guide can
be downloadable after registering at the Samsung Apps Seller
Office.

Once your app has made it to the store you will get 70% of
the revenue. For advertising Samsung allows the inclusion of
third party ad network contents in bada application.

21Programming Native BlackBerry Apps

Programming
Native BlackBerry Apps
The BlackBerry platform was developed by the Canadian company
Research In Motion (RIM)1 and launched in 1999. BlackBerry
devices became extremely popular because they were equipped
with a full keyboard for comfortable text input (which spawned
a condition named BlackBerry Thumb2), their long battery life
and more and more for Blackberry Messenger, their mobile social
network offering. Add PDA applications such as address book,
secure email, calendar, tasks and memopad to these features
and you will understand why the platform is very popular among
business and mainstream users alike.

The market share of BlackBerry phones has declined some-
what in the US in 20113, but it is still an important smartphone
platform. While the general consensus seems to be that Black-
Berry tablet, the PlayBook with its QNX OS has been launched
too early, the hardware and OS are highly praised.

Prerequisites

RIM currently supports two platforms/operating systems.
The first is BlackBerry OS. This is the operating system found on
all current BlackBerry smartphones. Its latest iteration (Black-
Berry OS 7) offers a multitude of new features over its previous
versions. Besides improved browsing support, new APIs are now
available for:

1)  www.rim.com
2)  en.wikipedia.org/wiki/Blackberry_thumb
3)  gs.statcounter.com

http://www.rim.com
http://en.wikipedia.org/wiki/Blackberry_thumb
http://www.rim.com
http://en.wikipedia.org/wiki/Blackberry_thumb
http://gs.statcounter.com

22

—— NFC
—— Compass and positioning
—— Video capture
—— Window management
—— Searching
—— Integration with the operating system
—— and more

In addition the platform supports OpenGL ES 2.0. These ad-
ditions make the platform very competitive from a technical
standpoint.

For the Blackberry OS, two development approaches are avail-
able depending on the type and nature of your planned proj-
ect. For mid-sized to large applications native Java development
is the first choice. Small apps can also be developed with the
BlackBerry WebWorks SDK.

RIM’s next generation operating system is based on QNX Neu-
trino Realtime OS (RTOS). RIM calls it Tablet OS and it is cur-
rently only supported on their PlayBook (QNX based smartphones
have been announced for Q1 2012). For now, applications should
be written using Adobe AIR Flash and WebWorks. Native C and
Java SDKs have also been announced, as well as an Android com-
patibility layer. The first regular BlackBerry smartphones running
QNX are scheduled to arrive in Q1 2012, and QNX itself will re-
place the current BlackBerry OS in the long run.

This chapter focuses on Java development, for more informa-
tion on WebWorks (web) and Flash programming please see the
respective chapters in this guide.

Programming Native BlackBerry Apps

Java SDK
As for all Java-driven applications and development, you need
the Java SDK1 (not the Java Runtime Edition).

IDE
For native Java development, you first need to decide which IDE
to use. The modern option is to use Eclipse and the BlackBerry
plugin2, for previous BlackBerry OS versions you can also use the
BlackBerry Java Development Environments (JDEs)3.

These JDEs are complete environments enabling you to write,
compile, package and sign your applications. Device simulators
are included as well.

Desktop Manager
The BlackBerry Desktop Manager4 should be downloaded and in-
stalled. It enables you to deploy your app package on a device
for testing. For faster deployment, you might also use a tool
called javaloader that comes with the JDE.

Coding Your Application

The BlackBerry JDE is partly based on J2ME and some of its
JSR extensions: Integrated into the SDK is the MIDP 2.0 stan-
dard with popular JSR extensions that provide APIs for UI, au-
dio, video, and location services among others5. This means that
BlackBerry apps can be created using J2ME only technologies.

1)  www.oracle.com/technetwork/java
2)  us.blackberry.com/developers/javaappdev/javaplugin.jsp
3)  us.blackberry.com/developers/javaappdev/javadevenv.jsp
4)  us.blackberry.com/apps-software/desktop/
5)  www.blackberry.com/developers/docs/6.0.0api/index.html

http://www.oracle.com/technetwork/java
http://us.blackberry.com/developers/javaappdev/javaplugin.jsp
http://us.blackberry.com/developers/javaappdev/javaplugin.jsp
http://us.blackberry.com/developers/javaappdev/javaplugin.jsp
http://us.blackberry.com/apps-software/desktop/
http://www.blackberry.com/developers/docs/6.0.0api/index.html
http://www.oracle.com/technetwork/java
http://us.blackberry.com/developers/javaappdev/javaplugin.jsp
http://us.blackberry.com/developers/javaappdev/javaplugin.jsp
http://us.blackberry.com/apps-software/desktop/
http://www.blackberry.com/developers/docs/6.0.0api/index.html

24Programming Native BlackBerry Apps

Another option is to use BlackBerry’s proprietary extensions
and UI framework that enable you to make full use of the plat-
form. Native UI components can be styled to an extent, but they
inherit their look from the current theme, however overriding the
Field.applyTheme() method will prevent this.

From OpenGL-ES to homescreen interaction and cryptography,
the BlackBerry APIs provide you with everything you need to cre-
ate compelling apps. In addition to the official BlackBerry tools,
there are third party extensions that enable you to enhance your
apps, for example J2ME Polish1 or Glaze2 which enable you to
design and animate your UI using CSS.

Services

BlackBerry offers many services that can be useful in developing
your applications including advertising, mapping, payment and
push services3.

The push service is useful mainly in mail, messaging or news
applications. Its main benefit is that the device waits for the
server to push updates to it, instead of the device continuously
polling the server to find out if updates are available and then
pulling the updates from the server. This reduces network traffic,
battery usage and, for users on metered data plans or roaming,
lowers costs.

The push service4 works as follows: Your server sends a data
package of up to 8KB to the BlackBerry push infrastructure.

The infrastructure then broadcasts the message to all or a
group of clients (for content such as a news report) or to one
specific client (for content such as a chat message). The device

1)  www.j2mepolish.org
2)  www.glaze-ui.org
3)  us.blackberry.com/developers/platform
4)  us.blackberry.com/developers/platform/pushapi.jsp

http://www.j2mepolish.org
http://www.glaze-ui.org
http://us.blackberry.com/developers/platform
http://us.blackberry.com/developers/platform/pushapi.jsp
http://www.j2mepolish.org
http://www.glaze-ui.org
http://us.blackberry.com/developers/platform
http://us.blackberry.com/developers/platform/pushapi.jsp

25
Programming Native BlackBerry Apps

client then receives the message through BlackBerry’s Push API
and may confirm message receipt back to the infrastructure. Your
server can then check if the message was delivered. BlackBerry
offers the push mechanism as a limited free service, with a pre-
mium paid extension which allows you to send more push mes-
sages.

Testing

BlackBerry provides simulators for various handsets in the JDE
and plug-ins or as separate downloads. These simulators enable
you to run an app on a PC in the same way it would be run on
a device. To assist with testing, the simulators include features
such as simulating incoming calls and setting the signal strength
enabling you to check how your application reacts if a device is
outside network coverage. Applications running on the emula-
tors are fully debuggable with breakpoints.

As a great plus, BlackBerry devices provide the capability to
perform on-device debugging with all the features that you en-
joy from the simulators.

Porting

Porting between BlackBerry devices is easy because the OS is
made by a single company that has been careful to minimize
fragmentation issues. However, this does not entirely eliminate
challenges:

—— Some classes and functionalities are only available on
specific OS versions. For example the FilePicker that is used
to choose a file is only available from OS 5.0 onwards.

—— You need to handle different screen resolutions and orien-
tation modes (landscape and portrait).

26Programming Native BlackBerry Apps

—— You need to handle touch and non-touch devices. In addi-
tion, the Storm devices use a touchscreen that is physically
clickable, so there is a distinction between a touch and
a click on these devices. BlackBerry’s more recent touch
devices don’t use this technology anymore.

Porting to other Java platforms such as J2ME and Android
is complicated as it’s not possible to port the BlackBerry UI.
Code written for server communication and storage etc might
be reused on J2ME and Android if you avoid native BlackBerry
API calls. In general, cross-platform portability strongly depends
on how frequently your app uses native BlackBerry components.
For example it is not possible to reuse BlackBerry push services
classes on other platforms.

Signing

Many security-critical classes and features of the platform (such
as networking or file APIs) require an application to be signed
such that the publisher can be identified. To achieve this, you
need to obtain a signing key directly from BlackBerry1. The sign-
ing itself is undertaken using the rapc tool which also packages
the application.

Distribution

BlackBerry’s own distribution channel is called App World2 where
you can publish your apps. For paid applications, you’ll get a
70% revenue share. In addition, GetJar3 is a well-known inde-
pendent website that also publishes BlackBerry apps.

1)  us.blackberry.com/developers/javaappdev/codekeys.jsp
2)  appworld.blackberry.com
3)  www.getjar.com

http://us.blackberry.com/developers/javaappdev/codekeys.jsp
http://appworld.blackberry.com
http://www.getjar.com
http://us.blackberry.com/developers/javaappdev/codekeys.jsp
http://appworld.blackberry.com
http://www.getjar.com

27Programming Flash Apps

Programming Flash Apps
Adobe Flash has become the ubiquitous platform for developing
web-based applications, animations, and video. The tools are
fairly easy to use and enable beautiful graphics, animation and
audio to be packaged in a single, compact file that displays on
any screen size. Flash is simply a file format that bundles bitmap
images, video, audio, animations, and ActionScript into a single
SWF file. It is one of the best ways to manage multimedia con-
tent in an application or for a web browser.

The commercial potential in using Flash for mobile app de-
velopment is substantial, as it’s a very well-known platform with
over 3 million developers worldwide and it is already supported
in a large number of devices. Many feature phones have support
for Flash Lite (typically support for Flash 3, 6 or 8 depending on
when the device was manufactured). Flash Lite is perfect for sim-
ple games such as puzzles and card games. Some smartphones
and tablets have a Flash player pre-installed; Full Flash 10.x sup-
port has been announced for Android-based devices and RIM’s
BlackBerry PlayBook. For the iPhone, Adobe has released a pack-
ager that enables Adobe AIR applications to run on iOS devices.

Development of mobile Flash applications can be undertaken
using Adobe products and alternative Flash-compatible SDK from
a number of vendors. Flash brings the flexibility of a web browser
user interface (UI) to mobile applications, allowing the developer
to break free of a platform’s UI constraints. Many developers are
not aware of how easy it is to implement Flash in an application.
Using Adobe AIR requires the entire application to be developed
in Flash: It can be a daunting task to learn ActionScript and how
to create animations. However, several Flash-compatible SDKs
are available that enable the implementation of Flash content

28Programming Flash Apps

directly as part of a native 2D or 3D mobile application, a conse-
quence of this approach can be better application performance.

Prerequisites

Adobe open sourced the Flash specification, permitting inde-
pendent developers and companies to develop Flash-compatible
SDKs, engines and players. Authoring can be done using the
Adobe Flash Professional or Adobe Creative Suite (CS) software.
CS 5 supports ActionScript 3 and Flash 10.X offering the full 3D
and 2D feature set on some smartphones and tablets. If you want
to utilize features such as 3D and ActionScript 3 compatibility,
using the CS5 package and tools is the way to go.

However, one potential drawback of Flash is poor perfor-
mance: Large binary files may run slowly on less powerful devices
resulting in a poor user experience. Adobe CS 3, 4 and 5 can
be used to author Flash content that runs on alternative Flash-
compatible SDKs, engines and players, giving developers more
options to optimize an application’s performance.

These alternative Flash-compatible SDKs generally support
ActionScript 2 and Flash 8 with a full 2D feature set. Note that
video and audio playback support was a feature introduced in
Flash 6.1, so nearly all current Flash-compatible SDKs have the
ability to support video playback.

A Flash application typically consists of two distinct pieces:
The animation engine that renders deterministic graphics for
the display and the ActionScript engine that uses input events
(time, keyboard, mouse and XML) to make runtime decisions
about whether animations should be played Flash-internally or
externally. ActionScript is a scripting language based on ECMA-
Script available in three versions.

Developing Flash applications, animations or video for mobile
devices does not differ significantly from developing browser-

29Programming Flash Apps

based Flash applications for desktop computers. However, you
must be aware of the requirements and restrictions of the target
device. We anticipate that Flash support will become standard-
ized on most mobile devices, as the hardware platforms include
faster CPUs and GPUs with OpenGL ES graphics acceleration. But
until then, you have to find a way to deal with this fragmenta-
tion. Be sure to save your Flash files in a format that is compat-
ible with your target device’s software.

Pay special attention to the design of your Flash application.
Adobe CS provides the option to choose between developing a
browser-dependent or a standalone Adobe AIR application. An
Adobe AIR application is essentially a Flash player, browser en-
gine, and the native device’s APIs wrapped into one executable
file, so that it conforms to the developer terms and security
requirements of various mobile platforms. Alternative Flash-com-
patible SDKs go further and integrate Flash content into existing
2D and 3D software applications.

There are also open source versions including Gnash1 and
GameSWF2 that are designed for desktop systems. Many of the
alternative Flash-compatible platforms run outside the browser
environment, working directly with a device’s native APIs.

Tips And Tricks

As it is mentioned often in this guide, it is crucial to consider bat-
tery life when creating applications for mobile devices, Flash is no
exception. You should never create memory-intensive animations
purely for the sake of offering a fancy effect. A Flash animation
using ActionScript 3 will create a binary that could be more than

1)  www.gnashdev.org
2)  tulrich.com/geekstuff/gameswf.html

http://www.gnashdev.org
http://tulrich.com/geekstuff/gameswf.html
http://www.gnashdev.org
http://tulrich.com/geekstuff/gameswf.html

30Programming Flash Apps

3 times larger than that for an ActionScript 2 animation and will
likely result in poor performance.

In general, you should think carefully about whether you need
ActionScript 3: It’s a completely different scripting language to
ActionScript 2 and requires a lot more development know-how
and experience to implement efficiently.

You might also want to remember the following to avoid your
Flash app causing excessive battery drain:

—— Avoid sliding a Flash object across the screen, unless you
know it performs well. Redrawing every pixel multiple times
in a frame without the support of a GPU is a performance
killer. Select a SDK toolkit that minimizes CPU utiliza-
tion to preserve battery life. If the Flash animation is not
changing, the SDK toolkit should show 0% CPU utilization.

—— If the target smartphone has one display resolution, use
correctly sized 2D bitmaps to replace SVG objects that will
never change size.

—— Minimize network connectivity to that which is required
only.

—— Use OS APIs with care. The greater number of OS APIs and
independent software you use, the more work is being done
and the faster the battery runs out of power.

—— Design the application to recover gracefully from power
failures. Many of the alternative Flash-compatible SDKs
have additional APIs to support power failures and include
database tools that you can implement in an application
(for example to save and restore settings). These tools
mean your user doesn’t need to re-key data after a power
failure.

Testing

The best approach for initial testing is determined by your
chosen architecture: If you have developed an Adobe Flash
browser-based application or Adobe AIR application, then it’s
best to test the application using the Adobe tools.

However, if you have developed a Flash animation (with or
without ActionScript) or Flash animations that will be integrated
into another 2D or 3D application, you should consider test-
ing the application with one of the alternative Flash-compatible
SDKs or tools.

Adobe CS5 has a built-in smartphone emulator also. This en-
ables developers to virtually test their application on selected
handsets and tablets.

In general: Always test on devices to gain information on
how much memory and battery is being used by the application.

32Programming Flash Apps

Packaging And Distribution

When you design Flash content for use in a mobile website, pack-
aging and distribution is straightforward: You simply follow the
same rules and procedures you would use in deployment for use
in a desktop browser.

Using Flash in a web widget is similar also. Generally you in-
clude the Flash content in the widget as you would for a website,
package the widget and deploy the resulting application in line
with the widget environment’s requirements – for more informa-
tion see the chapter ”Programming Mobile Widgets”.

When the platform offers a built in Flash player that runs
Flash content as an application the packaging requirements can
be more complicated. At the simple end of the spectrum is Nokia
Series 40, where the packaging requirements are quite simple1:

You create some metadata, an icon and pack these with the
Flash content into a zip file with the extension *.nfl.

At the complex end of the spectrum is packaging for Symbian
devices, where the Flash app has to be given a Symbian C++
launcher and packed in a Symbian SIS file.

While some developers will do this manually, Nokia provides
an online packaging service that does the heavy lifting for you2.

Generally, when the packaging seems complex, it can often be
simplified by using the platform’s widget option to package
and deploy the content.

In general, once Flash content has been packaged into the
correct format for the platform, it can then be distributed
through any app store that services that platform.

1)  bit.ly/aqEmvv
2)  esitv008song.itlase.com/sispack

http://esitv008song.itlase.com/sispack
http://bit.ly/aqEmvv
http://esitv008song.itlase.com/sispack

33Programming iOS Apps

Programming iOS Apps
The iPhone, along with the iPod touch and iPad, is an extremely
interesting and very popular development platform, one com-
monly stated reason being the App Store. When it was intro-
duced in July 2008, the App Store took off like no other market-
place had before. Now there are more than 500,000 applications
in the App Store, and the number is growing daily. This reflects
the success of the concept, but it means that it is getting ever
harder to stand out in this mass of applications.

Users have downloaded more than 15 billion iOS apps, as of
July 2011. Nearly every quarter device sales are reaching new
all-time highs and there is no sign of a slowdown in the billion
downloads per month. Over 200 million devices are in the hands
of users willing to try apps and pay for content, making the App
Store one of the most economically interesting targets for mobile
app development. As of June 2011, Apple has paid developers
over USD 2.5 billion since the launch of the App Store.

The iOS SDK offers high-level APIs for a wide range of tasks,
which helps to cut down on development time. New APIs are
added in every major update of iPhone OS, such as MapKit in
iOS 3.0, (limited) multitasking in iOS 4.0 and Game Center in
iOS 4.1.

The iPad, which went on sale in April 2010, uses the same
operating system and APIs as the iPhone, therefore the skills ac-
quired in iPhone development can be used in iPad development
too. A single binary can even contain different versions for both
platforms with large parts of the code being shared. Since the
release of iOS 4.2, in November 2010, all iOS devices sold have
used a common firmware version. This absence of fragmentation
makes it possible to develop universal apps for multiple device
classes much more easily than on other mobile platforms.

34

iOS 5.0, released in Q4 2011 includes various new features
and over 1,500 new APIs for developers. One of the most inter-
esting is iCloud, which allows for easy cloud storage of appli-
cation-specific data, documents and easy-to-implement Twitter
functionality.

Prerequisites

Apple’s iOS SDK
In order to develop iPhone (and iPod Touch and iPad) apps, you
will need the iOS SDK, which can be downloaded at developer.
apple.com/iphone. This requires a membership, which starts at
USD 99/year. If you do not plan on distributing your apps in the
App Store and don’t wish to test your apps on an actual device,
you can also download Xcode from the Mac App Store for free.

The iOS SDK contains various applications that will allow you
to implement, test, and debug your apps. The most important
applications are:

—— Xcode, the IDE for the iOS SDK
—— Interface Builder, to build user interfaces for iPhone app

(integrated into Xcode as of Xcode 4.0)
—— Instruments, which offers various tools to monitor app

execution
—— iOS Simulator, which enables you to test apps quickly,

rather than deploying them to a device.

http://developer.apple.com/iphone
http://developer.apple.com/iphone

35

The iOS SDK will work on any Intel-based Mac running Mac OS X
10.6 (Snow Leopard) or 10.7 (Lion, which is the recommended
OS X version).

A guide to get you started and introduce you to the tools is
included in the SDK, as is a viewer application for API documen-
tation and sample code. References and guides are also available
online at developer.apple.com/iphone/library/navigation.

The SDK includes a large number of high-level APIs separated
into a number of frameworks and libraries, which include:

—— Cocoa Touch, which consists of the UI libraries, various
input methods such as multi-touch and accelerometer.

—— Media frameworks, such as OpenAL, OpenGL ES, Quartz,
Core Animation and various audio and video libraries

—— Core Services, such as networking, SQLite, threading and
various other lower level APIs.

The list of available frameworks grows with each major release
of the iOS firmware, which usually happens once a year in June
or July.

http://developer.apple.com/iphone/library/navigation

36Programming iOS Apps

Alternative Third-Party Development Environments
Since Apple relaxed their App Store distribution guidelines, de-
velopment using tools other than Objective-C, Cocoa Touch and
Xcode is officially permitted again and most commonly used in
game development, for example using the Unreal Development
Kit1, which Epic released for iOS to much fanfare in December
2010.

Using third party development environments and languages
for iOS development offers a number of advantages and disad-
vantages compared to the official way of producing iOS apps.
The major advantage being that it is easy to support multiple
platforms from a single code base without having too much of
a maintenance burden. However, as experience with desktop
software has shown, cross-platform software development rarely
produces outstanding quality. In most cases the cross platform
tool concentrates on the lowest common denominator and the
resulting product doesn’t feel like it really belongs on any of the
targeted platforms.

For an overview on cross-platform technologies in general,
please see the corresponding chapter in this guide.

There are, however, third party development environments
which focus solely on iOS development, such as MonoTouch2.

The platform allows developers to build iOS apps using C# and
.NET while taking advantage of iOS APIs, making it the alterna-
tive that comes closest to the original SDK, while still allowing
code re-use, for example when creating similar Windows Phone
7 apps.

Some alternative IDEs carry additional fees, which is in ad-
dition to Apple’s yearly development program charge and their
30% cut of all sales. Given the drawbacks of cross-platform de-
velopment mentioned earlier, using third party IDEs makes the

1)  www.udk.com
2)  www.monotouch.net

http://www.udk.com
http://www.udk.com
http://www.monotouch.net
http://www.udk.com
http://www.monotouch.net

37Programming iOS Apps

most sense for games, which can share almost all their code
between different platforms. Java IDE makers JetBrains recently
released an Objective-C IDE of their own, called AppCode, which
is still in beta stage but looks as if it provides some advanced
features.

Implementation

Usually, you will want to use Apple’s high-level Cocoa Touch APIs
when developing for the iPhone. This means that you will write
Objective-C code and create your user interfaces in Interface
Builder, which uses the proprietary XIB file format.

Objective-C is, as the name suggests, a C-based object-ori-
ented programming language. As a strict superset of C, it is fully
compatible with C, which means that you can use straight C
source code in your Objective-C files.

If you are used to other object-oriented languages such as
C++ or Java, Objective-C’s syntax might take some time getting
used to, but is explained in detail at developer.apple.com1. What
separates Objective-C most from these languages is its dynamic
nature, lack of namespace support and the concept of message
passing vs. method calls.

A great way to get you started is Apple’s guide “Your First
iPhone Application”, which will explain various concepts and
common tasks in an iPhone developer’s workflow2. Also check
out some of the sample code that Apple provides online3 to find
out more about various APIs available to you.

1)  developer.apple.com/iphone/manage/overview/index.action
2)  developer.apple.com/iphone/manage/distribution/distribution.action
3)  developer.apple.com/iphone/library/navigation/SampleCode.htm

http://developer.apple.com/iphone/manage/overview/index.action
http://developer.apple.com/iphone/manage/overview/index.action
http://developer.apple.com/iphone/manage/overview/index.action
http://developer.apple.com/iphone/library/navigation/SampleCode.htm
http://developer.apple.com/iphone/manage/overview/index.action
http://developer.apple.com/iphone/manage/distribution/distribution.action
http://developer.apple.com/iphone/library/navigation/SampleCode.htm

38Programming iOS Apps

Testing

As performance in the iPhone Simulator can be superior to the
performance on a device, it is absolutely vital that testing is
carried out on devices. It is highly recommended that you have
at least one device available for each class of device you want to
deploy your apps on.

For example, an iPhone-only app shouldn’t need to be tested
separately on an iPad. However, it cannot hurt to have several
classes of device, including older models, since problems such
as excessive memory consumption sometimes will not present
themselves on newer hardware.

Testing on real devices is also important because touch-based
input is completely different from a pointer–driven UI model.
End-user testing can be achieved by distributing builds of the
application to as many as 100 testers, through Ad-Hoc Provision-
ing, which you can set up in the Program Portal1. Each iPhone
(and iPad/ iPod touch) has a unique identifier (UDID – universal
device identifier), which is a string of 40 hex characters based
on various hardware parts of the device.

If you choose to test using Ad-Hoc-Provisioning, simply fol-
low Apple’s detailed set-up instructions2. Every single step is vi-
tal to success, so make sure that you execute them all correctly.

With iOS 4.0, Apple has introduced the possibility for devel-
opers to deploy Over-The-Air (OTA) Ad-Hoc builds of their apps

1)  developer.apple.com/iphone/library/referencelibrary/GettingStarted/
Learning_Objective-C_A_Primer/index.html#//apple_ref/doc/uid/TP40007594

2)  developer.apple.com/iphone/library/documentation/iPhone/Conceptual/
iPhone101/Articles/00_Introduction.html

http://developer.apple.com/iphone/library/referencelibrary/GettingStarted/Learning_Objective-C_A_Primer/index.html#//apple_ref/doc/uid/TP40007594
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhone101/Articles/00_Introduction.html
http://developer.apple.com/iphone/library/referencelibrary/GettingStarted/Learning_Objective-C_A_Primer/index.html#//apple_ref/doc/uid/TP40007594
http://developer.apple.com/iphone/library/referencelibrary/GettingStarted/Learning_Objective-C_A_Primer/index.html#//apple_ref/doc/uid/TP40007594
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhone101/Articles/00_Introduction.html
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhone101/Articles/00_Introduction.html

39Programming iOS Apps

to beta testers. There are open source projects1 to facilitate this
new feature, as well as commercial services2.

Google Toolbox for Mac3 runs the test cases using a shell
script during the build phase, while GHUnit4 runs the tests on
the device (or in the simulator), allowing the developer to at-
tach a debugger to investigate possible bugs. In version 2.2 of
the SDK Apple included OCUnit; an example of how to create the
unit tests is available online5.

In iOS 4.0 Apple introduced a new tool, UIAutomation which
aims to automate the testing of your application by scripting
touch events. UIAutomation tests are written in JavaScript and
a full reference is available in the iOS Reference Library6. Several
other third party testing automation tools for iPhone applica-
tions are available as well, including FoneMonkey7 and Squish8.

Distribution

In order to reach the broadest possible audience, you should
consider distributing your app on the App Store. There are other
means, such as the Cydia Store for jailbroken iOS devices, but the
potential reach isn’t nearly as large as the App Store’s.

To prepare your app for the App Store, you will need a 512x512
version of your app’s icon, up to five screen shots of your app,

1)  github.com/therealkerni/hockeykit
2)  www.testflightapp.com
3)  code.google.com/p/google-toolbox-for-mac
4)  github.com/gabriel/gh-unit
5)  www.mobileorchard.com/ocunit-integrated-unit-testing-in-xcode
6)  developer.apple.com/library/ios/#documentation/DeveloperTools/Reference/

UIAutomationRef/_index.html
7)  www.gorillalogic.com/fonemonkey
8)  www.froglogic.com/products

http://github.com/TheRealKerni/HockeyKit
http://www.testflightapp.com
http://code.google.com/p/google-toolbox-for-mac
http://github.com/gabriel/gh-unit
http://www.mobileorchard.com/ocunit-integrated-unit-testing-in-xcode
http://developer.apple.com/library/ios/#documentation/DeveloperTools/Reference/UIAutomationRef/_index.html
http://www.gorillalogic.com/fonemonkey
http://www.froglogic.com/products
http://github.com/TheRealKerni/HockeyKit
http://www.testflightapp.com
http://code.google.com/p/google-toolbox-for-mac
http://github.com/gabriel/gh-unit
http://www.mobileorchard.com/ocunit-integrated-unit-testing-in-xcode
http://developer.apple.com/library/ios/#documentation/DeveloperTools/Reference/UIAutomationRef/_index.html
http://developer.apple.com/library/ios/#documentation/DeveloperTools/Reference/UIAutomationRef/_index.html
http://www.gorillalogic.com/fonemonkey
http://www.froglogic.com/products

40Programming iOS Apps

and a properly signed build of your app. Log in to iTunes Con-
nect and upload your app according to the onscreen instructions.

After Apple has approved your application, which usually
shouldn’t take more than 2 weeks, your app will be available
to customers in the App Store. Due to several rejections in the
past, the approval process receives more complaints than any
other aspect of the iPhone ecosystem. A list of common rejection
reasons can be found on www.apprejections.com. Recently, Apple
has released their full App Store testing guidelines in order to
give developers a better chance to estimate their app’s success
of being approved. Also, the restrictions were relaxed and apps
which were previously rejected were approved after being re-
submitted.

Approximate review times as experienced recently by other
developers are gathered at reviewtimes.shinydevelopment.com for
your convenience. However, there is no guarantee that an app
will be approved in the timeframe specified on the site. This
should be used as a guideline only.

Books

Over the past years, a number of great books have been written
on iOS development. Here is a short list, which is by no means
complete, of good tutorials and references:

Beginner books
These books are best for someone looking into getting started
with iOS development.

—— iPhone SDK Development by Bill Dudney and Chris Adam-
son

—— Beginning iPhone 3 Development by Dave Mark & Jeff
LaMarche

http://www.apprejections.com
http://reviewtimes.shinydevelopment.com

41

Intermediate books
Books suited for those who have had some exposure to the iOS
SDK and are looking to deepen their knowledge of the platform.

—— More iPhone 3 Development by Dave Mark and Jeff
LaMarche

—— Programming in Objective-C 2.0 by Stephen Kochan

Professional books
If you already have some good knowledge of the iOS SDK, one of
these books is sure to increase your skill set.

—— Cocoa Design Patterns by Erik M. Buck and Donald A.
Yacktman

—— Core Data by Marcus Zarra

Companion books
Books that every aspiring iOS developer should call their own
because they impart knowledge besides programming, such as
the importance of user experience using case studies and per-
sonal experiences.

—— Tapworthy by Josh Clark
—— App Savvy by Ken Yarmosh

42

Community

One of the most important aspects of iOS development is the
community. A lot of iOS developers are very outspoken and
open about what they do, and how they did certain things.

This is even more visible ever since Twitter and Github gained
momentum and became widely-known.

Search for iPhone, iPad or any other related search terms
on Github.com and you’ll find a lot of source code, frameworks,
tutorials, code snippets and complete applications – most of
them with very liberal licenses which even allow commercial us-
age.

Practically all of the most important and most experienced
iOS developers use Twitter to share their thoughts about the
platform with others. There are many comprehensible lists of
iOS developers out there, a notable and well-curated one
being Robert Scoble’s list1. Following such a list helps you stay
up to date on current issues and interesting information about
iOS development generally.

What makes the community especially interesting is that
many iOS developers pride themselves on taking an excep-
tional interest in usability, great user experience and beauti-
ful user interfaces. You can usually find out about the most
interesting trends on blog aggregators such as CocoaHub.de
and PlanetCocoa.org

1)  www.twitter.com/Scobleizer/iphone-and-ipad

http://github.com
http://www.twitter.com/Scobleizer/iphone-and-ipad
http://cocoahub.de
http://planetcocoa.org
http://www.twitter.com/Scobleizer/iphone-and-ipad

43Programming J2ME / Java ME Apps

Programming
J2ME / Java ME Apps
J2ME (or Java ME as it is officially called) is the world’s most
widespread mobile application platform and the oldest one still
widely used. Developed by Sun Microsystems, which has since
been bought by Oracle, J2ME is designed to run primarily on fea-
ture phones. It has been very successful in this market segment,
with an overwhelming majority of feature phones supporting
it. J2ME is also supported natively on Symbian and BlackBerry
smartphones.

J2ME’s major drawback is that, due to its age and primary
market segment, it doesn’t fare all that well compared to more
modern platforms, such as Android, iPhone, BlackBerry and Sym-
bian: it offers a less powerful set of APIs, often runs on less
powerful hardware and tends to generate less money for the de-
veloper. As a consequence, J2ME’s popularity in the developer
community has declined significantly in recent years, in favor of
development on smartphone platforms.

So why would you want to develop for J2ME? Mainly for one
reason: market reach.

With over 80% of phones worldwide supporting it, J2ME is
miles ahead of the competition in this regard. If your business
model relies on access to as many potential customers as pos-
sible, or on providing extra value to existing customers via a
mobile application, then J2ME is a great choice.

However, if your business model relies on direct application
sales, or if your application needs to make use of state-of-the-
art features and hardware, you might want to consider target-
ing a different platform (such as Android, BlackBerry, iPhone or
Symbian).

44Programming J2ME / Java ME Apps

That being said, it should be noted that Java ME’s capabilities
are constantly improving thanks to the Java Community Process
that standardizes new APIs: for example, modern features such
as GPS, sensors, 3D graphics and touchscreens are all supported
by the platform today. In addition, J2ME-compatible hardware
is becoming more powerful and less expensive all the time, and
with more and more devices implementing the advanced features
mentioned. Overall the platform is evolving and changing for the
better, though admittedly at a considerably slower pace com-
pared to the competition.

Prerequisites

To develop a Java ME application, you will need:

—— The Java SDK1 (not the Java Runtime Environment) and an
IDE of your choice, such as Eclipse Pulsar for Mobile Devel-
opers2, NetBeans3 with its Java ME plug-in or IntelliJ4.

—— An emulator, such as the Wireless Toolkit5, the Micro Emu-
lator6 or a vendor specific SDK or emulator.

—— Depending on your setup you may need an obfuscator like
ProGuard7. If you build applications professionally you will
probably want to use a build tool such as Maven8 or Ant9
also.

—— You may want to check out J2ME Polish, the open source

1)  www.oracle.com/technetwork/java/javame/downloads/index.html
2)  www.eclipse.org
3)  www.netbeans.org
4)  www.jetbrains.com
5)  www.oracle.com/technetwork/java/download-135801.html
6)  www.microemu.org
7)  www.proguard.sourceforge.net
8)  maven.apache.org
9)  ant.apache.org

http://www.oracle.com/technetwork/java/javame/downloads/index.html
http://www.eclipse.org
http://www.eclipse.org
http://www.netbeans.org
http://www.jetbrains.com
http://www.oracle.com/technetwork/java/download-135801.html
http://www.microemu.org
http://www.microemu.org
http://www.proguard.sourceforge.net
http://maven.apache.org
http://ant.apache.org
http://www.j2mepolish.org
http://www.oracle.com/technetwork/java/javame/downloads/index.html
http://www.eclipse.org
http://www.netbeans.org
http://www.jetbrains.com
http://www.oracle.com/technetwork/java/download-135801.html
http://www.microemu.org
http://www.proguard.sourceforge.net
http://maven.apache.org
http://ant.apache.org

framework for building your application for various de-
vices1.

Complete installation and setup instructions are beyond the
scope of this guide, please refer to the respective tools’ docu-
mentation. Beginners often like to use NetBeans, with the Java
ME plug-in installed. Also download and read the JavaDocs for
the most important technologies and APIs: You can download
most Java-Docs from www.jcp.org. There are a couple of use-
ful vendor specific APIs that should be tracked down manually
from the vendor’s pages (such as the Nokia UI API and Samsung
APIs).

Implementation

The Java ME platform is fairly straight-forward: it comprises the
Connected Limited Device Configuration (CLDC)2 and the Mobile
Internet Device Profile (MIDP)3,both are quite easy to under-
stand. These form the basis of any J2ME environment and pro-
vide a standardized set of capabilities to all J2ME devices. As
both CLDC and MIDP were designed a decade ago, the default set
of capabilities they provide is rudimentary by today’s standards.

1)  www.j2mepolish.org
2)  java.sun.com/products/cldc/overview.html
3)  java.sun.com/products/midp/overview.html

http://www.jcp.org
http://java.sun.com/products/cldc/overview.html
http://java.sun.com/products/cldc/overview.html
http://java.sun.com/products/cldc/overview.html
http://www.j2mepolish.org
http://java.sun.com/products/cldc/overview.html
http://java.sun.com/products/cldc/overview.html

46

Manufactures can supplement these rudimentary capabilities
by implementing various optional Java Specification Requests
(JSRs). JSRs exist for everything from accessing the device’s
built in calendar, address book and file system (JSR 75); to using
the GPS (JSR 179) and Near Field Communication (JSR 257). For
a comprehensive list of JSRs related to Java ME development,
visit the Java Community Process’ “List by JCP Technology”1.

It is very important to remember that not all JSRs are avail-
able on all devices, so capabilities available on one device might
not be available on another device, even if the two devices have
similar hardware.

The Runtime Environment
J2ME applications are called MIDlets. A MIDlet’s lifecycle is quite
simple: it can only be started, paused and destroyed. On most
devices, a MIDlet is automatically paused when minimized; it
cannot run in the background. Some devices support concur-
rent application execution, so it is possible for applications to
run in the background. However, this usually requires the use of
vendor-specific APIs and/or relies on device-specific behavior,
which can cause fragmentation issues.

MIDlets also run in isolation from one another and are very
limited in their interaction with the underlying operating system
– these capabilities are provided strictly through optional JSRs
(for example, JSR 75) and vendor-specific APIs.

1)  www.jcp.org/en/jsr/tech?listBy=1&listByType=platform

http://www.jcp.org/en/jsr/tech?listBy=1&listByType=platform
http://www.jcp.org/en/jsr/tech?listBy=1&listByType=platform

47

Creating UIs
You can create the UI of your app in several ways:

1.	 Highlevel LCDUI components: you use standard UI com-
ponents, such as Form and List

2.	 Lowlevel LCDUI: you manually control every pixel of your
UI using low-level graphics functions

3.	 SVG: you draw the UI in scalable vector graphics then use
the APIs of JSR 226 or JSR 2871.

In addition, you will find that some manufacturers provide ad-
ditional UI features. For example, Nokia recently introduced the
Touch and Type UI to its Series 40 platform. To enable developers
to make best use of this UI in their applications, the Nokia UI
API was extended to provide features to capture screen gestures
and provide controlling data for UI animations. Similarly Sam-
sung provide pinch zoom features in their latest Java ME APIs.

There are also tools that can help you with the UI develop-
ment. All of them use low-level graphics to create better looking
and more powerful UIs than are possible with the standard high-
level LCDUI components.

1.	 J2ME Polish2: This tool separates the design in CSS and
you can use HTML for the user interface. It is backward-
compatible with the highlevel LCDUI framework

2.	 LWUIT3: A Swing inspired UI framework
3.	 Mewt4: Uses XML to define the UI
4.	 TWUIK5: A powerful “Rich Media Engine”.

1)  www.jcp.org/en/jsr/detail?id=287
2)  www.j2mepolish.org
3)  lwuit.dev.java.net
4)  www.mewt.sourceforge.net
5)  www.tricastmedia.com/v1/twuik.php

http://www.jcp.org/en/jsr/detail?id=287
http://www.j2mepolish.org
http://lwuit.dev.java.net
http://www.mewt.sourceforge.net
http://www.tricastmedia.com/v1/twuik.php
http://www.jcp.org/en/jsr/detail?id=287
http://www.j2mepolish.org
http://lwuit.dev.java.net
http://www.mewt.sourceforge.net
http://www.tricastmedia.com/v1/twuik.php

48

One very important aspect to consider when designing your
UI is the typical screen resolution for Java ME devices. The vast
majority of Java ME devices have one of the following resolu-
tions: 240 x 320, 176 x 208, 176 x 220, 128 x 160, 128 x 128
or 360 x 640 pixels. By far the most popular is 240x320, while
360x640 is a common resolution for high-end Java ME devic-
es (typically those running Symbian or Blackberry) and 176 x
208/220 is a common resolution for low-end devices. You will
also encounter devices that have these resolutions in landscape,
for example 320 x 240 instead of 240 x 320 pixels.

Handling so many different resolutions can be a challenge.
Your best approach is to create UI layouts that can scale well
across all of them, in the same way that web pages scale well
across different browser window sizes. You can also create cus-
tom UIs for each resolution, though this is not recommended
because it is time consuming, error prone and expensive.

Another aspect worth considering is the size of your applica-
tion’s assets, especially its graphical assets. Whenever possible,
your assets should be optimized, in order to keep your applica-
tion’s size as small as possible. This results in cheaper downloads
for your users (as less data traffic is needed) and greater market
reach (as some devices have a limit on the maximum application
size). A great free tool for this is PNGGauntlet1, which can opti-
mize your graphical assets without compromising quality.

Despite the platform’s limitations, it is quite possible to cre-
ate great looking and easy to use Java ME user interfaces, par-
ticularly if one of the tools mentioned above is used.

1)  www.pnggauntlet.com

http://www.pnggauntlet.com
http://www.pnggauntlet.com

49Programming J2ME / Java ME Apps

Open Source
There is a rich open source scene in the J2ME sector. Interesting
projects can be found via the blog on opensource.ngphone.com.
You will also find fascinating projects on the Mobile and Embed-
ded page of java.net1, for example the Bluetooth project Marge2.

Testing

Because of the fragmentation in the various implementations of
Java ME, testing applications is vital. Test as early and as often
as you can on a mix of devices. Some emulators are quite good
(personal favorites are BlackBerry and Symbian), but there are
some things that have to be tested on devices.

Thankfully, vendors like Nokia and Samsung provide subsi-
dized or even free remote access to selected devices3.

Automated Testing
There are various unit testing frameworks available for Java ME,
including J2MEUnit4, MoMEUnit5 and CLDC Unit6; System and
UI testing is more complex given the security model of J2ME,
however JInjector7 is a flexible byte-code injection framework
that supports system and UI testing. Code coverage can also be
gathered with JInjector.

1)  mobileandembedded.dev.java.net
2)  marge.dev.java.net
3)  www.forum.nokia.com/rda and innovator.samsungmobile.com
4)  www.j2meunit.sourceforge.net
5)  www.momeunit.sourceforge.net
6)  snapshot.pyx4me.com/pyx4me-cldcunit
7)  www.code.google.com/p/jinjector

http://opensource.ngphone.com
http://mobileandembedded.dev.java.net
http://marge.dev.java.net
http://www.forum.nokia.com/rda
http://http://innovator.samsungmobile.com
http://www.j2meunit.sourceforge.net
http://www.momeunit.sourceforge.net
http://snapshot.pyx4me.com/pyx4me-cldcunit
http://www.code.google.com/p/jinjector
http://mobileandembedded.dev.java.net
http://marge.dev.java.net
http://www.forum.nokia.com/rda
http://http://innovator.samsungmobile.com
http://www.j2meunit.sourceforge.net
http://www.momeunit.sourceforge.net
http://snapshot.pyx4me.com/pyx4me-cldcunit
http://www.code.google.com/p/jinjector

50Programming J2ME / Java ME Apps

Porting

One of the strengths of the Java environment for mobile devices
is that it is backed by a standard, so it can be implemented by
competing vendors. The downside is that the standard has to
be interpreted, and this interpretation process can cause differ-
ences in individual implementations. This results in all kinds of
bugs and non-standard behavior. In the following sections we
outline different strategies for porting your applications to all
Java ME handsets and platforms.

Direct Support
The best but hardest solution is to code directly for different
devices and platforms. So you create a J2ME app for MIDP
devices, a native BlackBerry app, a native Windows Mobile app,
a Symbian app, an iPhone app, a Web OS app, and so on. As you
can imagine, this approach has the potential to bring the very
best user experience, since you can adapt your application to
each platform’s UI. At the same time your development costs will
skyrocket. We advise the use of another strategy first, until your
application idea has proved itself to be successful.

Lowest Common Denominator
You can prevent many porting issues by limiting the functional-
ity of your application to the lowest common denominator. In
the J2ME world this usually means CLDC 1.0 and MIDP 1.0. If you
only plan to release your application in more developed coun-
tries/regions, you may consider targeting CLDC 1.1 and MIDP 2.0
as the lowest common denominator (without any additional APIs
or JSR support).

Depending on the target region for the application you might
also consider using Java Technology for the Wireless Industry
(JTWI, JSR 185) or the Mobile Service Architecture (MSA, JSR

51Programming J2ME / Java ME Apps

248) as your baseline. Both extensions are designed to ensure
a common implementation of the most popular JSRs. They are
supported by many modern devices and provide many more ca-
pabilities to your applications. However, in some regions such
as Africa, South America or India you should be aware that us-
ing these standards may limit the number of your potential us-
ers, because the more common handsets in these regions do not
implement those extensions.

Using the lowest common denominator approach is typically
easy: There is less functionality to consider. However, the user
experience may suffer if your application is limited in this way,
especially if you want to port your application to smartphone
platforms later. So this approach is a good choice for simple ap-
plications – for comprehensive, feature-rich applications it may
not be the way to go.

 Porting Frameworks
Porting frameworks help you deal with fragmentation by au-
tomatically adapting your application to different devices and
platforms. Such frameworks typically feature the following
components:

—— Client libraries that simplify development
—— Build tool chains that convert code and resources to ap-

plication bundles
—— Device databases that provide information about devices
—— Cross compilers to port your application to different plat-

forms

For Java ME some of the options you can choose from are:

52Programming J2ME / Java ME Apps

Celsius from Mobile Distillery1 that is licensed per month,
Bedrock from Metismo2 that provides a suite of cross compilers
on a yearly license fee and J2ME Polish from Enough Software3
that is available under both the GPL Open Source license and a
commercial license. Going in the other direction (from C++ to
Java ME) is also possible with the open source MoSync SDK4.

For more information about cross-platform development and
the available toolsets, please see the “Programming With Cross-
Platform Tools” chapter.

Good frameworks enable you to use platform and device spe-
cific code in your projects, so that you can provide the best user
experience. In other words: a good porting framework does not
hide device fragmentation, but makes the fragmentation more
manageable.

Signing

The Java standard for mobile devices differentiates between
signed and unsigned applications. Some handset functionality
is available to trusted applications only. Which features are af-
fected and what happens if the application is not signed but
uses one of those features, is largely dependent on the imple-
mentation.

On one phone the user might be asked once to enable the
functionality, on another they will be asked every time the fea-
ture is used and on a third device they will not be able to use the
feature at all without signing. Most implementations also dif-
ferentiate between the certification authorities who have signed
an application.

1)  www.mobile-distillery.com
2)  www.metismo.com
3)  www.enough.de
4)  www.mosync.com

http://www.mobile-distillery.com
http://www.metismo.com
http://www.enough.de
http://www.mosync.com
http://www.mobile-distillery.com
http://www.metismo.com
http://www.enough.de
http://www.mosync.com

53Programming J2ME / Java ME Apps

Applications signed by the manufacturer of a device enjoy the
highest security level and can access every Java API available
on the handset. Applications signed with a carrier certificate are
similarly trusted.

Applications signed by JavaVerified1, Verisign2 or Thawte3 are
on the lowest security level. To make matters worse, not every
phone carries all the necessary root certificates. And, in the past,
some well known device vendors have even stripped away all root
certificates. The result is something of a mess, so consider sign-
ing your application only when required, that is when deploying
to an app store or when you absolutely need access to security
constrained features. However, in some cases an app store may
offer to undertake the signing for you, as Nokia Store does.

Another option is to consider using a testing and certi-
fication service provider and leaving the complexity to them.
Intertek4 is probably the largest such supplier.

Distribution

J2ME applications can be installed directly onto a phone in
a variety of ways; the most commonly used methods are over
a Bluetooth connection, via a direct cable connection or Over-
the-Air (OTA). However, app stores are probably the most ef-
ficient way to distribute your apps.: They manage the payment,
hosting and advertisements, taking a revenue share for those
services. Some of the most effective stores include:

1)  www.javaverified.com
2)  www.verisign.com
3)  www.thawte.com
4)  www.intertek.com/wireless-mobile

http://www.javaverified.com
http://www.verisign.com
http://www.thawte.com
http://www.intertek.com/wireless-mobile
http://www.javaverified.com
http://www.verisign.com
http://www.thawte.com
http://www.intertek.com/wireless-mobile

—— Handmark1 and Mobile Rated2 provide carrier and vendor
independent application stores.

—— GetJar3 is one of the oldest distributors for free mobile ap-
plications – not only Java applications.

—— LG distributes apps on www.lgapplication.com
—— Nokia Store4 targets Nokia users worldwide and provides

a revenue share to the developer at 70% from credit card
billing and 60% from operator billing

—— Carriers are in the game also, such as Orange5 and O26.

Basically almost everyone in the mobile arena has announced
an app store. An overview of the available app stores (not those
selling J2ME apps alone) can be found in the WIP App Store
Catalogue7.

Furthermore there are various vendors who provide solutions
for provisioning of Java applications over a Bluetooth connec-
tion, including Waymedia8 and Futurlink9.

1)  store.handmark.com
2)  www.mobilerated.com
3)  www.getjar.com
4)  www.publish.ovi.com
5)  www.orangepartner.com/site/enuk/mobile/application_shop/p_application_

shop.jsp
6)  mobileapps.o2online.de
7)  www.wipconnector.com/appstores/
8)  www.waymedia.it
9)  www.futurlink.com

http://store.handmark.com
http://www.mobilerated.com
http://www.getjar.com
http://www.lgapplication.com
http://www.publish.ovi.com
http://www.orangepartner.com/site/enuk/mobile/application_shop/p_application_shop.jsp
http://mobileapps.o2online.de
http://www.wipconnector.com/appstores/
http://www.wipconnector.com/appstores/
http://www.waymedia.it
http://www.futurlink.com
http://store.handmark.com
http://www.mobilerated.com
http://www.getjar.com
http://www.publish.ovi.com
http://www.orangepartner.com/site/enuk/mobile/application_shop/p_application_shop.jsp
http://www.orangepartner.com/site/enuk/mobile/application_shop/p_application_shop.jsp
http://mobileapps.o2online.de
http://www.wipconnector.com/appstores/
http://www.waymedia.it
http://www.futurlink.com

55Programming Qt Apps

Programming Qt Apps
Pronounced “cute” – not “que-tee” – Qt is an application frame-
work that is used to create desktop applications and even a
whole desktop environment for Linux – the KDE Software Com-
pilation. The reason many developers have used Qt for desktop
apps, is that it frees them from having to consider the underly-
ing platform – a single Qt codeline can be compiled to run on
Microsoft Windows, Apple Mac, and Linux.

When Nokia acquired Trolltech – the company behind Qt – it
was with the goal of bringing this same ease of development
for multiple platforms to Nokia mobile phones. Today, Qt can be
used to create applications for phones based on Symbian and
MeeGo (which will be replaced by the new Linux-based Tizen OS).
In fact, Qt can now be thought of as a platform in its own right –
you can create a Qt application and deploy it to phones utilizing
a number of different underlying operating systems.

The challenge when developing with C and C++ is that these
languages place all the responsibility on you, the developer. For
example, if you make use of memory to store some data in your
application, you have to remove that data and free the memory
when it is no longer needed (if this is not done, the dreaded
memory leak occurs).

Qt uses standard C++ but makes extensive use of a special pre-
processor (called the Meta Object Compiler, or moc) to deal with
many of the challenges faced in standard C++ development. As
a consequence Qt is able to offer powerful features that are not
burdened by the usual C++ housekeeping. For example, instead
of callbacks, a paradigm of signals and slots is used to simplify
communication between objects1; the output from one object

1)  doc.qt.nokia.com/4.7-snapshot/signalsandslots.html

http://doc.qt.nokia.com/4.7-snapshot/signalsandslots.html

56

is a “signal” that has a receiving “slot” function in the same or
another object.

Adding Qt features to an object is simply a case of including
QObject (which is achieved by adding the Q_OBJECT macro to
the beginning of your class). This meta-object adds all the Qt
specific features to an object. Qt then provides a range of ob-
jects for realizing GUIs created using Qt Quick, building complex
graphical views (the QGraphicView object), managing network
connections and communications, using SVG, parsing XML, and
using scripts among others.

Many developers who have used Qt report that applications
can be written with fewer lines of code and with greater in-built
reliability when compared to coding from scratch in C++. As a
result less time is needed to create an application and less time
is spent in testing and debugging. For mobile developers using
Qt is free of cost. It benefits from being open source also, with
a large community of developers contributing to the content
and quality of the Qt APIs. Should you wish to get involved the
source code is made available over Gitorious1.

1)  qt.gitorious.org

http://qt.gitorious.org
http://qt.gitorious.org

57Programming Qt Apps

Prerequisites

Qt SDK installs everything you need to create, test, and debug
applications for Symbian and MeeGo from a single package.
All versions offer tools for compiling Symbian and MeeGo apps,
with Symbian apps being compiled in the Linux and Apple Mac
versions using the Remote Compiler service.

Creating Your Application

Qt SDK is built around the Qt Creator development tool. Using
Qt Creator you define most of your application visually and then
add the specific program logic through a code editor that offers
full code completion support and integrated help. One of the
neat features of Qt is QML1, a language for declarative UI defini-
tion. While QML generally simplifies UI development, its biggest
advantage is that the tools within Qt Creator enable the UI to be
defined by graphic designers who do not have to be aware of the
technical programming aspects.

In the past, one of the challenges with cross platform applica-
tions for mobile has been accessing platform features: Anytime
you want to find the phone’s location or read a contact record it
has been necessary to revert back to the platform’s native APIs2.
This is where the Qt Mobility APIs come in. The APIs provided
by Qt Mobility offer a common interface to phone data such as
contacts, location, messages, NFC, and several others.

This means that if you, for example, need the phone’s loca-
tion the same API will obtain the location information on both
a Symbian and MeeGo phone. (The Qt SDK enables you to work
with the native APIs if you want to, as it includes the Symbian
APIs too.) As with Qt in general, working with the mobility APIs

1)  qt.nokia.com/qtquick/
2)  qt.nokia.com/products/qt-addons/mobility/

http://qt.nokia.com/qtquick/
http://qt.nokia.com/qtquick/
http://qt.nokia.com/products/qt-addons/mobility/

58

is quite straightforward. The following code, for example, shows
that only a few lines are needed to access a phone’s current
location:

void positionUpdated
(constQGeoPositionInfo&gpsPos) {
latitude = gpsPos.coordinate().latitude();
longitude = gpsPos.coordinate().longitude();
}

However, do be aware that Qt does not yet insulate you from
all the differences between platforms. For example, the X and
Y axes reported from the phone accelerometers are transposed
between Symbian and MeeGo phones. A simple enough issue to
address with a #IFDEF, but still an issue to be aware of.

If you are already familiar with C++ development for the desk-
top, creating Qt applications for Symbian or MeeGo is straight-
forward. Once you have mastered the Qt APIs you should find
you can code much faster and with fewer of the usual C++ frus-
trations – particularly if you take advantage of Qt Quick to cre-

59Programming Qt Apps

ate your UI. Qt has many interesting features, such as WebKit
integration – enabling you to include web content into your
app – and scripting that can be used to add functionality quickly
during development or change runtime functionality. It is also
worth pointing out that, because Qt applications are compiled
to the platform they will run on, they deliver very good perfor-
mance, too. For most applications the levels of performance will
be comparable to that previously achieved by hardcore native
applications only.

Testing

Qt SDK1 includes a lightweight simulator enabling applications
to be tested and debugged on the development computer (Qt
SDK runs under Microsoft Windows, Ubuntu Linux and Apple Mac
OS X). The simulator includes tools that enable phone data, such
as location or contacts records, to be defined so that the appli-
cation’s functionality can be tested fully. The simulator does not,
however, eliminate the need for on phone testing.

In addition, the Qt SDK includes tools to perform on-phone
debugging on Symbian and MeeGo phones. This feature can be
handy to track down bugs that come to light only when the
application is running on a phone. Such bugs are rare and tend
to surface in areas such as comms, where the Qt simulator uses
the desktop computer’s hardware, hardware that differs from the
equivalent technology on a mobile phone.

QTestLib2 provides both unit testing and extensions for test-
ing GUIs. It replaced QtTestLib, however you may find useful
tips by searching for this term. A useful overview is available at
qtway.blogspot.com/2009/10/interesting-testing.html

1)  developer.nokia.com/Develop/Qt/Tools
2)  doc.qt.nokia.com/latest/qtestlib-manual.html

http://developer.nokia.com/Develop/Qt/Tools
http://doc.qt.nokia.com/latest/qtestlib-manual.html
http://qtway.blogspot.com/2009/10/interesting-testing.html
http://developer.nokia.com/Develop/Qt/Tools
http://doc.qt.nokia.com/latest/qtestlib-manual.html

60

Packaging

For a Qt application to run on a mobile phone the Qt API frame-
work has to be present. The Nokia N9 smartphone has the Qt
APIs built in. In addition, it provides a built-in update mecha-
nism that will install the necessary framework components,
should there be newer or additional versions needed by the app.

For Symbian phones the situation is a little different.
Symbian^3 (including Symbian Anna and Belle) phones have
the APIs built in. However, Symbian does not include a built-in
mechanism to add the APIs to earlier phones or load new or up-
dated APIs to Symbian^3. The solution is Smart Installer, which
is included automatically in Symbian apps built with Qt SDK. As
an app is installed on a Symbian phone, Smart Installer checks
for the presence of the necessary Qt packages and, if they are
not there, downloads and installs them. Using this mechanism,
Qt apps can be easily targeted at almost all recent S60 and Sym-
bian phones.

61Programming Qt Apps

Signing

As Qt applications install as native applications on Symbian and
MeeGo phones they need to comply with each platform’s signing
requirements.

MeeGo apps for the Nokia N9 need to be signed, but this
is done for you during the Nokia Publisher process. To enable
testing the Nokia N9 smartphone has a “developer” capability
that enables unsigned apps to be installed and run for testing
purposes. For applications to be installed on Symbian phones,
signing is necessary. If you choose to use Nokia Store to distrib-
ute your apps, Nokia will organize for your Symbian app to be
Symbian Signed, at no cost.

Unlike MeeGo phones, Symbian phones do not have a ‘devel-
oper’ mode. To enable apps to be tested they have to be signed
with a “developer certificate”. The process you have to follow
isThe process is straightforward and described in full in the Dis-
tribute section of the Forum Nokia website1, but in summary:

—— You sign up as a Nokia Publisher2
—— You provide up to five phone IMEIs and request a UID for

your application
—— The Nokia Publisher team provides you with a “developer

certificate” and a UID for your app
—— You create your app with the UID provided, sign your app

during development to run it on the five phones elected
and test it to ensure it complies with the Symbian Signed
Test Criteria3

—— Once tested, you submit an unsigned copy of the app to
the Nokia publishing portal

1)  www.developer.nokia.com/Distribute/Packaging_and_signing.xhtml
2)  publish.ovi.com
3)  www.developer.nokia.com/Community/Wiki/Symbian_Signed_Test_Criteria_

V4_Wiki_version

http://www.developer.nokia.com/Distribute/Packaging_and_signing.xhtml
http://publish.ovi.com
http://www.developer.nokia.com/Community/Wiki/Symbian_Signed_Test_Criteria_V4_Wiki_version
http://www.developer.nokia.com/Community/Wiki/Symbian_Signed_Test_Criteria_V4_Wiki_version
http://www.developer.nokia.com/Distribute/Packaging_and_signing.xhtml
http://publish.ovi.com
http://www.developer.nokia.com/Community/Wiki/Symbian_Signed_Test_Criteria_V4_Wiki_version
http://www.developer.nokia.com/Community/Wiki/Symbian_Signed_Test_Criteria_V4_Wiki_version

62Programming Qt Apps

Distribution

Nokia Store is the latest iteration of the Nokia app store solu-
tion, with a history stretching dating back to 2003. Achieving ,
and has grown to deliver 5 6 million downloads a day the store’s
traffic is increasing steadily.

Importantly, once an application has met the store’s quality
requirements – beyond removing indecent or illegal applications
– there is no restriction on the types of applications that can be
distributed.

 So you will find many applications in Ovi Nokia Store that
compete directly against offerings from Nokia, such as alterna-
tive browsers, music players, and email applications.

To use Ovi Nokia Store you need to register and pay a one-
time €1 fee – registration is open to both companies and indi-
viduals.

When your application starts selling the revenue depends on
the payment method chosen by the user:

—— For credit card payments you get 70% of revenue after any
applicable taxes and costs

—— For operator billing purchases you get 60% of revenue after
applicable taxes and costs.

While the reduced revenue from purchases made through opera-
tor billing may seem a disadvantage it usually is not. This is
because operator billing is universal and trusted. As a result, for
each $1 in credit card revenue you can expect to receive over
$10 from operator billing purchases – making operator billing
the most lucrative option for generating revenue. (If you really
don’t like the idea of losing the 10% margin, you can opt to sell
apps through credit card purchases only.)

64

Programming Symbian Apps
The Symbian platform1 is a software platform for mobile phones.
It consists of an operating system (formerly known as Symbian
OS), middleware and user interface layers (formerly known as
S60). Its development is stewarded by Nokia. Although Nokia
has announced a transition to Microsoft Windows Phone for its
high-end smartphones, Symbian still offers a viable development
option with over 200 million compatible phones in use and Nokia
forecasting additional sales in the region of 150 million.

It is, however, worth noting that Nokia recommend creat-
ing apps for Symbian phones using Qt rather than the platforms
native C++. It would be our recommendation too. Qt has the
advantage that Nokia has committed to it over the long term,
indicating that it will be focused on offer in apps for “the next
billion”. The precise nature of the opportunity it will offer re-
mains to be disclosed however.

So, unless you have specialist development requirements –
such as low level video manipulation – we would suggest you
go to the “Programming Qt Apps” chapter and skip this section
altogether.

Should you still want to create native Symbian apps or mid-
dleware, you will be using Symbian C++, the native programming
language of the Symbian platform. Symbian C++ is a specialized
subset of C++ with Symbian-specific idioms2.

The native Symbian C++ APIs provide the most comprehensive
access to phone features and enable rich application develop-
ment. The APIs provide fine-grained control over all aspects of
the operating system, including memory, performance and bat-
tery life; and deliver a consistent performance advantage over
other runtimes.

1)  symbian.nokia.com
2)  wiki.forum.nokia.com/index.php/Fundamentals_of_Symbian_C%2B%2B

http://symbian.nokia.com
http://wiki.forum.nokia.com/index.php/Fundamentals_of_Symbian_C%2B%2B
http://symbian.nokia.com
http://wiki.forum.nokia.com/index.php/Fundamentals_of_Symbian_C%2B%2B

65Programming Symbian Apps

Prerequisites

The official desktop development platforms for Symbian C++
are Microsoft Windows XP with Service Pack 2, Windows Vista
and Windows 7. All of the kits and tools supplied for Symbian
development are free. If your computer meets the requirements,
setting it up for Symbian C++ development is as simple:

1.	 Download the Symbian^3 SDK for Nokia phones1 and
install it

2.	 Install Carbide.c++2

Linux and Mac OS X are not officially supported platforms. One
way around this is to use a virtual machine that hosts Windows.
Other options are more complex, but information can be found
online3.

Carbide.c++

Carbide.c++ is designed for developers who wish to create
applications that run on production phones – that is “on top”
of the Symbian platform. Typical users include professional ap-
plication and games developers, professional service companies,
hobbyist developers, students and research groups.

Carbide.c++, however, requires the installation of one or more
S60 or Symbian SDKs to enable development.

Based on Eclipse, Carbide.c++ includes the GCCE compiler, a
debugger that enables debugging on both the emulator and pro-
duction phones, analysis tools, and more.

1)  www.forum.nokia.com/Develop/Other_Technologies/Symbian_C++/Tools
2)  www.forum.nokia.com/Develop/Other_Technologies/Symbian_C++/Tools/
3)  www.forum.nokia.com

http://www.forum.nokia.com/Develop/Other_Technologies/Symbian_C++/Tools
http://www.forum.nokia.com/Develop/Other_Technologies/Symbian_C++/Tools
http://www.forum.nokia.com
http://www.forum.nokia.com/Develop/Other_Technologies/Symbian_C++/Tools
http://www.forum.nokia.com/Develop/Other_Technologies/Symbian_C++/Tools
http://www.forum.nokia.com

66Programming Symbian Apps

Symbian/S60 Software Development Kits

The Symbian and older S60 SDKs contain the libraries and header
files that enable you to develop applications. Each SDK provides
access to the APIs that are guaranteed to work on phones based
on the corresponding version, that is the APIs in the Symbian^3
SDK will work on all Symbian^3 phones. Once you have installed
the SDKs for the Symbian/S60 versions you wish to build for, you
can use the built-in application wizard to create your first na-
tive application – you can then debug, run and download it to a
Symbian phone – without having to write a single line of code.

Testing

For automated unit testing, googletest1 works on Symbian,
and other Mobile C++ platforms. Each SDK includes an emulator
which enables apps to be run and debugged on the development
computer. And, as with all mobile technologies, testing on a
phone is highly recommended.

Signing

Symbian uses a trust-based platform security model. This means
some APIs are protected by platform security “capabilities”. If
you use APIs protected by capabilities, your application will
need to be signed before it can be distributed. In addition, it
is necessary to sign an application during development in order
to install it onto a phone: This is done using a “development
certificate”. For most applications, signing and the provision of
“development certificates” is free-of-cost as part of the services
offered by Nokia Store (see the “Programming Qt Apps” chapter

1)  www.code.google.com/p/googletest

http://www.code.google.com/p/googletest
http://www.code.google.com/p/googletest

Programming Symbian Apps

for more information on Nokia Store). For a limited number of
applications, those using more advanced APIs, it will be nec-
essary to obtain Certified Signed through the Symbian Signed
website1.

Distribution

Nokia Store will probably be your primary distribution channel
(see the “Programming Qt Apps” chapter for more information),
but you can distribute applications independently or through a
number of operator and third-party application stores also.

1)  www.symbiansigned.com

http://www.symbiansigned.com
http://www.symbiansigned.com
http://www.symbiansigned.com

69Programming Windows Phone Apps

Programming
Windows Phone Apps
Microsoft made a fresh start with the Windows Phone platform.
The Windows Mobile operating system was declining in both user
acceptance and market share, so Windows Phone was created
as Microsoft’s response to competing platforms in the consumer
market. Windows Phone is geared towards business users as well
as consumers, and offers a simple-to-use interface that focuses
on typography and content. Called Metro, this UI design lan-
guage is also already implemented on the Xbox 360 and is being
introduced into Windows 8. A marketing budget of 500 million
USD has been spent on promoting the Windows Phone platform
and 1.5 million handsets were sold in the first six weeks after
launch1.

In February 2011, Nokia announced a partnership with Mi-
crosoft that underlines the future relevance of the platform:
Windows Phone is now the first choice smartphone platform for
Nokia phones.

Development

Windows Phone development is undertaken in C# or VB.NET, us-
ing the Microsoft Visual Studio IDE or Expression Blend. Applica-
tions are created using Silverlight, principally for event-driven
applications, and XNA, principally for games driven by a “game
loop”, although both technologies can be use in a single ap-
plication. The user interface for Silverlight applications can be
created either in Microsoft Visual Studio or Microsoft Expression
Blend.

1)  www.microsoft.com/Presspass/Features/2010/dec10/12-21AchimBergQA.mspx

http://www.microsoft.com/Presspass/Features/2010/dec10/12-21AchimBergQA.mspx

70

The Windows Phone 7.1 SDK

Push Notifications

Sensor and location
data

Marketplace

Bing Maps Scheduler Application pause / resume

Calendar and contact data

Linq to
SQL

Fast app switch-
ing

Network sockets

Motion library for
Augmented Reality

Advertising SDK

Performance
monitoring

HTML 5

Background audio
and file transfer

Launchers, choosers
& tasks

FMRadio

Tiles with access to
front and back

Direct camera access Device intergration

Input

Content

AudioGraphics

XBOX Live

Media

Common Class Library

Threading Collections Configuration

Text
File
I/O

Network-
ing

Diagnostics Security

RuntimeReflection Globalization

Silverlight Presentation and Media XNA Frameworks

Controls Drawing Media

Markup ShapesNavigation

Isolated storage StylesAnimations

71Programming Windows Phone Apps

The Windows Phone SDK is free of charge and includes
“Express” editions of both Visual Studio 2010 and Expression
Blend. While the Express editions support everything necessary
to develop for Windows Phone, many extra features found in the
commercial editions are not available. The SDK also includes a
device emulator to run code against. The device emulator uses
hardware acceleration and performs reasonably well when run-
ning 3D XNA games. In addition to basic functionality, the emu-
lator has advanced features for location input (using Bing Maps)
and accelerometer simulation.

It is important to consider which platform you should lever-
age when building your application.

While the most common scenario is to use Silverlight for apps
and XNA for games, you can equallyalso create Silverlight games
and XNA apps, depending on your needs.

It is also possible to host XNA inside your Silverlight ap-
plication. This could be used to display a 3D model inside an
event-driven Silverlight application, or to easily create stylish
Silverlight-based menus around a full XNA game.

Use Silverlight if… Use XNA if…

…you want to create an event-
driven application.

…you want to create a 2D or 3D
game.

…you want to use standard
Windows Phone controls.

…you want to manage art assets
such as models, meshes, sprites,
textures and animations.

…you want to target both Win-
dows Phone, Windows and the
web, re-using some code.

…you want to target Windows
Phone 7, Windows, and Xbox 360,
re-using lots of code.

Functions and Services

Windows Phone applications have access to input data such as
location, multi-touch screen, accelerometer, gyroscope, and mi-
crophone. Available services include FM radio, media playback,
raw camera feed and push notifications that can update “live
tiles” (animated application widgets that reside on the start
page of the phone).

Multitasking and Application Lifecycle

Windows Phone has a limited form of multitasking that sus-
pends applications in the background and allows fast applica-
tion switching. Currently, the only processes that can be run in
the background, after an application has been left, are audio
playback and file transfer. Applications can also schedule to run
arbitrary code in the background at an interval (code which is
known as Background Agents). Background Agents are allowed
limited use of resources and may be stopped or skipped if the OS
determines that the phone needs to conserve resources.
Applications suspended in the background may be closed auto-
matically if the OS determines resources are needed elsewhere.
To create the appearance of an application that was never
closed, Windows Phone has a well-documented application life-
cycle called Tombstoning. To support Tombstoning the platform
that provides the hooks to cache and restore data and UI states.

Native Code

In contrast to some other platforms, developers cannot execute
native code or access the device hardware directly using Win-
dows Phone. While this restricts the extensibility of the platform
and arguably limits the type of applications that can be devel-

73

oped, it also ensures applications are sandboxed and cannot do
anything that will permanently affect the usability of the phone.
This means that core platform features such as the dialer and on-
screen keyboard cannot be replaced or extended, and low-level
access to Wi-Fi or Bluetooth radios is not possible. However, for
most applications you are unlikely to encounter any restrictions
that will affect your ability to deliver user features.

Distribution

Applications for Windows Phone are distributed through a single
endpoint: The Microsoft Marketplace service. While application
content is reviewed and restricted in a way similar to the Apple
App Store, Microsoft provides fairly comprehensive guidelines
for submission, available at App Hub (create.msdn.com). Al-
though developer tools are provided free of charge, a paid App
Hub account is necessary to deploy software to devices and the
Marketplace. Currently, a developer account costs 99 USD for an
annual subscription and includes 100 free app submissions. The
fee is waived for students in the DreamSpark program, avail-
able at www.dreamspark.com. The Marketplace also provides for
time-limited beta distribution and offers a private distribution
channel for enterprises.
There is also the ChevronWP7 Labs project which, in partner-
ship with Microsoft, will enable a Windows Phone Device to be
unlocked for development for a small fee. It has been suggested
this option will be cheaper than App Hub, but won’t offer the
free Marketplace submission. This service will be available soon
at labs.chevronwp7.com.

http://create.msdn.com
http://www.dreamspark.com
http://labs.chevronwp7.com

Testing And Analytics

You can unit test applications using the Windows Phone Test
Framework1 or the Silverlight Unit Test Framework2.

For developers wishing to collect runtime data and analytics,
there are several options. Localytics3 and PreEmptive Solutions4
both provide analytics tools and services that are compatible
with Windows Phone 7. Developers can also use the Silverlight
Analytics Framework5 to connect to a variety of third-party
tracking services such as Google Analytics. Starting in the Win-
dows Phone SDK 7.1 update, there are now robust performance-
monitoring tools available in Visual Studio.

1)  www.wptestlib.codeplex.com
2)  www.silverlight.codeplex.com
3)  www.localytics.com/app-analytics/
4)  www.preemptive.com/windowsphone7.html
5)  msaf.codeplex.com/

http://www.wptestlib.codeplex.com
http://www.wptestlib.codeplex.com
http://www.silverlight.codeplex.com
http://www.localytics.com/app-analytics/
http://www.preemptive.com/windowsphone7.html
http://msaf.codeplex.com/
http://msaf.codeplex.com/
http://www.wptestlib.codeplex.com
http://www.silverlight.codeplex.com
http://www.localytics.com/app-analytics/
http://www.preemptive.com/windowsphone7.html
http://msaf.codeplex.com/

75Programming Windows Phone Apps

Resources

Visit create.msdn.com for news, developer tools and fo-
rums. The development team posts on their blog on
windowsteamblog.com/windows_phone. For a large collection of
developer and designer resources, visit windowsphonegeek.com
and reddit.com/r/wp7dev.
There are currently several built-in OS controls that are not in-
cluded in the Windows Phone SDK, such as context menu, date
picker, and others. Those controls are available as part of the
Silverlight Toolkit for Windows Phone, available at silverlight.
codeplex.com. This project is maintained by Microsoft and sees
frequent updates.

http://create.msdn.com
http://windowsteamblog.com/windows_phone
http://windowsphonegeek.com
http://reddit.com/r/wp7dev
http://www.silverlight.codeplex.com
http://www.silverlight.codeplex.com

76

Programming Mobile Widgets
We have mentioned that some approaches to mobile develop-
ment require you to learn multiple languages and the unique
features of individual platforms. One of the latest approaches to
solving this problem, and offering one development technology
for many devices, is mobile web widgets. These widgets are cre-
ated using the scripting and mark-up languages used for web-
sites (HTML, CSS and JavaScript) and bundle this web content
into a zip archive that is installed on a device and run just like
any other application.

The big advantage of widgets is that they offer probably the
easiest route into mobile development. If you are a web de-
veloper widgets enable you to create mobile apps using your
existing web design skills and code in the languages you already
know. Equally, for anyone taking their first steps into mobile de-
velopment – or first steps into programming – HTML, CSS and the
JavaScript language are a lot easier to learn than the relatively
complex native languages.

77Programming Mobile Widgets

Widget Characteristics

In general, a widget can be characterized as a small website
installed on a device. But if that’s the case, why not simply use a
website? Well, widgets have several advantages when compared
with web pages:

—— Widgets can be more responsive than websites: In a widget
you work with raw data not HTML pages, the reduction in
data overhead means widgets make better use of mobile
network bandwidth.

—— Widgets are already first class apps on some phones: Al-
though widget environments vary, a user can open a widget
in just a few clicks, there is no URL to type or bookmark to
find. For example, on Symbian or BlackBerry devices wid-
gets are installed and accessed in the same way as native
applications.

—— Widgets can look like native applications: Some widget
environments include features that replicate the device’s
native menus and UI. Widgets that behave like native ap-
plications are much easier to use than websites.

—— Widgets can run on a device’s home screen: Some wid-
get environments, such as Symbian, are able to provide
summary views users can add to their device’s homepage
while others, such as Samsung’s Touchwiz can incorporate
arbitrarily sized widgets.

—— Widgets can use device data: The ability to use device
data, such as location or contact records, enables widgets
to offer information that has context, such as identifying
social network contacts based on the entries in the device’s
address book.

—— Widgets can generate revenue: They can be packaged and
distributed via application stores so you can sell them just
as would a native application.

78Programming Mobile Widgets

It is worth noting the emergence of a new type of widget: Proxy-
based web browser widgets. These widgets fall into two broad
categories:

—— Server-based, such as those for Opera Mini, which at the
time of writing were available through Vodafone only.
These widgets run entirely on the proxy server. An obvious
consequence of this is that these widgets cannot offer
device side features.

—— Hybrid, such as Series 40 web apps for Nokia phones. In
these widgets some JavaScript can be executed on the
device. In the case of Series 40 web apps, they can run
code that reads a device’s location, create an SMS mes-
sage, implement element transitions and enable dynamic
alterations to the UI on the device. In addition to offering
a richer user experience this hybrid approach reduces round
trips to the server, for example by eliminating the need for
the server to paint every screen refresh.

If there is a challenge in creating widgets, it is the lack of
universal support for a common standard. W3C, together with
Wholesale Application Community (WAC) and Joint Innovation
Lab (JIL), is pushing forward with the definition of standards.
This standardization is still underway and information on its
progress can be found in the W3C Wiki1.

Because the standards are not complete, it is important to
note that each widget technology has slightly different ways of

1)  www.w3.org/2008/webapps/wiki/WidgetSpecs

http://www.w3.org/2008/webapps/wiki/WidgetSpecs
http://www.w3.org/2008/webapps/wiki/WidgetSpecs

79

implementing the draft specifications and not all environments
implement all of the draft standards. In general, a widget that
follows the specifications given by W3C will enable you to target
these widget environments:

—— BlackBerry (v5.0 or later): bit.ly/blackberry-widgets
—— Nokia WRT (on selected S60 3rd Edition, Feature Pack

2 devices and all S60 5th Edition and Symbian^3 de-
vices): bit.ly/nokia-wrt

—— Nokia Browser for Series 40 (selected Nokia Series 40
devices): www.forum.nokia.com/webapps

—— Vodafone360: bit.ly/vf-widgets
—— WAC/ JIL: www.jil.org
—— Windows Mobile (v6.5): bit.ly/winmo-widgets

To port your widget over to platforms that don’t natively support
widgets, such as iPhone or Android, you can use tools such as
PhoneGap1, Titanium from Appcelerator2, and Rhomobile3 among
others. Of these options, PhoneGap offers a solution that is clos-
est to the W3C approach.

1)  www.phonegap.com
2)  www.appcelerator.com
3)  www.rhomobile.com

http://bit.ly/blackberry-widgets
http://bit.ly/nokia-wrt
http://www.forum.nokia.com/webapps
http://bit.ly/vf-widgets
http://www.jil.org
http://bit.ly/winmo-widgets
http://www.phonegap.com
http://www.appcelerator.com
http://www.rhomobile.com
http://www.phonegap.com
http://www.appcelerator.com
http://www.rhomobile.com

80

Prerequisites

Widgets, just like websites, are created entirely in plain text.
These text files are then packaged as a zip archive. This makes
it possible to create widgets using a text editor, zip application,
and a graphics application (to create an icon and graphics for
the widget). If you have a tool for web development it can be
used for widget development. The primary advantage of using
a web editor is the support these tools provide for composing
HTML, CSS and JavaScript.

There are a number of tools specifically designed for devel-
oping widgets also. These may be delivered as plug-ins or add-
ons to web authoring tools, as with the BlackBerry Widget SDK1
which works in conjunction with Adobe Air, or standalone tools
such as Nokia Web Tools2. These tools generally provide template
projects, a preview environment, validation, packaging, and de-
ployment features.

1)  us.blackberry.com/developers/browserdev/widgetsdk.jsp
2)  www.forum.nokia.com/Develop/Web/Tools#NWT

http://us.blackberry.com/developers/browserdev/widgetsdk.jsp
http://www.forum.nokia.com/Develop/Web/Tools#NWT
http://us.blackberry.com/developers/browserdev/widgetsdk.jsp
http://www.forum.nokia.com/Develop/Web/Tools#NWT

81Programming Mobile Widgets

Writing Your Code

In general, there are no special requirements for writing code
for a widget. The principal area where a widget differs from a
website is the variety of relatively small screen sizes it has to
work on. Devices running widgets may offer WVGA, nHD, QVGA,
or other resolution screens. CSS provides an elegant solution to
reformatting information to accommodate these varying screen
sizes.

By the way: Try to use CSS3 whenever possible and remove
any old compatibility code or you may run into issues.

You can start by simply:

1.	 Creating index.html and config.xml files.
2.	 Zipping them at the command line using zip

myWidget.wgt index.html config.xml.
3.	 Opening the myWidget.wgt  file in Opera.

Of course, your widget can use AJAX also and one of the many
JavaScript libraries, such as jQuery, MooTools, YUI, Dojo, or Gua-
rana.

Depending on the widget platform you are targeting you may
be able to use more advanced technologies such as Canvas, SVG,
Flash Lite, or even HTML5 features such as the <audio> and
<video> tags.

In addition, each environment’s APIs for retrieving device
information, accessing user data, storing data, or other envi-
ronment specific tasks will need to be mastered. In most cases
these APIs follow JavaScript conventions and are easy to learn.
For example, the following code uses Nokia Platform Services 2.0
APIs to asynchronously determine a device’s location:

82Programming Mobile Widgets

serviceObj = nokia.device.load(“geolocation”);
serviceObj.getCurrentPosition(success_callback,
error_callback,positionOpts);
…
function success_callback(result){
	 Lat = result.coords.latitude;
	 Long = result.coords.longitude;
}

While standards are still to be finalized, overall the APIs are mov-
ing in very similar directions. The W3C Geolocation API Specifi-
cation proposes an almost identical API for the same task:

navigator.geolocation.getCurrentPosition(
	 successCallback,errorCallback,
	 positionOptions);

All the widget runtimes are advancing quickly, with new features
being added regularly. While keeping up with these develop-
ments may be a challenge it is certainly worthwhile if you want
to create leading edge widgets.

Testing

It is always good to be able to test on a PC. If your widget is W3C
compliant you can use Opera 9 or later as an all-purpose option.
However, if your widget includes device integration or platform
specific features you will need to look to other tools and fortu-
nately most widget development tools provide a computer based
preview environment as well.

For example, when creating Series 40 web apps, Nokia Web
Tools include Web Apps Simulator that runs your app on Mi-
crosoft Windows, Ubuntu Linux and Apple Mac computers. The

features offered by these widget specific preview tools vary,
but common features include being able to display widgets in
various screen resolutions and orientations, issue device triggers
(such as removal of a memory card) to the widget, and testing
against simulated device data (such as contacts and location
data). Some of the tools support debugging too, as Nokia Web
Tools do through an implementation of Web Inspector.

Of course, once you finish desktop testing, final testing on
your own phone will be essential. The way a widget looks and
behaves can only be fully assessed on a real screen, under real-
istic lighting conditions, and in a real network.

Signing

Currently most widget environments don’t require widgets to be
signed, although there are exceptions, such as BlackBerry. This
situation may change as the APIs to access device features be-
come more advanced. It is worth noting that the W3C standards
include a proposal for widget signing.

84Programming Mobile Widgets

Distribution

While the W3C is working on standards that will enable widgets
to be discovered from websites, in very much the same way RSS
feeds are today, there is no universal mechanism for widget dis-
covery, yet.

However, some widget environments enable you to add a
link to a widget on a website so that the widget installs di-
rectly into the environment or device when downloaded. For ex-
ample, by identifying a Nokia WRT widget with the MIME type
AddType x-nokia¬widget .wgz  downloading the widget on
a Symbian device will automatically initiate the installation pro-
cess.

Distribution via a website is not the only option. Many ap-
plication stores welcome widgets. As we went to press, the
only store that supports W3C widgets is the Vodafone Widget
store1, but by packaging your widgets appropriately you can up-
load them into Nokia Store2, the Windows Marketplace3 or RIM
BlackBerry AppWorld4. You can use tools, such as PhoneGap, to
port your widget to a native application environment, thus gain-
ing the option to use other stores, such as Apple AppStore and
Android Market among others.

1)  widget.vodafone.com
2)  store.ovi.com
3)  www.windowsmarketplace.com
4)  appworld.blackberry.com/webstore

http://widget.vodafone.com
http://widget.vodafone.com
http://store.ovi.com
http://www.windowsmarketplace.com
http://appworld.blackberry.com/webstore
http://appworld.blackberry.com/webstore
http://widget.vodafone.com
http://store.ovi.com
http://www.windowsmarketplace.com
http://appworld.blackberry.com/webstore

85

Programming With
Cross-Platform Tools
So many platforms, so little time: This accurately sums up the
situation that we have in the mobile space. There are more than
enough platforms to choose from: Android, bada, BlackBerry,
BlackBerry Tablet OS (QNX), iOS, Symbian and Windows Phone
are among the most important smartphone and tablet platforms
while Java ME and Brew MP dominate on feature phones.

Before embarking on a mobile apps project one of the key
decisions to make is which platforms to target. In making this
decision – by looking at the market potential and cost of devel-
opment for each platform – it is well worth reviewing the option
of a cross platform framework. In considering a cross-platform
approach do not confuse the market size of a platform with the
market potential for your application – while Android and iPhone
appear to have the biggest market places in 2011, you will also
need the biggest marketing effort to get noticed. So concentrat-
ing on several seemingly smaller platforms, might be a smart
choice for some apps.

Another challenge is that most application sponsors, to quote
Queen’s famous lyrics, will tell the developer: “I want it all, I
want it all, I want it all ...and I want it now!” So the choice may
be between throwing money at the development and adopting a
cross-platform strategy.

By the way, we are not talking about app stores here; this is a
different market fragmentation problem. The more than 120 app
stores, from operators, manufacturers and independent compa-
nies create challenges of their own, outlined in the “Appstores”
chapter.

Programming With Cross-Platform Tools

86

Limitations And Challenges Of
Cross Platform Approaches

If you want to deliver your app across different platforms you
have to overcome some obstacles. Some challenges are easier to
overcome than others:

Native Programming Languages
By now you will have noticed that most mobile platforms release
their own SDKs, which enable you to develop apps in the plat-
forms’ supported programming languages.

87
Programming With Cross-Platform Tools

However, these languages tend to belong to one of a few families
of root languages and the following table provides an overview
of these and the platforms they are supported on:

1)  Supported natively by the platform, e.g. either the primary or only language
for creating applications

2)  Supported as an option by the platform, e.g. can be used as an alternative to
the native language but generally won’t provide the same level of access to
platform features.

Language 1st Class
Citizen1

2nd Class
Citizen2 Target Platforms

C, C++ 4 3

First class: bada, Brew MP,
Symbian, Windows Phone
Classic
Second class: Android
(partly, using the NDK), iOS
(partly), BB Tablet OS (QNX)

Java 3 2

First class: Android, Black-
Berry, Java ME devices
Second class: Symbian,
Windows Phone Classic

Objective-C 1 0 iOS

C# 1 0
Windows Phone and
Windows Phone Classic
(formerly Windows Mobile)

JavaScript 1 2
First class: webOS (R.I.P.)
Second class: BlackBerry
(WebWorks), Nokia (WRT)

ActionScript 1 0 BlackBerry Tablet OS (QNX)

88

Cross platform frameworks can overcome the programming lan-
guage barriers in different ways:

—— Web Technologies
This approach exploits the fact that most platforms provide
direct support for web technologies through embedded
‘webviews’ in native applications. Along with HTML and CSS
this approach supports JavaScript also.

—— Interpretation
Here the framework delivers an engine for each platform
that interprets a common or framework specific language.
In the gaming world Lua scripting is quite popular, for
example.

—— Cross Compilation
The holy grail of cross platform frameworks is cross compi-
lation, but it is also the most complex technical solution.
It enables you to write an app in one language and have it
transcoded into each platforms’ native language, offering
native runtime speed.

Most frameworks also provide a set of cross platform APIs that
enable you to access certain platform or device features, such as
a device’s geolocation capabilities, in a common way.

89Programming With Cross-Platform Tools

UI + UX
A difficult hurdle for the cross platform approach is created by
the different User Interface (UI) and User eXperience (UX) pat-
terns that prevail on individual platforms. It is relatively easy
to create a nice looking UI that works the same on several plat-
forms. Such an approach, however, might miss important UI
subtleties that are available on a single platform only and could
improve the user experience drastically. The other challenge with
a cross-platform UI is that it can behave differently to the native
UI users are familiar with, resulting in your application failing
to “work” for users. Customizing and tailoring the UI and UX to
each platform can be a large part of your application develop-
ment effort and is arguably the most challenging aspect of a
cross platform strategy.

Desktop Integration
Integration of your application into devices’ desktops varies a
lot between the platforms; on iOS you can only add a badge
with a number to your app’s icon, on Windows Phone you can
create live tiles that add any simple information to the desktop,
while on Android and Symbian you can add a full-blown desk-
top widget that may display arbitrary data and use any visuals.
Using desktop integration might improve the interaction with
your users drastically.

Multitasking
Multitasking enables background services and several apps to run
at the same time. Multitasking is another feature that is realized
differently among operating systems. On Android, BlackBerry and
Symbian there are background services and you can run several
apps at the same time; on Android it’s not possible for the user
to exit apps as this is handled automatically by the OS when
resources run low. On iOS and Windows Phone we have a limited

90Programming With Cross-Platform Tools

selection of background tasks that may continue to run after
the app’s exit. So if background services can improve your app’s
offering, you should evaluate cross platform strategies carefully
to ensure it enables full access to the phone’s capabilities in
this regard.

Battery Consumption And Performance
Closely related to multitasking is the battery usage of your ap-
plication. While CPU power is roughly doubled every two years
(Moore’s law says that the number of transistors is doubled every
18 months), by contrast battery capacity is doubling only every
seven years. This is why smartphones like to spend so much time
on their charger. The closer you are to the platform in a cross-
platform abstraction layer, the better you can control the battery
consumption and performance of your app. As a rule of thumb,
the longer your application needs to runs in one go, the less
abstraction you can afford.

Push Services
Push services are a great way to give the appearance that your
application is alive even when it’s not running. In a chat appli-
cation you can, for example, send incoming chat messages to the
user using a push mechanism. The way push services work and
the protocols they use, again, can be realized differently on each
platform. The available data size, for example, ranges between
256 bytes on iOS and 8kb on BlackBerry.

In App Purchase
In app purchase mechanisms enable you to sell services or goods
from within your app. Needless to say that this works differently
across platforms.

Programming With Cross-Platform Tools

In App Advertisement
There are different options for displaying advertisements within
mobile apps, some are vendor independent third party solutions.
Platform specific advertisement services, however, offer better
revenues and a better user experience. And again these vendor
services work differently between the platforms.

Cross-Platform Strategies

This section outlines some of the strategies you can employ to
implement your apps on different platforms.

Direct Support
You can support several platforms by having a specialized team
for each and every target platform. While this can be resource
intensive, it will most likely give you the best integration and
user experience on each system. An easy entry route is to start
with one platform and then progress to further platforms once
your application proves itself in the real world.

Asset Sharing
When you maintain several teams for different platforms you
can still save a lot of effort when you share some application
constructs:

—— Concept and assets
Mostly you will do this automatically: share the ideas and
concepts of the application, the UI flow, the input and
output and the design and design assets of the app (but be
aware of the need to support platform specific UI con-
structs).

—— Data structures and algorithms

92Programming With Cross-Platform Tools

Go one step further by sharing data structures and algo-
rithms among platforms.

—— Code sharing of the business model
Using cross platform compilers you can also share the busi-
ness model between the platforms. Alternatively you can
use an interpreter or a virtual machine and one common
language across a variety of platforms.

—— Complete abstraction
Some cross platform tools enable you to completely
abstract the business model, view and control of your ap-
plication for different platforms.

Player And Virtual Machines
Player concepts typically provide a common set of APIs across
different platforms. Famous examples include Flash, Java ME and
Lua. This approach makes development very easy. You are de-
pendent, however, on the platform provider for new features and
the challenge here is when those features are available on one
platform only.

Often player concepts tend to use a “least common denomi-
nator” approach to the offered features, to maintain commonal-
ity among implementations for various platforms.

Generator concepts carry the player concept a step further,
they are often domain specific and enable you to generate apps
out of given data. They often lack flexibility compared to pro-
grammable solutions.

Cross Language Compilation
Cross language compilation enables coding in one language that
is then transformed into a different, platform specific language.
In terms of performance this is often the best cross platform
solution, however there might be performance differences when
compared to native apps. This can be the case, for example,

93Programming With Cross-Platform Tools

when certain programming constructs cannot be translated from
the source to the target language optimally. There are three com-
mon approaches to cross language compilation: direct source to
source translation, indirectly by translating the source code into
an intermediate abstract language and direct compilation into a
platform’s binary format.

The indirect approach typically produces less readable code.
This is a potential issue when you would like to continue the de-
velopment on the target platform and use the translated source
code as a starting point.

(Hybrid) Web Apps
While websites are inherently cross platform, they have some big
disadvantages:

1.	 Websites are not listed in the app stores, so users don’t
find them and monetization is difficult. (Although you
could create a simple application or widget that opens
your website and submit that to a store, but this will not
help with monetization.)

2.	 Websites only work online.
3.	 Websites have an inferior user experience compared to

native apps.

Some of the available web application frameworks are listed in
the following table. With these frameworks you can create web
apps that behave almost like real apps, including offline capa-
bilities. Typically you have no access to hardware features and
native UI elements, so in our opinion they don’t count as “real”
cross platform solutions: these solutions are therefore not listed
in the table at the end of this chapter. Web apps have some
advantages over traditional websites:

94Programming With Cross-Platform Tools

1.	 You can put a web app in an app store. Even when not
directly supported by the vendor, you can use web based
tools such as PhoneGap in combination with a web app
solution to make web apps available in app stores.

2.	 Web apps can work offline.
3.	 Web apps can look and behave in a similar fashion to

native apps, however there are often slight – albeit an-
noying – differences compared with their native counter-
parts.

A step further towards native applications is provided by hy-
brid web apps, in which you create a native application that uses
a webview to display a website.

With this approach you can have access to any native func-
tionality that you require while keeping most of the functionality
on the server side.

Web App Solution License Target Platforms

jQuery Mobile
www.jquerymobile.com

MIT and GPL
Android, bada, BlackBerry,
iOS, Symbian, webOS, Win-
dows Phone

iWebKit
iwebkit.net

LGPL iOS

Sencha Touch
www.sencha.com/
products/touch

GPL Android, iOS

JQTouch
www.jqtouch.com

MIT iOS

iUI
code.google.com/p/iui

BSD iOS

The M Project
the-m-project.org

MIT and GPL
Android, BlackBerry, iOS,
webOS

http://www.jquerymobile.com
http://iwebkit.net
http://www.sencha.com/products/touch
http://www.sencha.com/products/touch
http://www.jqtouch.com
http://code.google.com/p/iui
http://the-m-project.org

95

This approach is easier than creating native apps for every
platform while enabling you to extend the native parts of your
app as required in an incremental fashion.

Cross-Platform Solutions

There are many cross-platform solutions available, so it’s hard to
provide a complete overview. You may call this fragmentation,
I call it competition. A word of warning: we don’t know about
all solutions here, if you happen to have a solution on your
own that is publicly available, please let us know about it at
developers@enough.de

Here are some questions that you should ask when evaluating
cross platform tools. Not all of them might be relevant to you,
so weight the answers appropriately. First have a detailed look
at your application idea, the content, your target audience and
target platforms. You should also take the competition on the
various platforms, your marketing budget and the know-how of
your development team into account.

—— How does your cross platform tool chain work? What pro-
gramming language and what API can I use?

—— Can I access platform specific functionality? If so, how?
—— Can I use native UI components? If so, how?
—— Can I use a platform specific build as the basis for my own

ongoing development? What does the translated/generated
source code look like?

—— Is there desktop integration available?
—— Can I control multitasking? Are there background services?
—— How does the solution work with push services?
—— How can I use in app purchase and in app advertisement?

mailto:developers%40enough.de?subject=Mobile%20Developer%20Guide%20Feedback%3A%20Cross-Platform%20Solution%20Suggestion

96Programming With Cross-Platform Tools

id Tech 5
www.idsoftware.com (id)

Commercial C++ Consoles, iOS, PC

J2ME Polish
www.j2mepolish.org
(Enough Software)

Open Source
+ Commercial

Java ME,
HTML, CSS,
JavaScript

Android, Black-
Berry, iOS, J2ME,
PC, Windows
Phone Classic

Irrlicht
irrlicht.sourceforge.net

Open Source C++
Android & iOS
with OpenGL-ES
version, PC

Solution License Input Output

Airplay
www.airplaysdk.com
(Ideaworks Labs)

Commercial C++

Android, bada,
brew, iOS, Symbian,
webOS, Windows
Phone Classic

Bedrock
www.metismo.com
(Metismo)

Commercial Java ME

Android, bada,
BlackBerry, brew,
Consoles, iOS, PC,
webOS, Windows
Phone, Windows
Phone Classic

Corona
www.anscamobile.com
(Ansca Software)

Commercial JavaScript Android, iOS

appMobi
www.appmobi.com

Commercial
HTML, CSS,
JavaScript

Android, iOS

Celsius
mobile-distillery.com
(Mobile Distillery)

Commercial
iOS,
Java ME

Android, Black-
Berry, brew,
iOS, Symbian,
Windows Phone
Classic

EDGELIB
www.edgelib.com
(elements interactive)

Commercial C++
Android, iOS, PC,
Symbian

http://www.idsoftware.com
http://www.j2mepolish.org
http://irrlicht.sourceforge.net
http://www.airplaysdk.com
http://www.metismo.com
http://www.anscamobile.com
http://www.appmobi.com
http://mobile-distillery.com
http://www.edgelib.com

97 Programming With Cross-Platform Tools

Solution License Input Output

Rhodes
rhomobile.com/products/
rhodes (rhomobile)

Open Source
+ Commercial

Ruby,
HTML, CSS,
JavaScript

Android, Black-
Berry, iOS, Sym-
bian, Windows
Phone Classic

Flash
adobe.com/devnet/
devices.html (Adobe)

Commercial Flash Android, iOS, PC

PhoneGap
www.phonegap.com
(Nitobi)

Open Source
HTML, CSS ,
JavaScript

Android,
BlackBerry, iOS,
Symbian, webOS

Mono Touch
monotouch.net (Novell)

Commercial C# iOS

MoSync
www.mosync.com

Open Source
+ Commercial

C

Android,
BlackBerry
(Beta), iOS,
J2ME, Symbian,
Windows Phone
Classic

Qt
qt.nokia.com
(Nokia)

Open Source
+ Commercial

C++

PC, Symbian,
MeeGo and
Windows Phone
Classic as well as
desktop Windows,
Apple & Linux OS

SIO2
sio2interactive.com
(sio2interactive)

Commercial C
iOS, other
announced

Spot Specific
www.spotspecific.com

Commercial
Drag and
Drop, JavaS-
cript

Android, iOS.
(BlackBerry &
Windows an-
nounced)

http://rhomobile.com/products/rhodes
http://rhomobile.com/products/rhodes
http://adobe.com/devnet/devices.html
http://adobe.com/devnet/devices.html
http://www.phonegap.com
http://www.monotouch.net
http://www.mosync.com
http://qt.nokia.com
http://sio2interactive.com
http://www.spotspecific.com

Programming With Cross-Platform Tools 98

Solution License Input Output

Unity3
unity3d.com
(Unity Technologies)

Commercial C# Android, iOS, PC

Whoop
www.whoop.com

Commercial
Drag and
Drop

Android, Black-
Berry, iOS, J2ME,
Windows Phone
Classic

Titanium
www.appcelerator.com

Open Source JavaScript
Android, Con-
soles, iOS, PC

Unreal
www.unrealtechnology.
com (Epic Games)

Commercial
UnrealScript,
C++

Consoles, iOS, PC

XML VM
xmlvm.org

Open Source
+ Commercial

Java, .NET,
Ruby

C++, Java,
JavaScript, .NET,
Python

http://unity3d.com
http://www.whoop.com
http://www.appcelerator.com
http://www.unrealtechnology.com
http://www.unrealtechnology.com
http://xmlvm.org

99Creating Mobile Websites

Creating Mobile Websites
Why create a mobile website instead of an application?

Using the web has a number of advantages, websites can be
browsed on most devices, the technology is flexible, and it is
easy to update sites so all users get the latest version. You only
need to modify a single codebase if you want to add or change
content or even features, rather than updating each application.

Context Is King

When you create a website for desktop browsers you typically
design and develop for a context in which a user has a large
display, enough time, power and also a fast persistent internet
connection. None of these are guaranteed when using the inter-
net on mobile devices.

Although most new devices have much larger screens than
devices a few years before, they are mostly still small compared
to desktop devices. Beyond that users often access a mobile
website when they are on the go and they may be focusing on
other things in addition to the web site they are using because
they have to look at the traffic for example.

Other problems to consider are the effects of a weak signal
and a slow mobile internet connection. Since the average inter-
net user is impatient, you can easily lose a user who has to wait
too long for pages to load – they may obtain the information
elsewhere. Therefore you should try to keep content such as ex-
ternal scripts and images as small as practical.

You should consider these factors when you are about to de-
sign a website for mobile devices. Focus your mobile web strat-
egy on what content a user is probably looking for when they
visit your website. They are unlikely to be interested in your

100Creating Mobile Websites

awesome company intro page animation made in Flash. Beyond
you should also think about the contexts in which your mobile
site will be used before you begin to design a mobile website.

It could be in a train with a weak signal, in a village with
poor connection speed, outside in a sunny environment on a
top-notch smartphone with touchscreen display as well as on
an older feature phone with an even older browser and keypad
operation. You cannot influence the context a user is in but you
can design your site to be useable under all these circumstances.

Usability Aspects

After thinking about content and context it is equally important
to consider usability. It is not only a matter of what content is
interesting for a user and the contexts in it will be consumed
but also a matter of how your target audience will use your site.
Navigating your site is less fun when doing it using the device’s
keyboard instead of just using your finger on a large screen but it
can be easier if the links within your page are so damn small that
it is almost impossible to hit them without causing unwanted
behavior (like tapping other links as you actually wanted to).

There are some basic hints to make sure your content is
adapted in the best possible and usable way for mobile users:

1.	 Make it “mobile” not only “small”:
Create a concept that utilizes the possibilities of the
technology. You won’t satisfy many people by simply of-
fering a smaller version of your classic website. Mobilize,
don’t miniaturize!

2.	 Keep all paths open: Leave it up to the user to access
either the mobile or desktop version of your website.

3.	 Keep it simple: Avoid complex navigation structures,

101Creating Mobile Websites

users will not dig that deep anyway while they are on the
go.

4.	 Avoid text input wherever possible: Text input on mo-
biles sucks. If you really need the users to enter text, use
wide input boxes so that they see what they are typing.
Buttons to clear an input field on click/touch are also
helpful very often.

5.	 Adapt the media: Adapt all pictures, videos and alike
to be displayed properly on the handset (check the cor-
responding chapter in this guide: “Implementing Rich
Media” for more information). Try to avoid formats such
as .doc and pdf if possible.

6.	 The user is a creature of habit: respect that: Adapt us-
age patterns from classic websites such as linking logos
to the homepage or offering corrections to mistyped
search requests.

7.	 Think of stubby fingers: When optimizing your con-
tent for touch screen phones do not use clickable areas
smaller than ~50x50px.

8.	 Use sharp contrasts: Fonts and background colors that
guarantee legibility in any surrounding, including bright
sunlight.

9.	 Reflect continuously: Ask yourself if you would use the
implemented features yourself. Ask your friends and col-
leagues as well before realizing your ideas.

10.	Do not require the user to think. Try to implement
intuitive navigation, do not force users to make decisions
more often than necessary.

102Creating Mobile Websites

Technical Limits of Web Technologies

When it comes to the decision whether to create an app or a mo-
bile website for a specific project many mobile developers tend
to say “app” first because you seem to have more possibilities
and better performance. This answer is seldom wrong but it is
only half the truth. Let’s have a detailed view on the advantages
and disadvantages of mobile websites or web apps compared
with native mobile apps.

If you are coming from the “desktop world” and you have
never created a website for mobile devices before (or if the last
time you did is already a long time ago) you will be surprised
about the capabilities of modern mobile phone’s web brows-
ers. Assuming that you intend to optimize your mobile website
mainly for modern platforms you would also create apps for (iOS,
Android, BlackBerry OS, WebOS, bada, Windows Phone) we will
primarily focus on modern browsers running on the mentioned
platforms in this chapter.

The current generation browsers on major platforms support a
variety of modern HTML5, CSS and JavaScript features like Geolo-
cation, WebGL (interesting for mobile game development), hard-
ware acceleration, offline storage and many more. You can easily
find out if a user is online or offline, you can synchronize online
data on a device for later offline use (e.g. if the signal is lost)
and you can make whole web applications available even when a
user has no active internet connection.

You can ask for permission to query the current position of a
user just like you can do in a native app and you can also access
the gyroscope of an iPhone using pure JavaScript directly in the
browser. In addition mobile browser vendors are also working on
making it possible to access the phone’s camera, network status
or address book data.

103Creating Mobile Websites

Sounds pretty app like, doesn’t it? JavaScript is still often
underestimated but if you know how you can rapidly create high
class web apps which make extensive use of a device’s capabili-
ties (almost) without the need to create proprietary versions for
each platform.

And that’s not all: almost all recent mobile browsers support
a lot of the current CSS3 standard and so you can create nice and
shiny things like transitions, custom web fonts, drop shadows or
rounded corners with only little effort which makes it very easy
to let your web applications look and feel like native apps.

Pitfalls? Issues? Of course there are some. Although modern
browsers already have a wide range of device API support there
are still things you cannot yet do inside a browser. Accessing the
camera as already mentioned is one thing. You cannot prevent
the device from going to standby mode on a website which can
sometimes be a problem. And sure: you will need to implement
your own user interface in HTML, CSS and JavaScript instead of
just using the native GUI functionality which is a bit faster in
most cases. But if your code is clean and effects are used wisely
the performance difference to native apps is so small that a user
probably will not even realise he is just using a web app instead
of a native app.

104

Native AppMobile WebsiteFeature

Yes YesDetect online status

Yes YesAccess GPS/geolocation

Not yet (planned) YesAccess camera

Not yet Yes
Notifications (i.e. vibration,
push, messages)

Not yet (planned) YesCheck battery status

No YesAppstore approval needed?

Yes YesOffline data storage

Yes YesAccess gyroscope

Not yet (planned) YesAccess address book

Yes NoCross-platform compatible

Yes Yes
Different touch keyboard
layouts on input fields

105

Fragmentation

“In mobile, fragmentation is forever”1. Unfortunately it is not
always as easy to create a cross-device cross-platform cross-
browser cross-markup “cross-blahblah” mobile website as you
might think. Dealing with many different devices also results in
an annoying fragmentation jungle. Some devices use their own
implementation of device APIs (i.e. Geolocation on Blackberry
OS 4.6) or even have absolutely no support for certain features
(i.e. filesystem access on iOS).

This means you have to write workarounds of your code for
different platforms and even for the same browser running on
different platform versions. But the web wouldn’t be the web if
there wasn’t already a solution for almost all of these problems.
And so there are sites, libraries and services like caniuse.com2,
Modernizr3 or fitml.com4 where you can build quick and clean
workarounds to handle fragmentation issues with only a mini-
mum of effort. You still only need to write most parts of your
web app once.

1)  Richard Wong, Techcrunch, March 2010
2)  www.caniuse.com
3)  www.modernizr.com
4)  www.fitml.com

http://www.caniuse.com
http://www.modernizr.com
http://www.fitml.com
http://www.caniuse.com
http://www.modernizr.com
http://www.fitml.com

106Creating Mobile Websites

Server-Side vs. Client-Side Adaption

Basically there are two different approaches to professional mo-
bile web development if you aim to deliver a great user experi-
ence. Either way you will have to determine which (type of)
device is sending a request to your website and then you need
to “guess” (server-side) or test (client-side) what features are
supported by the according device.

Server-Side Detection and User Agent Sniffing
The first possible way is to do so using the so called “user agent
sniffing” on the server-side and then let your server create and
deliver an optimized version of your site to the client. Server-
side detection is usually based on large databases containing
the user agents of thousands of devices and their capabilities.
The most common use of server side adaption is image scaling
on the server to save some bytes when delivering a big image
to a mobile device. In most cases it is not necessary to deliver a
800×600 JPG with a file size of 120K to a device whose display
resolution is only 320×480. So you typically resize the image
to the display size of the mobile device and then serve a much
smaller version to the client.

Service-side detection can be a good choice for other rea-
sons. You can also decide which markup to deliver based on the
user agent of the accessing device. If you have a visitor with
an iPhone or an Android phone you can serve a nice HTML5
document while users with old Nokia devices will receive an old
fashioned XHTML 1.1 document.

The advantage of server-side adaption is that you optimize
all the content to serve only what a client probably really needs.
And “probably” is also the problem here. New devices are re-
leased so often it is hard to keep a device database entirely up-
to-date. There are some commercial providers for device databas-

107Creating Mobile Websites

es (WURFL1, DeviceAtlas2, fitml.com for example) if you want to
realize mobile web projects with server-side user agent detection
I strongly recommend you consider one of these as they have
full time employees actively maintaining their databases and do
a lot of work that would be impractical for you to do yourself.

Pitfall here: user agents can be “wrong”, manipulated or un-
known. You should therefore always provide a fallback in case
your user agent detection fails. Such a fallback could be a docu-
ment in a format (i.e. HTML4) that almost every mobile browser
released in the past 5 years can understand.

Client-Side Adaption and Feature Detection
Client-side feature detection is the second approach to create
a great user experience on mobile websites. Feature detection
in general means that you use JavaScript to look if a certain
capability is supported on the accessing device. To give you a
first impression: you can use if(navigator.geolocation)
to check if a device supports acquiring of the user’s current posi-
tion.

Feature detection also means that you will have to deliver the
complete document with all possible features of the website in
it and then gracefully degrade it by removing features which are
not supported on the device. That means you are sending a lot
of content to all devices regardless of whether a certain feature
is supported on a device or not.

One big advantage compared to server-side adaption: when
a feature test passes you can (under normal conditions) be sure
that your desired feature or behavior will work as expected even

1)  wurfl.sourceforge.net
2)  www.deviceatlas.com

http://wurfl.sourceforge.net
http://www.deviceatlas.com
http://wurfl.sourceforge.net
http://www.deviceatlas.com

108Creating Mobile Websites

if a user agent was modified and therefore was not recognized
properly by a device capability database.

The Modernizr JavaScript library is probably the first place
to go when it comes to client-side feature detection. Modern-
izr covers a lot of possible browser capabilities and provides a
simple API to check for support of a certain feature. If you need
to know whether a browser supports Drag and Drop or not, just
use the Modernizr library this way:

if(Modernizr.draganddrop) {
			 // browser supports native drag and drop
		 } else {
			 // fallback
}

Another part that belongs to the client-side is the adaption
of layout. On modern mobile browsers you can use media queries
which let you apply CSS rules only if a client or browser matches
certain conditions. You can easily show a two column layout
when a device exceeds a display width of 800px (on tablets for
example) and fall back to a linear one column layout when a
device’s display has a resolution of less than 800px.

Issues concerning client-side approach: first there are some
things, especially browser bugs, which may be hard to detect
on client side. Another big problem is that you always have to
serve the whole document with large scaled images and a bunch
of JavaScript to the client since you do not know if your visitor
is using a bleeding-edge hipster browser from Cupertino or an
oldschool “I don’t know what JavaScript is” browser from 2003.

109Creating Mobile Websites

Why not just use the best of both worlds?
Excellent idea! There is of course no rule that forbids to combine
both server-side and client-side technology to create an even
better user experience. So you can try to determine the basics
(“which markup should be used?”, “what is the correct size for
images?”, “JavaScript support, yes or no?”) on the server and let
the client handle the rest. You can provide server-side fallbacks
for JavaScript enhancement to make a site accessible and so
you can create mobile websites which even work fine on old de-
vices. A commercial platform working according to this principle
is fitml.com1 where you describe your content in an abstract XML
markup called FITML, the platform then converts your markup to
the best suitable output format and optimizes both on server-
side and on client-side.

Hybrid Apps

If you necessarily want (or need) to publish your mobile app
on Android Market, Apple Appstore, etc. you can also create
a “hybrid app”. Create your app completely by using common
web technologies (HTML, CSS, JavaScript) and then compile it as
app. Sounds easy? It is. There are several hybrid app frameworks
which let you create native apps with only a single HTML5 web
app as shared base. There is PhoneGap2, Appcelerator3 or Ap-
parat.io4 and probably many more you can use to achieve this.

How does it work exactly? Write your complete application in
HTML5 just as you were about to publish it to the web. Then you
use one of the frameworks to compile your web app as native
app. The framework creates some sort of “wrapper app” which

1)  www.fitml.com
2)  www.phonegap.com
3)  www.appcelerator.com
4)  apparat.io

http://www.fitml.com
http://www.phonegap.com
http://www.appcelerator.com
http://apparat.io
http://apparat.io
http://www.fitml.com
http://www.phonegap.com
http://www.appcelerator.com
http://apparat.io

110

embeds your web app in a “web view” and it can then be in-
stalled as regular application on several different platforms. The
big plus of doing it this way is that you only have one web app
as the base and thus you can reduce your costs for development
and maintaining but the result is still a “real” native app.

Small downer: although frameworks let you use features in
your web app which you usually cannot use in a browser hybrid
apps are not a complete substitute for native apps. They offer
some nice advanced functions like vibration, access to camera
or address book but in its core it still is a web app. That means
you will have to create your own user interface which might be
slower and you also cannot use really everything as you can
when creating an app using the native SDK.

111

Lessons learned

The gap between native apps and web apps is rapidly decreasing.
Browser vendors did a lot of good work in the past few years and
implemented many features which were only available in native
apps. There are different approaches to create great mobile web-
sites which can look and even feel a lot like a native app and
new devices will be released that have even better support for
HTML5 and its device specific enhancements.

Creating mobile websites or mobile web apps makes your
content accessible over the web on almost every platform with
only little work compared to native development for several plat-
forms. It can thus save you a lot of costs for development and
maintenance. Due to the existence of hybrid app frameworks you
can even publish your apps in app stores.

If you have never developed a mobile website or web app
before or if you were not convinced because of the poor browsers
in the early days of the mobile web you should give it another
try. Consistent support of the many different features is still far
from perfect but it has been improved by at least 1000% since
the rise and success of Android and iOS.

When you became curious and want to create a mobile web-
site always have one thing in mind: make your mobile website
mobile, not just smaller!

112Developing Accessible Apps

Developing Accessible Apps
Regardless of the technology you choose to develop your apps,
you’ll want to ensure that your app can be used by as many
people in as many different markets as possible.

Many of your potential users could have a disability, that
makes it more difficult for them to use mobile technology. These
disabilities include, but are not limited to, various levels of sight
or hearing impairment, Cognitive disabilities, dexterity issues,
technophobia and such like.

The challenge then, is to design your apps accessibly to en-
able its use by as many people as possible.

Built-In Accessibility Features

Some of the mobile platforms have accessibility features that
can help make it easier for people to use your apps. For example,
iOS devices include:

—— VoiceOver, which is a screen reader. It speaks the objects
and text on screen, enabling your app to be used by people
who may not be able to see the screen clearly

—— Zoom. This magnifies the entire contents of the screen
—— White on Black. This inverts the colors on the display,

which helps many people who need the contrast of black
and white but find a white background emits too much
light.

—— Captioning and subtitles, for people with hearing loss
—— Audible, visible and vibrating alerts, to enable people to

choose what works best for them
—— Voice Control. This enables users to make phone calls and

control music playback using voice commands.

113Developing Accessible Apps

Users often rely on third party applications such as Talkback,
on the Android platform, available from the market place or Talks
from Nuance for the Symbian platform, which provides screen
reading and screen magnification features.

In addition to accessibility features for users, some of the
platforms include Accessibility APIs that help developers in two
ways. Firstly, they can enable your app to be accessible with
little or sometimes no extra work on your part. Secondly, they
make it easier to develop apps such as screen readers.
So, in order to develop an accessible app, your goal as a devel-
oper is to:

—— Follow the general guidelines below in order to give your
app the best chance of interoperating with any third-party
access software the user may be running in conjunction
with your app

—— Find out what accessibility features and APIs your platform
has and follow best practice in leveraging those APIs if
they exist.

General Guidelines For Accessible App
Development
The following guidelines will make your apps more useable by
those of your customers with disabilities:

—— Use standard rather than custom UI elements where pos-
sible. This will ensure that if your platform has an accessi-
bility infrastructure or acquires one in the future, your app
is likely to be rendered accessibly to your users

—— Follow the standard UI guidelines on your platform. This
enhances consistency and may mean a more accessible
design by default

—— Label all images with a short description of what the image
is, such as “Play” for a play button.

—— Avoid using colour as the only means of differentiating an
action. For example a colour-blind user won’t be able to
identify errors if the are marked by coloring them red only.

—— Ensure good colour contrast throughout your app.
—— Use the Accessibility API for your platform, if there is one.

This will enable you to make custom UI elements more
accessible and will mean less work on your part across your
whole app.

—— Support programmatic navigation of your UI. This will not
only enable your apps to be used with an external keyboard
but will enhance the accessibility of your app on platforms
such as Android where accessible navigation is performed
by a trackball or virtual d-pad.

—— Test your app on the target device with assistive technol-
ogy such as Voiceover on the iPhone.

You can find a more comprehensive list of guidelines online1.

1)  slideshare.net/berryaccess/designing-accessible-usable-application-user-
interfaces-for-mobile-phones

http://slideshare.net/berryaccess/designing-accessible-usable-application-user-interfaces-for-mobile-phones
http://slideshare.net/berryaccess/designing-accessible-usable-application-user-interfaces-for-mobile-phones
http://slideshare.net/berryaccess/designing-accessible-usable-application-user-interfaces-for-mobile-phones

115Developing Accessible Apps

Developing Accessible iOS Apps

iOS has good support for accessibility. However, it only works
well if the accessibility guidelines1 have been followed. This
guidelines detail the API and provide an excellent source of hints
and tips for maximizing the user experience with your apps.

Developing Accessible BlackBerry Apps

BlackBerry also provides good and extensive information about
the use of their accessibility API and many hints on accessible
UI design on their website for developers2.

Developing Accessible Symbian / Qt Apps

At the time of writing, there is no “accessibility API” for the
Symbian platform, however there are several third party apps
that provide good access to many Symbian phones along with
many of the apps they use.

When developing native Symbian apps your best chance of
developing an accessible app is to use the standard UI con-
trols where possible. If you are developing using Qt, then please
check the web for details of their accessibility API3.

1)  developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/
iPhoneAccessibility

2)  docs.blackberry.com/en/developers/deliverables/11936
3)  doc.qt.nokia.com/qq/qq24-accessibility.html

http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/iPhoneAccessibility
http://docs.blackberry.com/en/developers/deliverables/11936
http://doc.qt.nokia.com/qq/qq24-accessibility.html
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/iPhoneAccessibility
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/iPhoneAccessibility
http://docs.blackberry.com/en/developers/deliverables/11936
http://doc.qt.nokia.com/qq/qq24-accessibility.html

116Developing Accessible Apps

Developing Accessible Android Apps

Android has several accessibility features including an acces-
sibility API. Again, when developing Android apps you should
use standard UI controls where possible and make sure users can
navigate your app via a trackball or d-pad. This will give your
app the best chance of being rendered accessibly by the likes of
Talkback and other assistive technology applications.

For specifics on how to use the Android accessibility API along
with details of best practice in Android accessibility, please see
Google’s document entitled Designing for Accessibility1.

For more information about Android accessibility including
how to use the text to speech API, see the Eyes-Free project2.

Developing Accessible Mobile Web Apps

Though the focus of this chapter has been how to develop ac-
cessible native apps, we can never ignore the role the web has
to play, especially as the line between native app and web app
is blurring.

Much has been written on the subject of web accessibility
however, at the time of writing, there is no standard which em-
bodies best practice for accessible mobile web development.

If your App is intended to mimic a native app look and feel,
then you should follow the above guidelines in this chapter.

If you are a web content developer, then you should take a
look at the Web Content Accessibility Guidelines (WCAG) Over-
view3.

1)  developer.android.com/guide/practices/design/accessibility.html
2)  code.google.com/p/eyes-free
3)  w3.org/WAI/intro/wcag

http://developer.android.com/guide/practices/design/accessibility.html
http://code.google.com/p/eyes-free
http://w3.org/WAI/intro/wcag
http://w3.org/WAI/intro/wcag
http://developer.android.com/guide/practices/design/accessibility.html
http://code.google.com/p/eyes-free
http://w3.org/WAI/intro/wcag

117

As support of HTML 5 is increasingly adopted on the vari-
ous mobile platforms, you might find it useful to take a look at
the document entitled Mobile Web Application Best Practices1 as
this is likely to form the foundation of any mobile web applica-
tion accessibility standard that emerges in the future.

In Conclusion

As the various mobile platforms are becoming increasingly so-
phisticated, we are seeing it become a more accessible place
for users with disabilities and though we eagerly await what
Windows Phone 7 and QNX have to offer in this regard, a level
playing field will only be achieved to the degree that develop-
ers are aware of the appropriate APIs and features within their
platform of choice.

1)  w3.org/TR/mwabp

http://w3.org/TR/mwabp
http://w3.org/TR/mwabp

118Implementing Rich Media

Implementing Rich Media
“As many standards as handsets.” – Again this is true for the list
of supported media formats on mobile phones. Contrary to PCs
where most audio and video formats are supported or a codec
can easily be installed to support it, mobiles are a different
story. To allow optimization for screen size and bandwidth, spe-
cific mobile formats and protocols have been developed over the
past few years. Small variations in resolution, bit rate, container,
protocol or codec can easily fail playback, so always test on real
devices.

Most smartphones today do support MP4 h.264 320x240 AAC-
LC, however multiple variations are possible among handsets-
even within one vendor or firmware version. Below are the rec-
ommended formats:

Streaming vs. Local Storage

There are two options to bring media content to mobile devices:
Either playing it locally or streaming it in real time from a server.
To stream content through relatively unstable mobile networks,

Container

Protocol

Video

Audio

Resolution

mp4, 3gp, avi (BlackBerry only),
wmv (Windows Phone only)

320x240, 480x320, 480x800 (tablets only),
1024x768 (iPad only), 176x144

H.264, H.263

AAC-LC, MP3, AAC+

HTTP (progressive or download) or RTSP (streaming)

119Implementing Rich Media

a specific protocol called RTSP was developed that solves latency
and buffering issues. Typical frame rates are 15 fps for MP4 and
25 fps for 3gp with up to 48 kbps for GPRS (audio only), 200
kbps for Edge, 300 kbps for 3G/UMTS/WCMDA and 500 kbps for
Wi-Fi.

Apple’s open source Darwin streaming server1 can serve
streaming video and audio with highest compatibility and reli-
able RTSP combined with FFMPEG2 and is always a good choice
to stream 3gp or mp4 files.

When targeting Windows Mobile/Phone, Windows Media Serv-
er3 is preferred to support HTTP streaming. Android 3.0 upwards
also supports HTTP streaming. Note that atomic hinting is re-
quired (see Progressive Download) and mp4 files are very strict
in encoding (use H.264 15 fps AAC-LC 48khz stereo). Only HTC
Android devices are less strict in streaming formats and will play
much more encoding variations than other brands.
When streaming is not available on the phone, blocked by the
carrier or you want to enable the user to display the media
without establishing a connection each time, you can of course
simply link and download the file. This is as easy as linking to
a download on the regular web, but mobile phones might be
stricter in checking the correct mime types. Use audio/3gp or
video/3gp for 3gp files and video/mp4 for mp4 files.

Some handsets simply use the file extensions for data type de-
tection, so when using a script like download.php a well-known
trick is to add a parameter like download.php?dummy=.3gp to
allow correct processing of the media. Some phones cannot
play 3gp audio without video, but a workaround is to include an
empty video track in the file or a still image of the album cover.
Depending on the extension and protocol, different players

1)  dss.macosforge.org
2)  www.ffmpeg.org
3)  technet.microsoft.com/en-us/windowsserver/

http://dss.macosforge.org
http://www.ffmpeg.org
http://technet.microsoft.com/en-us/windowsserver/
http://technet.microsoft.com/en-us/windowsserver/
http://dss.macosforge.org
http://www.ffmpeg.org
http://technet.microsoft.com/en-us/windowsserver/

120

might handle the request. On some phones, like Android, mul-
tiple media players can be available and a popup is displayed to
allow the user to select one.

Finally you might of course also simply include the lo-
cal media file in your mobile app as a resource. On An-
droid devices pay attention to support media locat-
ed at SD-Cards (Android 3.1 and up) which requires the
android.permission.READ_EXTERNAL_STORAGE

Progressive Download

To avoid configuring a streaming server, a good alternative is to
offer progressive downloads, for which your media files can be
served from any web server. To do this, you have to hint your
files. Hinting is the process of marking several locations in the
media, so a mobile player can start playing the file as soon as it
has downloaded a small part of it (typically the first 15 seconds).
So far the most reliable open source hinting software found is
Mp4box. Note that a mp3 file doesn’t need and cannot be hinted.

Media Converters

To convert a wide variety of existing media to mobile phone
compatible formats FFMPEG is a must have (open source) media
format converter. It can and adjust the frame rate, bit rate and
channels at the same time. Make sure you build or get the binary
with H263, AAC and AMR encoder support included. There are
good converters available based on FFMPEG, e.g. “Super” from
eRightSoft1 . For MAC users, QuickTime pro (paid version) is a
good alternative to encode and hint 3gp files. If you are looking
for a complete server solution with a Java/ open source back-
ground, check out Alembik2.

1)  www.erightsoft.com/super
2)  www.alembik.sourceforge.net

http://www.erightsoft.com/super
http://www.erightsoft.com/super
http://www.alembik.sourceforge.net
http://www.erightsoft.com/super
http://www.alembik.sourceforge.net

121Implementing Location-Based Services

Implementing
Location-Based Services
Knowing where a mobile user is located geographically enables
mobile services to be more accurate and timely: helping find
a nearby parking space, analyzing pollen reports for your local
area, finding friends at the trade fair or obtaining directions to
the local zoo. The zip code of your current location may be good
enough to locate a nearby barber, while higher precision will be
required to find your GPS-tagged hunting dog or lost toddler.

How To Obtain Positioning Data

Location-based applications can acquire location information
from several sources: one of the phone’s available network con-
nections, GPS satellites, short range systems based on visually
located tags or local short range radio or old-school by inputting
data through the screen or keyboard.

—— Network positioning
Each GSM or UMTS base station carries a unique ID,
containing its country code, network id, five-digit Loca-
tion Area and two-digit Routing Area, from which geo
coordinates can be obtained by looking up the operator’s
declaration. More accurate methods include measuring the
difference in time-of-arrival of signals from several nearby
base stations (multilateration). For phones with WiFi
capabilities, known wireless LAN access points can also be
used. Several companies monitor WiFi signals by driving
around in cities, and sell these data sets to third parties
or use in-house. In general, accuracy depends on the cell

122Implementing Location-Based Services

size (base station density). Higher accuracy is obtained in
urban areas than in rural areas.

—— GPS positioning
The built-in GPS module in the phone (or an external one)
gives you an accuracy ranging from 5 to 50 meters, de-
pending on quality of the hardware as well as the terrain,
canopy and wall materials. In cities urban canyons created
by clusters of tall buildings can distort the signal, giving
false or inaccurate readings. Combining GPS with network
positioning is increasingly common. Modern phones some-
times have an on-board assisted GPS chip, this minimizes
the delay until the first GPS fix is obtained by providing or-
bital data, accurate network time and network-side analysis
of snapshot GPS information from devices. Yet an A-GPS
does not provide a more accurate position, only a faster
result when the GPS is initially enabled, or when exiting
from an area of bad GPS satellite coverage.

—— Short range positioning
Systems based on sensors, such as near field communica-
tion (NFC), Bluetooth and other radio-based tag systems,
use active or passive sensors in proximity to points of
interest, such as exhibits in a museum or stores in a shop-
ping mall. Low-tech solutions include bar codes and other
visual tags (such as QR codes) that can be photographed
and analyzed on a server or the phone; such tags may
simply contain an id that needs to be looked up to obtain
a position, while others may provide the latitude and
longitude.

—— Manual input
The user selects a location on a map, inputs an area code
or address. This option is used typically for applications on
feature phones, which lack other means of determining a
location.

123

How To Obtain Mapping Services

A map service takes a position as parameters and returns a map,
often with metadata. The map itself can be in the form of one
or several image bitmaps, represented as vector data or a com-
bination of both. Vector data has the advantage of consuming
much less bandwidth than bitmaps do. Vector data also allows
for arbitrary zooming, but requires more processing on the client
side. Bitmaps are often provided in discrete zoom levels, each
with a fixed magnification.

124Implementing Location-Based Services

Free maps – both served as bitmaps and vectors – include
Open Street Map1 or CloudMate2, while Ovi Maps3 are at the time
of writing free for Nokia phones only. Commercially available
maps include NAVTEQ4, Garmin and Microsoft5 to name a few.
Some solutions, such as Google Maps6, are free when your ap-
plication is made available at no cost, but require you to obtain
a map key. Some map services, such as Google’s static maps, are
limited to serving a number of tiles, such as 1000 tiles from a
single map key. Several of the sources share similar map formats
and are thus interchangeable.

Implementing Location Support On
Different Platforms
Location API for Java ME offers accuracy, response time, altitude
derived from the on-board GPS, and speed based on performing
consecutive readings.

With iOS and the iPhone SDK, there is integrated support for
location but with restrictions on how the location data can be
generated by the supporting functions. Currently, there is also an
on-going debate on how location data is recorded and stored on
the iOS devices and how Apple are planning to use this data for
their own purposes. Android devices are more liberal with map
sources, even though they default to Google Maps. On Symbian
devices, Ovi Maps can be used for Nokia phones free of charge
and for commercial use.

1)  wiki.openstreetmap.org/wiki/Software
2)  www.developers.cloudmade.com/projects
3)  www.forum.nokia.com/Develop/Web/Maps
4)  www.nn4d.com
5)  www.microsoft.com/maps/developers
6)  www.code.google.com/apis/maps

http://wiki.openstreetmap.org/wiki/Software
http://www.developers.cloudmade.com/projects
http://www.forum.nokia.com/Develop/Web/Maps
http://www.nn4d.com
http://www.microsoft.com/maps/developers
http://www.code.google.com/apis/maps
http://wiki.openstreetmap.org/wiki/Software
http://www.developers.cloudmade.com/projects
http://www.forum.nokia.com/Develop/Web/Maps
http://www.nn4d.com
http://www.microsoft.com/maps/developers
http://www.code.google.com/apis/maps

125

Maps can be overlaid with geodata, in a number of formats.
One of the simplest is called geoRSS, and could look like this for
a single point-of-interest:

<entry>
	 <title>Byvikens fortress</title>
	 <description>Swedish 1900 century army
install, w. deep mote
	 </description>
	 <georss:point>18.425 59.401</georss:point>
</entry>

There are many more formats for geodata, but the basic idea is
similar, and more and more sources are harmonizing their data
streams for interoperability. Other important formats include the
Geography Markup Language (GML), an XML encoding specifically
for the transport and storage of geographic information, and KML
that is an elaborate geoformat used in Google Earth.

126Implementing Location-Based Services

Tools For LBS Apps

Several players in the industry provide developer-friendly tools
and APIs as a value added service. Using these dramatically
speeds up the development and deployment of location-aware
services. Each tool normally focuses on one or a few mobile plat-
forms.

Location aware does not always mean maps, for example Ad-
mob and NAVTEQ both offer developers a stand-alone location
aware advertisement program, where applications can exchange
location data for smarter display of location relevant ads.

—— Garmin Mobile XT SDK: developer.garmin.com
—— iPhone SDK: developer.apple.com
—— Offline tools: code.google.com/p/big-planet-tracks/
—— Android: developer.android.com/guide/topics/location/
—— NAVTEQ: www.nn4d.com
—— TeleAtlas: developerlink.teleatlas.com
—— Nutiteq: www.nutiteq.com
—— Qt Maps/Navigation API: qt.nokia.com/products/qt-

addons/mobility
—— Bing Maps: www.microsoft.com/maps/developers/
—— RIM: us.blackberry.com/developers/ (search for “map api”)
—— Spime: www.spime.com

http://developer.garmin.com
http://developer.apple.com
http://code.google.com/p/big-planet-tracks/
http://developer.android.com/guide/topics/location/
http://www.nn4d.com
http://developerlink.teleatlas.com
http://www.nutiteq.com
http://qt.nokia.com/products/qt-addons/mobility
http://qt.nokia.com/products/qt-addons/mobility
http://www.microsoft.com/maps/developers
http://us.blackberry.com/developers/
http://www.spime.com

127
Implementing Near Field Communication (NFC)

Implementing Near Field
Communication (NFC)
Near Field Communication (NFC) is one of the latest technolo-
gies to come to mobile devices. It is a very-short range radio
technology, typically operating in a 0 to 4cm range, that relies
on a tag – that stores data – and a reader to read and write a
tag’s data. NFC enabled mobile phones are typically able to act
as either a tag or a reader.

The appeal of NFC as a technology for mobile applications is
the simplicity of operation, the user needs only to place their
phone in close proximity to a NFC tag or reader – there is no
setup or configuration to be done. The challenge with NFC will
be educating users about the technology, as its use will be a
new experience to many and does not have a direct analogy in
current behavior. For example, how many users will see the ac-
tion of touching a poster as an obvious way of opening a related
website? However, there is an entire industry poised to educate
users on the technology, so there are many opportunities for
early adopters.
The NFC standards1 provide for three modes of operation that can
be used in mobile devices:

—— Read/Write – where a phone can read or write data to a tag
—— Peer to Peer – where two NFC enabled phones can exchange

data, from information for creation of a Bluetooth connec-
tion through to business cards and digital photos

—— Card Emulation – where a phone can act as a tag or con-
tactless card

1)  www.nfc-forum.org/specs/spec_list/

http://www.nfc-forum.org/specs/spec_list/
http://www.nfc-forum.org/specs/spec_list/

128Implementing Near Field Communication (NFC)

Types of use cases envisaged for NFC in mobile phones include:

—— Service Initiation – here a phone can read a tag embed-
ded or attached to everyday objects, the tag would provide
a URL, phone number or application specific string that
can be used to open a website, dial a number or initiate
application specific functionality. A practical application
might involve embedding a tag in a product’s packaging to
provide a way of opening the product’s website.

—— Sharing – here two NFC enabled phones could share a piece
of information, a business card for example.

—— Connecting devices – an NFC enabled phone could read
connection settings from another phone or peripheral. For
example, a Bluetooth headset could include a tag that pro-
vides the information for pairing the headset with a phone.

—— Ticketing – the NFC phone could be delivered a ticket
which is then “redeemed” by being read from the phone.

—— Rechargeable or cashless payment cards – here the phone
can act as a replacement for a credit card or bank card,
travel cards such as Oyster1 or payments cards such as
Snapper2.

1)  https://oyster.tfl.gov.uk/oyster
2)  www.snapper.co.nz

https://oyster.tfl.gov.uk/oyster
http://www.snapper.co.nz
https://oyster.tfl.gov.uk/oyster
http://www.snapper.co.nz

129Implementing Near Field Communication (NFC)

Support For NFC

Support for NFC in mobile devices is still relatively new. How-
ever, the technology is arriving in the mainstream with Apple,
BlackBerry, Google, Microsoft and Nokia1 all having announced
NFC support in their platforms and manufacturers such as Google,
BlackBerry, Nokia and Samsung having announced or already
started shipping smartphones with NFC capabilities2.

Creating NFC Apps

One challenge in creating NFC applications is that there is no
single standardized API. While Contactless Communication API
(JSR-257) provides a standard, it is not universally available
(Apple and Google for example certainly will not provide sup-
port for it). Where it is offered, it can be supplemented with
additional manufacturer specific APIs, as Nokia does for example.

Nokia provides support for NFC in the Qt Mobility APIs3, mak-
ing it likely that a single set of APIs can be used for Symbian
and MeeGo devices.

Otherwise it will essentially be one set of APIs per platform,
such as the Google APIs for Android4.

However, conceptually NFC is not that complex so the num-
ber of APIs to master across multiple platforms should not be a
hindrance.

1)  www.forum.nokia.com/nfc
2)  www.nearfieldcommunicationsworld.com/nfc-phones-list/
3)  labs.qt.nokia.com/2011/04/12/qt-mobility-1-2-beta-package-released/
4)  developer.android.com/reference/android/nfc/package-summary.html

http://www.forum.nokia.com/nfc
http://www.nearfieldcommunicationsworld.com/nfc-phones-list/
http://labs.qt.nokia.com/2011/04/12/qt-mobility-1-2-beta-package-released/
http://developer.android.com/reference/android/nfc/package-summary.html
http://www.forum.nokia.com/nfc
http://www.nearfieldcommunicationsworld.com/nfc-phones-list/
http://labs.qt.nokia.com/2011/04/12/qt-mobility-1-2-beta-package-released/
http://developer.android.com/reference/android/nfc/package-summary.html

130Testing Your Application

Testing Your Application
After all your hard work creating your application how about
testing it before unleashing it on the world? Testing mobile ap-
plications used to be almost entirely manual, thankfully auto-
mated testing is now viable for many of the mobile platforms.
Cross-platform test automation tools are available for popular
platforms; some are free-of-charge and open-source, others are
commercial.

This chapter covers the general topics; testing for specific
platforms is covered in the relevant chapter.

Testability: The Biggest Single Win

If you want to find ways to test your application effectively and
efficiently then start designing and implementing ways to test
it; this applies especially for automated testing. For example,
using techniques such as Dependency Injection in your code
enables you to replace real servers (slow and flaky) with mock
servers (controllable and fast). Use unique, clear identifiers for
key UI elements. If you keep identifiers unchanged your tests
require less maintenance.

Separate your code into testable modules. Several years ago,
when mobile devices and software tools were very limited, de-
velopers chose to ‘optimize’ their mobile code into monolithic
blobs of code, however the current devices and mobile platforms
mean this form of ‘optimization’ is unnecessary and possibly
even counter-productive.

Provide ways to query the state of the application, possibly
through a custom debug interface. You, or your testers, might
otherwise spend lots of time trying to fathom out what the prob-
lems are when the application doesn’t work as hoped.

131Testing Your Application

Headless Client

The user-interface (UI) of a modern mobile application can con-
stitute over 50% of the entire codebase. If you limit your testing
to testing using the GUI designed for users you may needlessly
complicate your testing and debugging efforts. One approach is
to create a very basic UI that’s a thin wrapper around the rest of
the core code (typically this includes the networking and busi-
ness layers). This ‘headless’ client may help you to quickly isolate
and identify bugs e.g. related to the device, carrier, and other
environmental issues.

Another benefit of creating a headless client is that it may
be simpler to automate some of the testing e.g. to exercise all
the key business functions and/or to automate the capture and
reporting of test results.

You can also consider creating skeletal programs that ‘probe’
for essential features and capabilities across a range of phone
models e.g. for a J2ME application to test the File Handling
where the user may be prompted (many times) for permission to
allow file IO operations. Given the fragmentation and quirks of
mature platforms such probes can quickly repay the investment
you make to create and run them.

Separate The Generic From Specific

Many mobile applications include algorithms, et cetera, unrelat-
ed to mobile technology. This generic code should be separated
from the platform-specific code. For example, on Android or J2ME
the business logic can generally be coded as standard Java, then
you can write, and run, automated unit tests in your standard
IDE using JUnit.

Consider platform-specific test automation once the generic
code has good automated tests.

132Testing Your Application

Test-Driven Development

Test-Driven Development (TDD) has become more popular and
widespread in the general development communities, particu-
larly when using Agile Development practices.

Although Mobile Test Automation tools are not capable of al-
lowing TDD for all aspects of a mobile application, we have seen
it used successfully on a variety of mobile projects, particularly
when used for the generic aspects of the client code.

Physical Devices

Although emulators and simulators can provide rough-and-ready
testing of your applications, and even allow tests to be fully-
automated in some cases, ultimately your software needs to run
on real phones, as used by your intended users. The performance
characteristics of various phone models vary tremendously from
each other and from the virtual device on your computer.

Here are some examples of areas to test on physical devices:

—— Navigating the UI: for instance, can users use your
application with one hand? Effects of different lighting
conditions: the experience of the user interface can differ
in real sunlight when you’re out and about. It’s a mobile
device – most users will be on the move.

—— Location: if you use location information within your
app: move – both quickly and slowly. Go to locations with
patchy network and GPS coverage to see how your app
behaves.

—— Multimedia: support for audio, video playback and record-
ing facilities can differ dramatically between devices and
their respective emulators.

—— Internet connectivity: establishing an internet connection

133

can take an incredible amount of time. Connection delay
and bandwidth depend on the network, its current strength
and the number of simultaneous connections.

For platforms such as Android and Java ME where there are so
many manufacturers and models, it’s particularly useful to test
on a range of these devices. A good start is to pick a mix of
popular, new, and models that include specific characteristics or
features such as: touch screen, physical keyboard, screen resolu-
tion, networking chipset, etc. Try your software on at least one
low-end or old device as we want users with these devices to be
happy too.

Remote Control

If you have physical devices to hand, use them to test your ap-
plication. However when you don’t, or if you need to test your
application on other networks, especially abroad and for other
locales, then one of the ‘remote device services’ might help you.
For instance they can help extend the breadth and depth of your
testing at little or no cost.

These days many of the manufacturers provide this service
free-of-charge for their new and popular phone models to regis-
tered software developers. You can also use commercial services
of companies such as PerfectoMobile or DeviceAnywhere for sim-
ilar testing across a range of devices and platforms.

You can even create a private repository of remote devices,
e.g. by hosting them in remote offices and locations. Beware of
privacy and confidentiality when using shared devices.

134Testing Your Application

GUI Test Automation

GUI test automation is one of the elixirs of the testing industry,
many have tried but few have succeeded in creating useful and
viable GUI test automation for mobile applications.

Commercial companies tried to provide automated testing
“solutions”; however several have been mothballed. In compari-
son, there are several open source cross platform tools: Mobile
End-to-end Testing (MOET)1 supports Android, BlackBerry and
iPhone devices with a consistent set of commands which can
be used interactively or automated. Google have released the
Native Webdriver open source project2 which can test native ap-
plications for Android, iOS and Windows Phone. Also, Tampere
University in Finland have had some success creating automated
tests for various mobile platforms, including Android and Nokia’s
S60 phones3.

Beware Of Specifics

Platforms, networks, devices, and even firmware, are all specific.
Any could cause problems for your applications. Test these manu-
ally first, provided you have the time and budget to get fast and
early feedback.

Crowd-Sourcing

There are billions of users with mobile phones across the world.
Some of them are professional software testers, and of these,
some work for professional out-sourced testing service compa-
nies such as uTest and mob4hire. They can test your application

1)  github.com/eing/moet
2)  code.google.com/p/nativedriver/
3)  tema.cs.tut.fi

http://github.com/eing/moet
http://github.com/eing/moet
http://code.google.com/p/nativedriver/
http://github.com/eing/moet
http://code.google.com/p/nativedriver/
http://tema.cs.tut.fi

135Testing Your Application

quickly and relatively inexpensively, compared to maintaining a
larger dedicated software testing team.

These services can augment your other testing, we don’t rec-
ommend using them as your only formal testing. To get good
results you will need to devote some of your time and effort to
defining the tests you want them to run, and to working with the
company to review the results, etc.

Web-Based Content And Applications

We can benefit from the extensive history of test automation
tools for desktop web-based content and applications to auto-
mate aspects of our Mobile equivalents.

Tools such as WebDriver wrap web browsers, including, head-
less WebKit, Android, iPhone, Mobile Opera, and BlackBerry as
well as the main desktop web browsers.
On the desktop the ability to wrap Firefox means it can crudely
emulate most mobile browsers by programmatically changing
browser parameters such as the user-agent string. There’s an ar-
ticle on the Google Testing blog1 that includes an example of
how to emulate the iPhone browser2.

For interactive testing we can use the various emulators sup-
plied for various mobile platforms; and Opera have released Op-
era Mobile Emulator, which allows us to quickly test how sites
would look and behave on the various platforms supported by
Opera Mobile3.

1)  googletesting.blogspot.com
2)  googletesting.blogspot.com/2009/05/survival-techniques-for-web-app.html
3)  www.opera.com/developer/tools/

http://googletesting.blogspot.com
http://googletesting.blogspot.com/2009/05/survival-techniques-for-web-app.html
http://googletesting.blogspot.com/2009/05/survival-techniques-for-web-app.html
http://www.opera.com/developer/tools/
http://googletesting.blogspot.com
http://googletesting.blogspot.com/2009/05/survival-techniques-for-web-app.html
http://www.opera.com/developer/tools/

136Monetization

Monetization
Finally you have finished your app or mobile website and pol-
ished it as a result of beta testing feedback. Assuming you are
not developing as a hobby, for branding exposure or for a charity,
now it is time to make some money. But how do you do that,
what are your options?

Developers claim a lack of monetization options is one of the
biggest hurdles they face in entering the mobile app market.
The 2011 Developer Economics report suggests the issue is one
of innovation: the high pace of technological innovation is not
matched by monetization innovation1. In general, you have the
following monetization options:

1.	 Pay per download: Sell your app per download.
2.	 In-app payment: Add payment options into your app.
3.	 Mobile ads: Earn money from advertising.
4.	 Indirect sales: Affiliates, data reporting and physical

goods among others.
5.	 Revenue sharing: Earn revenue from operator services

originating in your app.

When you come to planning your own development, determining
the monetization business model should be one of the key ele-
ments of your early design as it might affect the functional and
technical behavior of the app.

1)  Developer Economics 2011, July 2011: www.visionmobile.com/developers

http://www.visionmobile.com/developers
http://www.visionmobile.com/developers

137Monetization

Pay Per Download

Using pay per download (PPD) your app is sold once to each user
as they download and install it on their phone. Payment can be
handled by an app store, mobile operator, or you can setup a
mechanism yourself.

When your app is distributed in an app store — in most cases
it will be one offered by the target platform’s owner, such as Ap-
ple, Google, RIM, Microsoft or Nokia — the store will handle the
payment mechanism for you. In return the store takes a revenue
share (typically 30%) on all sales. In most cases stores offer a
matrix of fixed price points by country and currency ($0.99, EUR
0.79, $3 etc) to choose from when pricing your app.

Operator billing enables your customers to pay for your app
by sending a Premium SMS. This option is still very popular for
mobile web applications, Java games, wallpaper and ringtones.
Other operator APIs enable you to include features such as MMS,
Call Back and Multimedia Conference in your app and earn rev-
enue from their use. However, operator billing is very difficult
to handle particularly if you want to sell in several countries, as
you need to sign contracts with each operator in each country.
The alternative is to use a mediator that can do this for you.
Each operator will take a revenue share typically 45% to 65%
of the sale price, but some operators can take up to 95% of the
sale price (and, if you use them, a mediator will take its share
too). Security (how you prevent the copying of your app) and
manageability are common issues with PDD but for some devices
this might be the only option.

Among US operators, T-Mobile USA and AT&T both allow An-
droid1 and Nokia Ovi app users to purchase apps and bill them
directly to their mobile bill. Android made a major gain in its

1)  Android developer blog on operator billing in the US: android-developers.
blogspot.com/2010/12/more-payment-options-in-android-market_22.html

http://android-developers.blogspot.com/2010/12/more-payment-options-in-android-market_22.html
http://android-developers.blogspot.com/2010/12/more-payment-options-in-android-market_22.html

138Monetization

European markets recently when Vodafone announced1 it is roll-
ing out direct operator billing for Android Market customers in
European markets. This enable end users to purchase apps and
games without the need for a credit card. In addition to custom-
ers on monthly billing arrangements, pre-pay customers can use
their credit to purchase apps. Like BlueVia’s in-app payment API,
this is particularly significant for developers targeting emerging
markets where credit cards ownership is low.

The developer API model is strategically important for devel-
opers, as it enables them to build monetization right into the
heart of their applications. For example TextDeck2 is a Mac OS
app, available from the Mac OS App Store. The app allows Mac
users to send SMS messages direct from their desktop using the
BlueVia SMS API. Every time a user sends an SMS message us-
ing TextDeck, Telefónica bills the end user for the cost of the
message, and then revenue shares back with the developer of
TextDeck.

It is worth noting that most of the vendor app stores are
pursuing operator billing agreements, Nokia Store has the best
coverage (121 operators in 42 markets at the time of writing)
while Google and RIM are actively recruiting operators too. The
principal reason they are doing this is that typically, when users
have a choice of credit card and operator billing methods users
show a significant preference for operator billing. Nokia, at least,
also insulates developers from the variation in operator share,
offering developers a fixed 60% of billing.

The last option is to create your own website and imple-
ment a payment mechanism through that, such as PayPal, PayPal
mobile, credit card (not supported on all devices), dial-in to
premium landlines (www.daopay.com), or similar.

1)  Vodafone blog post: developer.vodafone.com/blog/2011/08/18/vodafone-
developer-celebrates-operator-billing-android/

2)  glimmerdesign.com/textdeckpro

http://glimmerdesign.com/textdeckpro
http://developer.vodafone.com/blog/2011/08/18/vodafone-developer-celebrates-operator-billing-android/
http://developer.vodafone.com/blog/2011/08/18/vodafone-developer-celebrates-operator-billing-android/
http://glimmerdesign.com/textdeckpro

139

Using PPD can typically be implemented with no special de-
sign or coding requirements for your app.

Overall, we would recommend starting with an app store as it
involves minimal setup costs and administrative overhead.

In-App Payment

In-app payment is a way to charge for specific actions or assets
within your application. A very basic use might be to enable the
one-off purchase of your application after a trial period — which
may garner more sales than PPD if you feel the features of your
application justify a higher price point. Alternatively, you can
offer the basic features of your application for free, but charge
for premium content (videos, virtual credits, premium informa-
tion, additional features, removing ads and alike). Most app
stores offer an in-app purchase option or you could implement
your own payment mechanism. If you want to look at anything
more than a one-off “full license” payment you have to think
carefully about how, when and what your users will be willing to
pay for and design your app accordingly.

This type of payment is particularly popular in games (for
features such as buying extra power, extra levels, virtual credits

140
Monetization

and alike) and can help achieve a larger install base as you can
offer the basic application for free. Note, however, that some
app stores do not allow third party payment options to be imple-
mented inside your app. This is done to prevent you from using
the app store for free distribution while avoiding payment of the
store’s revenue share.

It should also be obvious that you will need to design and
develop your application to incorporate the in-app payment
method. If your application is implemented across various plat-
forms, you may have a different mechanism to build into each
platform’s version.

As with PPD we would recommend that you start with the in-
app purchasing mechanism offered by an app store, particularly
as some of these can leverage operator billing services too.

141Monetization

Mobile Advertising

As is common on websites, you could decide to earn money by
displaying advertisements. There are a number of players who
offer tools to display mobile ads and it is the easiest way to
make money on mobile browser applications. Admob.com,
Buzzcity.com and inmobi.com are a few of the parties that of-
fer mobile advertising. However because of the wide range of
devices, countries and capabilities there are currently over 50
large mobile ad networks. Each network offers slightly differ-
ent approaches and finding the one that monetizes your app’s
audience best may not be straightforward. There is no golden
rule; you may have to experiment with a few to find the one
that works best. However, for a quick start you might con-
sider using a mobile ad aggregator, such as www.Smaato.net,
www.Madgic.com or www.inner-active.com as they tend to bring
you better earnings by combining and optimizing ads from 30+
mobile ad networks. Most ad networks take a 30% to 50% share
of advertising revenue and aggregators another 20% to 30% on
top of that.

If your app is doing really well and has a large volume in a
specific country you might consider selling ads directly to adver-
tising agencies or brands or hire a media agency to do it for you.

Again many of the device vendors offer mobile advertising
services as part of their app store offering and these mechanisms
are also worth exploring. In some cases you may have to use the
vendor’s offering to be able to include your application in their
store.

Similarly, in application advertising will require you to design
and code your application with it in mind. Also, the placing
of adverts needs to be considered with care. If adverts become
too intrusive users may abandon your app, while making the
advertising too subtle will mean you gain little or no revenue.

http://admob.com
http://buzzcity.com
http://inmobi.com
http://www.smaato.net
http://www.madgic.com
http://www.inner-active.com

142Monetization

It may require some experimentation to find the right level and
positions in which to place adverts.

Revenue Sharing

Revenue sharing with mobile operator for services built into your
app is an emerging opportunity for developers, and one that is
worth following. Currently only offered by BlueVia for services
delivered over its O2 and Movistar networks, the revenue sharing
model lets developers build services such as SMS, MMS, loca-
tion, advertising, customer profile and operator billing into their
apps. With well-documented APIs that are free to use, revenue
generated is split transparently between operator and app owner.
While BlueVia is currently the only developer community dedi-
cated to this model, if its early adoption continues to grow, it
may become a recognized business model for mobile operators.

Indirect Sales

The final option is to use your application to drive sales else-
where. Here you usually offer your app or website for free and
then use mechanism such as:

1.	 Affiliate programs: Promote third party or your own paid
apps within a free app. See also www.mobpartner.com.
This can be considered a variation on mobile advertising

2.	 Data reporting: Track behavior and sell data to inter-
ested parties. Mobile radio applications often use this
business model. Note that for privacy reasons you should
not reveal any personal information, ensure all data is
provided in anonymous, consolidated reports

3.	 Virtual vs. real world: Use your app as a marketing tool
to sell goods in the real world. Typical examples are car

http://www.mobpartner.com

143

apps, magazine apps and large brands such as Mac Don-
ald’s and Starbucks. Also coupon applications often use
this business model.

There is nothing to stop you combining this option with any
of the other revenue generation options if you wish, but take
care that you do not give the impression of overcharging.

Marketing And Promotion

The flip side of revenue generation is marketing and promotion.
The need might be obvious if you sell your application through
your own website, but it is equally important when using a
vendors app store — even the smallest stores have application
counts in the 10s of thousands, so there will be a lot of competi-
tion competing for users’ attention.

Some stores enable you to purchase premium positioning ei-
ther through banners or list placings. But in most cases you will
also need to think about other promotion mechanisms, such as
social networks, reviews on fan websites and such like. Nokia
provides a particularly useful page of information on marketing
your apps1.

1)  www.forum.nokia.com/Distribute/Public_relations_guidelines.xhtml

http://www.forum.nokia.com/Distribute/Public_relations_guidelines.xhtml
http://www.forum.nokia.com/Distribute/Public_relations_guidelines.xhtml
http://www.forum.nokia.com/Distribute/Public_relations_guidelines.xhtml

144Monetization

Strategy

So with all these options what should your strategy be? It de-
pends on your goals, let us look at a few:

—— Do you want a large user base? Consider distributing
your application for free at first then start adding mobile
advertising when you have more than 100 thousand users
worldwide or split the app into free and paid versions.

—— Are you convinced users will be willing to buy your app im-
mediately? Then sell it as PPD for $0.99, but beware while
you might cash several thousand dollars per day it could
easily be no more than a few hundred dollars per week if
your assessment of your app is misplaced or the competi-
tion fierce.

—— Are you offering premium features at a premium price?
Consider a time or feature limited trial application then use
in-app purchasing to enable the purchase of a full version
either permanently or for a period of time.

—— Are you developing a game? Consider offering the app for
free with in-app advertising or a basic version then use in-
app purchasing to allow user to unlock new features, more
levels, different vehicles or any extendable game asset.

—— Is your mobile app an extension to your existing PC web
shop or physical store? Offer the app for free and earn
revenue from your products and services in the real world.

145

What Can You Earn?

One of the most common developer questions is about how much
money they can make with a mobile app. It is clear that some
apps have made their developer’s millionaires, while others will
not be given up their day job anytime soon. Ultimately, what you
can earn is about fulfilling a need and effective marketing. Expe-
rience suggests that apps which save the user money or time are
most attractive (hotel discounts, coupons, free music and alike)
followed by games (just look at the success of Angry Birds) and
business tools (office document viewers, sync tools, backup tools
and alike) but often the (revenue) success of a single app cannot
be predicted. Success usually comes with a degree of experimen-
tation and a lot of perseverance.

146

Appstores
Appstores are the curse and the blessing of mobile developers.
On the bright side they give developers extended reach and po-
tential sales exposure that would otherwise be very difficult to
achieve. On the dark side the more popular ones now contain
hundreds of thousands of apps, decreasing the potential to stand
out from the crowd and be successful, leading many to compare
the chances of appstore success to the odds of winning the lot-
tery. So, here are a few tips and tricks to help your raise your
odds.

Top 5 Appstores

Appstore Platform Daily Downloads Alternatives

Cydia (Jailbro-
ken iPhones)

>31 millioniOS
Apple iTunes
App Store

AndroidAndroid Market

Java, Symbian,
Android, widget

GetJar

Symbian, Qt,
Widget, Java

Nokia Store

BlackBerry
Blackberry
App World

>9 million

>3 million

>3 million

>22 million

GetJar

Crackberry

Appia, Hand-
ster, Nexva

GetJar, Samsung,
Motorola,
Amazon and 50+
others

147Appstores

The volume of downloads makes some of these stores look
promising. However, the stores with the highest volume attract
the largest number of applications fighting for attention, so you
might want to pick your niche carefully or spend more time mar-
keting your app.

For example, a research4market’s study showed that in Q2
2011, Apple’s AppStore and Android’s App Market were behind
Nokia’s Ovi Store, Windows Marketplace and BlackBerry’s App
World when it comes to the number of downloads any particular
app might achieve1.

Basic Strategies To Get High

The most important thing to understand about appstores is that
they are distribution channels and not marketing machines. This
means that while appstores are a great way to get your app onto
users’ devices, they’re not going to market your app for you. You
can’t rely on the app stores to pump up your downloads, unless
you happen to get into a top-ten list. But don’t play the lottery
with your apps, have a strategy and plan to market your app.

We have asked many developers about the tactics that brought
them the most attention and higher rankings in appstores.
Many answers came back and one common theme emerged:
there’s no silver bullet – you have to fire on all fronts!

However it will help if you try to keep the following in mind:

—— You need a kick ass app: it should be entertaining, easy to
use and not buggy. Make sure you put it in the hands of
users before you put it in a store.

1)  www.research2guidance.com/apps-on-nokia’s-ovi-store-had-2.5-times-higher-
download-numbers-in-q2-2011-compared-to-apps-on-apple-app-store/

http://www.research2guidance.com/apps-on-nokia�s-ovi-store-had-2.5-times-higher-download-numbers-in-q2-2011-compared-to-apps-on-apple-app-store/
http://www.research2guidance.com/apps-on-nokia�s-ovi-store-had-2.5-times-higher-download-numbers-in-q2-2011-compared-to-apps-on-apple-app-store/
http://www.research2guidance.com/apps-on-nokia�s-ovi-store-had-2.5-times-higher-download-numbers-in-q2-2011-compared-to-apps-on-apple-app-store/

148Appstores

—— Polish your icons and images in the appstore, work on
your app description, and carefully choose your keywords
and category. If unsure of or unsatisfied with the results,
experiment.

—— Getting reviewed by bloggers and magazines is one of the
best ways to get attention. In return some will be asking
for money, some for exclusivity, and some for early access.

—— Get (positive) reviews as quickly as possible. Call your
friends and ask your users regularly for a review.

—— If you are going to do any advertising, use a burst of ad-
vertising over a couple of days. This is much more effective
than spending the same amount of money over 2 weeks, as
it will help create a big spike, rather than a slow, gradual
push.

—— Do not rely on the traffic generated by people browsing the
appstore, make sure you drive traffic to your app through
your website, SEO and social media.

Multi-Store vs Single Store

With 120+ appstores available to developers, there are clear-
ly many application distribution options. But the 20 minutes
needed on average to submit an app to an appstore means you
could be spending a lot of time posting apps in obscure stores
that achieve few downloads. This is why a majority of developers
stick to only 1 or 2 stores, missing out on a potentially huge op-
portunity but getting a lot more time for the important things,
like coding! So should you go multi-store or not?

149Appstores

Multi-store

The main platform appstores can
have serious limitations, such as
payment mechanisms, penetra-
tion in certain countries, content
guidelines.

Smaller stores give you more vis-
ibility options (featured app)

Operators’ stores have notoriously
strict content guidelines and can
be difficult to get in, particularly
for some types of apps.

Your own website can bring you
more traffic than appstores (es-
pecially if you have a well-known
brand)

For non-niche content, operator
or platform stores may offer
enough exposure to not justify
the extra effort of a multi-store
strategy.

Many smaller appstores scrape
data from large stores, so your
app may already be there.

Some operators’ stores have
easier billing processes – such as
direct billing to a user’s mobile
account -- leading to higher
conversion rates.

iPhone developers only need 1
appstore

Smaller stores are more social
media friendly than large ones.

Smaller stores may offer a wider
range of payment or business
model options, or be available in
many countries.

Some developers report that 50%
of their Android revenues come
from outside of Android Market

90%+ of smartphone users only
use a single appstore, which
tends to be the platform appstore
shipping with the phone

Single store

Now What – Which
Environment Should I Use?
Unfortunately there is no definitive answer, we wish there was.
So, the short answer is: It depends.

However, you can still find the best solution to your need, but
it is a longer answer: think about your target region, the market
share achieved by each technology, define your business model,
your target users, their needs, their devices and data plans. Then
consider your vision and the requirements for your application as
well as your existing technology skills.

The Business Perspective: Market Reach

While smartphone platforms take the lion’s share in terms of the
sheer number of apps, downloads and the other goodies that
make up what we call the platform’s ecosystem, we are still in a
feature-phone dominated world. Smartphone penetration is now
just reaching 25%, with Asia Pacific, the US and some European
countries being the largest markets for smartphones.

Many developers choose to focus on feature phones, banking
on the large number of devices out there. Fragmentation issues
aside, the most widely used platform for feature phones is Java
ME – a platform compatible with nearly 80% of mobile phones
currently in the market.

In the smartphone platform race, the trend is strongly in fa-
vor of Android and iOS, with traditional players like RIM and its
BlackBerry phones losing ground.

As of the second quarter of 2011, the top smartphone plat-
forms in terms of shipments were (note that this table excludes
feature phone platforms, which make up the majority of sales):

151

Keep in mind: The regional differences in market shares are
huge. To find out about market share in your target region,
check out online resources such as comscore1, StatCounter2,
VisionMobile3 or Gartner4.

1)  www.comscoredatamine.com/category/mobile
2)  gs.statcounter.com
3)  www.visionmobile.com
4)  www.gartner.com

Platform Market Share Shipments

52 million48%Android (Google)

iOS (Apple)

BlackBerry (RIM)

Windows Phone (Micro-
soft)

Symbian (Nokia)

bada (Samsung)

18%

12%

1%

1%

19%

17 million

2 million

12 million

1,5 million

20 million

http://www.comscoredatamine.com/category/mobile
http://gs.statcounter.com
http://www.visionmobile.com
http://www.gartner.com
http://www.comscoredatamine.com/category/mobile
http://gs.statcounter.com
http://www.visionmobile.com
http://www.gartner.com

152Now What – Which Environment Should I Use?

However, a big market share of a certain technology does not
automatically mean that you can make a lot of money by offering
apps for that platform. There is a large discrepancy between the
number of devices shipped and the number of available apps on
some platforms.

At one end of the spectrum, Java ME has been shipped in
over 3 billion devices since its launch, but the number of avail-
able apps is estimated at around 22,000. Similarly, Nokia’s fea-
ture phone OS, Series 40, has been shipped in over 1.6 billion
devices, but the number of apps available for the platform is
around 27,000 (which includes Adobe Flash applications) . Fea-
ture phones are often used principally as telephones and SMS
devices, it is less common for people to install apps on their
feature phone or even pay for mobile software.

At the other end of the spectrum, Android has around 300,000
available apps, while it has been shipped in approximately 160
million devices. Similarly, iOS has over 500,000 apps available,
but Apple has shipped barely 130 million iPhones.

Always remember that you are not necessarily restricted to
a single application environment. It often makes sense to com-
bine different environments, for example by providing a mobile
website for your casual users, a native smartphone application
for power users and a Java ME app for regions where smart-
phones take a smaller market share. If you want to concentrate
on smartphone platforms only, you may need to adjust your ap-
plication concept: On iOS you might make money by direct app
sales or in-app purchase (if you somehow manage to gain visibil-
ity among the vast number of apps). For Android this approach
may not work, Android users are less likely to pay for mobile
software, therefore in-app advertising could be the better choice
for generating revenue. Please see the “Monetization” chapter to
learn more about your options.

153Now What – Which Environment Should I Use?

The Developer’s Perspective: Technology

Aside from the marketing aspect of each platform, such as the
relative strength of the ecosystem, there are also technical fac-
tors to consider. One of the most important is the ease with
which a developer can master a platform. Many developers will
not want to invest time in a platform that takes many long
months to properly master. According to the Developer Econom-
ics research, Symbian and Java ME are the hardest platforms to
master, while Android and BlackBerry are the easiest. The table
below presents the average time in months required to master
each platform, as identified by the respondents of this research:

Platform Approximate time to master

5.7 monthsAndroid

BlackBerry

mobile web

Java ME

iOS

Symbian

6.8 months

9.8 months

8.7 months

10.6 months

6.1 months

154

A recent VisionMobile research on mobile development1 intro-
duced a new metric for a platform’s success. The Developer Mind-
share is the percent of developers who have recently worked on
a given platform, irrespective of the main platform they spend
most of their time on.
Here are the top-5 platforms in terms of Developer Mindshare:

Android and iOS are the clear winners in terms of mindshare,
mirroring the traction these two platforms have. However, the
presence of mobile web demonstrates the increasing importance
of web apps in the mobile industry, as well as an influx of non-
mobile developers.

1)  www.DeveloperEconomics.com

Platform % of developers developing for it

67%Android (Google)

iOS (Apple)

Java ME

mobile web

BlackBerry

56%

45%

46%

59%

http://www.DeveloperEconomics.com
http://www.DeveloperEconomics.com

155Now What – Which Environment Should I Use?

The research also investigated which are the top platforms
being abandoned developers:

These two metrics demonstrate how developers are abandon-
ing older, more cumbersome platforms (Java and BlackBerry) and
flocking towards newer platforms (Android, iOS, Qt and Windows
Phone).

Other important aspects of each platform, from a developer’s
point of view, are the size of the developer community, the qual-
ity of developer tools, the range of APIs, possible dependencies
on internet connectivity and performance or fragmentation is-
sues:

Platform % of participants abandoning it

39%Symbian

Java ME

BREW

Palm OS

webOS

28%

19%

28%

35%

156Appstores

Fe
at

ur
e S

et

On
lin

e /
 O

ffl
ine

De
ve

lop
er

Av
ail

ab
ili

ty

De
ve

lop
er

To
ols

Pe
rfo

rm
an

ce

Fra
gm

en
ta

tio
n

Android

bada

BREW

Flash

iOS

Java ME

Native BlackBerry

Native Symbian

SMS

Web

Widgets

Windows Mobile

Windows Phone

Qt (Symbian/MeeGo)

Green indicates good coverage or support, yellow for limited and
red for bad coverage of the respective topic

158

Epilogue

Thanks for reading this ninth edition of our Mobile Developer’s
Guide. We hope you’ve enjoyed reading it and that we helped
you to clarify your options. Don’t be put off by the difficulties
in entering the mobile arena – once you’re in the water, you can
and will swim.

Would you like to contribute to this guide or sponsor upcoming
editions? Please send your feedback to developers@enough.de

If you are using Twitter, you are invited to follow us on
twitter.com/enoughsoftware and spread the word about the
project using the hashtag #mdgg

mailto:developers%40enough.de%0D?subject=Mobile%20Developer%27s%20Guide%20Edition%209%20-%20Feedback
http://twitter.com/enoughsoftware

159About the Authors

About the Authors

Robert Virkus / Enough Software
Robert has been working in the mobile space since 1998. He
experienced Java fragmentation first hand by developing and
porting a mobile client on the Siemens SL42i, the first mass
market phone with an embedded Java VM. After this experience
he launched the Open Source J2ME Polish project in 2004 that
helps developers to overcome device fragmentation. He is the
founder and CEO of Enough Software, the company behind J2ME
Polish and many mobile apps.
www.enough.de			 www.j2mepolish.org

Roland Gülle / Sevenval
In 2001 Roland joined Sevenval to experience the mobile indus-
try. Since then his mission has been to expand the WWW world so
it is usable on mobile devices. He is responsible for the develop-
ment of the FITML platform which enables developers to create
mobile internet portals and answer the challenge of device frag-
mentation. Roland is an active member of the Mobile Web Ini-
tiative (MWI) and participates in various open source projects.
www.sevenval.com		 www.fitml.com

Thibaut Rouffineau / WIP
Community and passion builder with a mobile edge, Thibaut has
been conversing with the mobile developer community for the
past 5 years as the head of developer engagement at Symbian,
where he spearheaded the migration to open source. Today he
is the VP for Developer Partnerships at WIP (Wireless Industry
Partnership).
www.wipconnector.com

http://www.enough.de
http://www.j2mepolish.org
http://www.sevenval.com
http://www.fitml.com
http://www.wipconnector.com

160About the Authors

Chris Brady / Animated Media Inc. (AMI)
Chris is an expert on graphics and GPUs and has been developing
software since the 1980’s. He founded ALT Software Inc. growing
it to the leading provider of safety critical, real-time, OpenGL 3D
device drivers and software in the aerospace market. As AMI’s
CEO, he is now leading the charge to bring Flash technology to
devices and markets outside of Adobe’s focus – including Flash
on the iPhone.
www.animatedmedia.ca

Tim Messerschmidt
Tim has been developing Android applications since 2008 for
his own business Messerschmidt-IT. He is currently writing his
bachelor thesis about Android and Google App Engine.
www.messerschmidt-it.de

André Schmidt / Enough Software
André has been developing mobile applications since 2001. He
joined Enough Software in 2007 where he heads the develop-
ment of Open Source products for mobile developers and mobile
applications of any kind. He mainly develops for J2ME, Android
and BlackBerry.
www.enough.de

http://www.animatedmedia.ca
http://www.messerschmidt-it.de
http://www.enough.de

161About the Authors

Benno Bartels / InsertEFFECT
Benno’s entry to the mobile space was his diploma thesis about
porting J2ME applications. Afterwards he founded InsertEffect, a
company focusing on mobile web development. Today, the team
consists of 10 people focused mainly on usability optimization
of mobile websites, social network applications and widgets.
www.inserteffect.com

Ovidiu Iliescu / Enough Software
After developing desktop and web-based applications for sev-
eral years, Ovidiu decided mobile sofware is more to his lik-
ing. He’s been doing J2ME and Blackberry development for
Enough Software since 2009. He gets excited by anything re-
lated to efficient coding, algorithms and computer graphics.
www.enough.de		 www.ovidiuiliescu.com

Michel Shuqair / AppValley
Michel built his experience with Telecoms since 1999 where he
closely watched the mobile development space evolving from Ja-
pan. Starting with black and white WAP applications, iMode and
SMS games, he led the mobile social network m.wauwee.com with
almost 1,000,000 members, supported by a team of Symbian,
iPhone, BlackBerry and Android specialists with headquarter in
Amsterdam (acquired by MobiLuck).
www.appvalley.nl

http://www.inserteffect.com
http://www.enough.de
http://www.ovidiuiliescu.com
http://m.wauwee.com
http://www.appvalley.nl

162About the Authors

Peter Nowak
Peter is a .NET expert at global operating ICT - Services Company
since 2002 and has been a Microsoft MVP since 2008. He writes
for several magazines, speaks at developer conferences, and pub-
lished his own book about Windows.
www.winphonedev.de

Julian Harty / eBay
Hired by Google in 2006 as the first Test Engineer outside the
USA and told he was responsible for testing Google’s mobile
phone applications. He helped others inside and outside Google
to learn how to do likewise; and he ended up writing the first
book on the topic. He continues to work on Test Automation for
mobile phones and applications. He now works for eBay where
his mission is to revamp testing globally.
www.ebay.com

Alex Jonsson / MoSync	
Alex likes anything mobile, both apps and web technology and
connecting physical stuff to digital stuff. He holds a doctors
degree in on-line publishing and distributed education. Behind
this tech surface lies an eclectic urge to create new value by
exploiting aspects of communication and media to bring peo-
ple together. Alex holds a position as VP Creative Products at
MoSync Inc.
www.mosync.com

http://www.winphonedev.de
http://www.ebay.com
http://www.mosync.com

163About the Authors

Richard Bloor / Sherpa Consulting Ltd
Richard has been writing about mobile applications develop-
ment since 2000. He contributes to popular websites, such as
AllAboutSymbian.com, and assists companies in creating re-
sources for developers. Richard brings a strong technical back-
ground to his work, having managed development and testing on
a number of major IT projects, including the Land Information NZ
integrated land ownership and survey system. When not writing
about mobile development, Richard can be found regenerating
the native bush on his property north of Wellington.

Jens Weller / Code Node
In 2002 Jens started his career in the mobile business at Voda-
fone. 5 years later, he founded his own company Code Node Ltd.
Since then Jens has been working in the industry as a specialist
in C++ and Qt. In 2009 he also started to offer mobile develop-
ment for bada. Jens has a blog about mobile development with
C++, and has spoken at various events on this topic. He likes to
dance Salsa in his free time.
www.codenode.de

Marco Tabor / Enough Software
Marco is responsible for PR, sales and much more at Enough
Software. He coordinates this project as well taking responsibil-
ity for finding sponsors and merging the input provided by the
mobile community.
www.enough.de

http://allaboutsymbian.com
http://www.codenode.de
http://www.enough.de

164About the Authors

Matos Kapetanakis / VisionMobile
Matos is Marketing Manager at VisionMobile, a leading indus-
try analyst firm. He is responsible for VisionMobile’s marketing,
communications and PR, and he has also taken on the mantle of
the company’s blog editor and is a regular contributor. As the
lead in the company’s data gathering efforts and the Developer
Economics projects, Matos is well-acquainted with the facts and
figures of the mobile industry.
www.visionmobile.com

Michael Koch / Enough Software
Michael joined the development team at Enough Software in
2005. He has not only headed the development of numerous
mobile projects (mainly for Windows Mobile and BlackBerry), but
is also an expert on server technology. Of course he is an open
source enthusiast, just like everybody at Enough Software.
www.enough.de

Patrick Getzmann
Patrick is working for a global operating ICT - Services Company
since 2000. He is responsible for mobile app development, con-
ceptioning and architecture with a focus on Windows Phone.
As a Microsoft MVP (“Most Valuable Professional”) he is always
happy to share his know-how at conferences and in several pub-
lications.

http://www.visionmobile.com
http://www.enough.de

165About the Authors

Gary Johnson / Hyland Software, Inc.
Gary has been working as a software developer for Hyland Soft-
ware, Inc. since 2005. He works primarily in Silverlight and WPF,
and has a strong passion for UX and mobile development. As a
hobbyist, he is heavily involved in Windows Phone 7 develop-
ment.
www.hyland.com

Oliver Graf / Enough Software
Oliver has been coding software for several platforms since 2000.
He works as a multi-platform developer for Enough Software
and writes about mobile development for several magazines.
Oliver was among the first registered developers for bada. As one
of the Samsung developer advocates, he connects developers
with Samsung (and vice-versa) to improve the bada ecosystem.
www.enough.de 	www.dm-graf.de

Alexander Repty
Alexander has been developing software for Mac OS X since 2004.
When the iPhone SDK was released in 2008, he was among the
first registered developers for the program. As an employee of
Enough Software, he has worked on a number of apps, one of
which was featured in an Apple TV commercial, and he has writ-
ten a series of articles on iPhone development. As of April 2011,
he started his own business as an independent software devel-
oper and contractor.
www.alexrepty.com

http://www.hyland.com
http://www.enough.de
http://www.dm-graf.de
http://www.alexrepty.com

166About the Authors

Manuel Bieh / Sevenval
Manuel started to create websites soon after the internet gained
mass popularity. He started focusing on the mobile web in 2007
and in 2008 published his first German technology book on mo-
bile web design and development. He loves to play around with
JavaScript, HTML5 and all the latest web and mobile tech. In
2010 he joined Sevenval, as Developer and Community Evange-
list, and since then has been working to make the mobile web a
better experience for users and developers.
www.sevenval.com		 www.fitml.com

Andrej Balaz / Enough Software
As a graduate of the University of the Arts Bremen, Andrej fo-
cuses on UI, UX and visual design for mobile applications and
other interactive technologies. He is also in charge of the layout
and design of this guide. When not involved with something
mobile, he loves to experiment with digital art and illustration.
www.enough.de

http://www.sevenval.com
http://www.fitml.com
http://www.enough.de

An initiative by:

Printing sponsors:

www.enough.de www.wipconnector.com

A non-commercial, community-driven
overview on mobile technologies for
developers and decision-makers.

A spectacular piece of work! You will be astonished by how
incredibly fast you can establish your presence in the mobile
market with the simple steps explained in this guide.”
Daniel Hudson, www.webtechman.com

This excellent guide is a huge hit in Appsterdam,
thank you so much for making this resource available.
Mike Lee, Mayor of Appsterdam

Extremely helpful content, also for non-developers.
And the design is nothing but fantastic!
Monika Lischke, Community Manager, Intel AppUp developer program

Packed with valuable information if you need a crash course
in mobile development. Highly recommended!
Tom Deryckere, www.mobiledrupal.com

Impressive. The most comprehensive and concise guide to
developing for mobile.
Carlos Bernardi, Team Leader Handset Embedded Programs, Gameloft

http://www.wipconnector.com
http://www.enough.de
http://www.nokia.com
http://www.ebay.com
http://www.webtechman.com
http://www.mobiledrupal.com
http://www.gameloft.com

	Introduction
	An Overview Of
Application Platforms
	Native Applications
	Java ME (J2ME)
	Flash
	BREW
	Widgets and Web Apps
	Websites
	SMS Text Messaging

	Programming Android Apps
	Prerequisites
	Implementation
	Testing
	Signing
	Distribution

	Programming bada Apps
	Getting Started
	Implementation
	Testing
	Distribution

	Programming Native BlackBerry Apps
	Prerequisites
	Coding Your Application
	Services
	Testing
	Porting
	Signing
	Distribution

	Programming Flash Apps
	Prerequisites
	Tips And Tricks
	Testing
	Packaging And Distribution

	Programming iOS Apps
	Prerequisites
	Implementation
	Testing
	Distribution
	Books
	Community

	Programming J2ME / Java ME Apps
	Prerequisites
	Implementation
	Testing
	Porting
	Signing
	Distribution

	Programming Qt Apps
	Prerequisites
	Creating Your Application
	Testing
	Packaging
	Signing
	Distribution

	Programming Symbian Apps
	Prerequisites
	Carbide.c++
	Symbian/S60 Software Development Kits
	Testing
	Signing
	Distribution

	Programming
Windows Phone Apps
	Development
	Functions and Services
	Multitasking and Application Lifecycle
	Native Code
	Distribution
	Testing And Analytics
	Resources

	Programming Mobile Widgets
	Widget Characteristics
	Prerequisites
	Writing Your Code
	Testing
	Signing
	Distribution

	Programming With Cross-Platform Tools
	Limitations And Challenges Of
Cross Platform Approaches
	Cross-Platform Strategies
	Cross-Platform Solutions

	Creating Mobile Websites
	Context Is King
	Usability Aspects
	Technical Limits of Web Technologies
	Fragmentation
	Server-Side vs. Client-Side Adaption
	Hybrid Apps
	Lessons learned

	Developing Accessible Apps
	Built-In Accessibility Features
	General Guidelines For Accessible App Development
	Developing Accessible iOS Apps
	Developing Accessible BlackBerry Apps
	Developing Accessible Symbian / Qt Apps
	Developing Accessible Android Apps
	Developing Accessible Mobile Web Apps
	In Conclusion

	Implementing Rich Media
	Streaming vs. Local Storage
	Progressive Download
	Media Converters

	Implementing
Location-Based Services
	How To Obtain Positioning Data
	How To Obtain Mapping Services
	Implementing Location Support On Different Platforms
	Tools For LBS Apps

	Implementing Near Field Communication (NFC)
	Support For NFC
	Creating NFC Apps

	Testing Your Application
	Testability: The Biggest Single Win
	Headless Client
	Separate The Generic From Specific
	Test-Driven Development
	Physical Devices
	Remote Control
	GUI Test Automation
	Beware Of Specifics
	Crowd-Sourcing
	Web-Based Content And Applications

	Monetization
	Pay Per Download
	In-App Payment
	Mobile Advertising
	Revenue Sharing
	Indirect Sales
	Marketing And Promotion
	Strategy
	What Can You Earn?

	Appstores
	Basic Strategies To Get High
	Multi-Store vs Single Store

	Now What – Which Environment Should I Use?
	The Business Perspective: Market Reach
	The Developer’s Perspective: Technology

	Epilogue
	About the Authors

