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SUMMARY

Recent experiments have shown that motion detec-
tion in Drosophila starts with splitting the visual input
into two parallel channels encoding brightness incre-
ments (ON) or decrements (OFF). This suggests the
existence of either two (ON-ON, OFF-OFF) or four
(for all pairwise interactions) separate motion detec-
tors. To decide between these possibilities, we
stimulated flies using sequences of ON and OFF
brightness pulses while recording from motion-
sensitive tangential cells. We found direction-selec-
tive responses to sequences of same sign (ON-ON,
OFF-OFF), but not of opposite sign (ON-OFF, OFF-
ON), refuting the existence of four separate detec-
tors. Based on further measurements, we propose
a model that reproduces a variety of additional
experimental data sets, including ones that were
previously interpreted as support for four separate
detectors. Our experiments and the derived model
mark an important step in guiding further dissection
of the fly motion detection circuit.

INTRODUCTION

Insect motion detection has long served as a classic example for

studying fundamental principles of information processing in

neural networks (Bialek et al., 1991; Fairhall et al., 2001) and

has led to a mathematical description of the underlying compu-

tations (Reichardt, 1961). The resulting model, the so-called

Reichardt Detector (Figure 1A; Hassenstein and Reichardt,

1956), accurately reproduces cellular and behavioral responses

to motion stimuli in surprising detail (Götz, 1964; Borst et al.,

2010). The core operation performed in the Reichardt Detector

is a multiplication of the input signals from two neighboring

photoreceptors after one of them has been temporally delayed

by a low-pass filter. This computation is performed twice in

a mirror-symmetrical way, the outputs of both operations being

finally subtracted to enhance the detector’s direction selectivity.

While this model represents a faithful algorithmic description of

how photoreceptor signals are processed to result in a direction-

ally selective output, its cellular implementation is still unknown

due to technical difficulties in recording from the small columnar
neurons in the optic lobe that hosts the motion detection circuit.

Furthermore, thebiophysical implementation of amathematically

sign-correct multiplication of positive (ON) and negative (OFF)

input signals poses a fundamental problem for any neuronal

hardware. Thus, after more than half a century of research, not

only the constituting cells and biophysics of the processing

steps but also the overall internal structure of the Reichardt

Detector are still open questions. However, fly motion vision

has received renewed interest with the establishment of the fruit

fly Drosophila melanogaster as a model organism in systems

neuroscience (Rister et al., 2007; Katsov and Clandinin, 2008;

Maimon et al., 2010; Chiappe et al., 2010) due to the availability

of a wide range of genetic tools for manipulating and dissecting

neural circuits (Borst, 2009).

At the front end of the circuitry, fly motion vision starts with

the detection of light in the six outer photoreceptors R1–6 of

the compound eye. Upon illumination, R1–6 release the neuro-

transmitter histamine (Hardie, 1989) and relay the luminance

signal to five parallel processing streams in the first-order neuro-

pil, the lamina. Two of them, the large monopolar cells L1 and L2,

express histamine-gated chloride channels on their dendrites in

the lamina (Gengs et al., 2002) and transmit the major input

signals to the motion detection circuitry (Rister et al., 2007).

In both neurons, onset and offset of histamine release cause

transient hyperpolarizing and depolarizing dendritic responses,

respectively, with a small sustained hyperpolarization in

between (Laughlin and Hardie, 1978; Laughlin et al., 1987). L1

and L2 relay their signals via long axons to separate layers in

the second-order neuropil, the medulla. Here, information is

picked up by mostly unidentified neurons that constitute the

motion detection circuit and finally transmit their output to the

third-order neuropil consisting of lobula and lobula plate. In

the lobula plate, large directionally selective tangential cells

extend their elaborate dendrites and spatially integrate the

output of local presynaptic motion detectors (Single and Borst,

1998; Borst et al., 2010). Their responses to large-field motion

in the preferred direction (PD) are positive (membrane depolar-

izations, or firing rate increases) and negative (hyperpolariza-

tions, or firing rate decreases) in the opposite, the so-called

null direction (ND).

In this study, we build on the recent discovery that the lamina

neurons L1 and L2 constitute the input channels to the motion

detection circuitry in Drosophila. Joesch et al. (2010) recorded

from directionally selective tangential cells in the lobula plate

while genetically blocking synaptic transmission from L1 and/

or L2. Blocking both L1 and L2 removed motion-sensitive
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Figure 1. Different Models for Motion Detection

(A) The original Reichardt Detector, the standard model for motion detection in insects.

(B) A 4-Quadrant-Detector model. Splitting the input into ON (brightness increments) and OFF (brightness decrements) components leads to four parallel

pathways, one for each combination of input signals (ON-ON, ON-OFF, OFF-ON, OFF-OFF). Each of the four detectors replicates the structure of the standard

Reichardt Detector. This model is mathematically identical to the original Reichardt Detector.

(C) A 2-Quadrant-Detector as proposed by Franceschini et al. (1989). Only input combinations of the same sign are processed (ON-ON, OFF-OFF).
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responses in lobula plate tangential cells. Importantly, blocking

either L1 or L2 revealed that in flies, similar to vertebrates, the

visual input is split into an ON and an OFF component.

Here, we adapt the Reichardt Detector to incorporate these

new findings, giving rise to two alternative models. Both models

require a more elaborate internal structure of the detector to

allow for an implementation of separate ON- and OFF-input

signals. The first model, the ‘‘4-Quadrant-Detector’’ (Figure 1B)

(Hassenstein and Reichardt, 1956) consists of four parallel

detectors that cover all four possible combinations of input

signals (ON-ON, ON-OFF, OFF-ON, and OFF-OFF). From its

input-output behavior, a 4-Quadrant-Detector is mathematically

identical to the original Reichardt model. The second model,

proposed by Franceschini et al. (1989), contains just two

subunits, an ON-ON and an OFF-OFF detector (Figure 1C).

Notably, this ‘‘2-Quadrant-Detector’’ is no longer equivalent to

the original Reichardt Detector since input signals of opposite

sign do not interact. These differences in response behavior

should allow us to decide between the two models experimen-

tally. We first presented apparent motion stimuli consisting of

sequences of spatially displaced, persistent light increment

(ON) and decrement (OFF) steps to two different fly species,

Calliphora and Drosophila, while recording from lobula plate

tangential cells.We consistently found strong directionally selec-

tive responses to sequences of same sign (ON-ON, OFF-OFF)

and inverted responses to sequences of opposite sign (ON-

OFF, OFF-ON). The latter seems to clearly speak in favor of

a 4-Quadrant-Detector. However, we also found persistent di-

rectionally selective responses for interstimulus intervals that

by far exceed the estimated time constant of the low-pass filter

in the Reichardt Detector, indicative for a tonic representation of

the brightness level at the input of the motion detector. Incorpo-

ration of an appropriate input filter (high-pass filtering and

parallel tonic throughput) in the 2-Quadrant-Detector repro-

duced all measured responses to sequences of same as well

as of opposite sign, albeit lacking specific detector units for

correlating combinations of ON and OFF stimuli. Furthermore,

the model displayed all the features in response to moving grat-

ings that had been reported from tangential cells before, while
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imposing only half the wiring and energy demands compared

to a 4-Quadrant-Detector. Our findings and the resulting model

provided us with a testable hypothesis to distinguish between

the 2-Quadrant- and the 4-Quadrant-Detector. Using a modified

apparent motion stimulus protocol based on short brightness

pulses instead of persistent brightness steps, we performed

measurements that contradict the 4-Quadrant-Detector but are

in agreement with a 2-Quadrant-Detector.

RESULTS

Apparent Motion Experiments
To analyze the internal structure of the elementary motion

detector in flies, we used apparent motion stimuli (Riehle and

Franceschini, 1984; Ramachandran and Anstis, 1986; Egelhaaf

and Borst, 1992). Such stimuli consist of sequences of light

increments or decrements and, thus, should be ideally suited

to selectively activate subunits of one type only, e.g., the ON-

ON subunit for ON-ON sequences, while leaving the other

subunits unaffected. Apparent motion stimuli of all possible

combinations (ON-ON, OFF-OFF, ON-OFF, and OFF-ON)

should therefore allow us to discriminate between models with

or without interactions between input signals of opposite sign.

Our stimuli consisted of two adjacent stripes appearing sequen-

tially with a delay of 1 s, thus mimicking motion in one of two

directions. The single stripes generate either positive (ON) or

negative (OFF) brightness steps, starting from an initial, interme-

diate brightness level (Figure 2A, rightward motion shown only).

Thewidth of the stripes was set such that the two stripes approx-

imately activated neighboring facets forming the input to motion

detectors. We measured the effect of such selective stimulation

by electrophysiological recordings from directionally selective

lobula plate tangential cells. For assessing the generality of our

results, we measured responses in two species: using extracel-

lular recordings of action potentials, we measured the firing rate

of the horizontally sensitive neuron H1 in Calliphora vicina; using

somatic whole-cell patch-clamp recordings, we measured the

intracellular membrane potential in vertically sensitive VS cells

(VS1–5) in Drosophila melanogaster.
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Figure 2. Responses of Lobula Plate Tangential Cells to Sequences of Brightness Steps

(A) Illustration of apparent motion step stimuli. Two stripes appear in sequence, separated by 1 s, on an intermediate background luminance. Here, only rightward

apparent motion is depicted. For the experiments in vertically sensitive VS cells in Drosophila melanogaster, two vertically arranged stripes were used instead.

(B) Responses of H1 neurons (average from eight flies) in the blowfly Calliphora vicina to apparent motion step stimuli.

(C) Responses of VS cells in wild-typeDrosophila melanogaster (average from seven flies). The red traces represent the responses to apparent motion in the cell’s

PD; the blue traces illustrate the responses to apparent motion in the cell’s ND. The black traces represent the difference between the responses to PD and the

responses to ND sequences. For both species, note the positive signals for sequences of same sign (ON-ON, OFF-OFF), and the negative signals for sequences

of opposite sign (ON-OFF, OFF-ON).
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The results of these experiments are shown in Figure 2B

(Calliphora) and Figure 2C (Drosophila). Lobula plate tangential

cells respond to single ON or OFF steps imposed on a uniformly

illuminated background with an increase in firing rate or a depo-

larization (see responses to the appearance of the first stripe).

The direction selectivity of the motion detection circuit can be

observed by comparing the responses to the second stripe

with the responses to the first one. For ON-ON and OFF-OFF

stimuli (first and second row in Figures 2B and 2C), the response

amplitudes are larger when the stimulus sequence is in the cell’s

PD (red lines) than when the sequence is in the cell’s ND (blue

lines). The opposite effect is observed for ON-OFF and OFF-

ON stimulus sequences (third and fourth row in Figures 2B and

2C): here, the response to the second stimulus is smaller than

the response to the first one when the sequence is in the cell’s

PD, and larger than the first one when the sequence is in the

cell’s ND. This effect is called ‘‘PD-ND inversion’’ and is illus-

trated more clearly when the response to an ND sequence is

subtracted from the response to the corresponding PD

sequence (black lines in Figures 2B and 2C): for ON-ON and

OFF-OFF sequences, a positive signal is obtained; for ON-OFF

and OFF-ON sequences, the resulting signal is negative. All

this holds true for recordings from the H1 cell in Calliphora

as well as for recordings from VS cells in Drosophila (compare

Figure 2B with Figure 2C).
While the responses to ON-ON and OFF-OFF stimuli can be

explained by both a 4- as well as by a 2-Quadrant-Detector

(Figures 1B and 1C, respectively), the responses to sequences

of opposite sign (ON-OFF, OFF-ON) are hard to reconcile with

a 2-Quadrant-Detector. However, the phenomenon of the PD-

ND inversion is in agreement with predictions from the Reichardt

Detector (Figure 1A) and its mathematical equivalent, the

4-Quadrant-Detector (Figure 1B): for ON-OFF or OFF-ON

sequences, signals of opposite signs are multiplied, leading to

the observed PD-ND inversion. Therefore, given the splitting of

the photoreceptor output into ON and OFF components, these

results seem to rule out the 2-Quadrant-Detector (Figure 1C)

and rather imply a motion detection circuit of the 4-Quadrant

type (Figure 1B).

However, the above reasoning rests on two tacit assumptions:

(1) information about the absolute brightness is fully eliminated,

and only information about the change of the stimulus brightness

is passed on to the rectification stage and the subsequent

motion detection circuits; and (2) the threshold for the rectifica-

tion stage is set at exactly the zero point of the incoming signal.

As soon as we drop one of these assumptions, the signal sepa-

ration becomes less strict, and a 2-Quadrant-Detector might

respond to stimulus sequences of opposite sign as well. We

therefore investigated to what extent themotion detection circuit

is sensitive to prolonged presentation of a stripe that, after
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Figure 3. Responses of Lobula Plate Tangential Cells to Quasi-Isolated Brightness Steps

In contrast to the stimulus used in Figure 2, the first stripewas present for 10 s before the second stripe appeared. The direction selectivity of the response persists

in bothCalliphora (A) andDrosophila (B), despite the long separation of the two events. These results show the strong influence of the absolute brightness (DC) on

the motion detection system.
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a relatively long delay, is followed by the appearance of a second

stripe, either toward the PD or the ND relative to the first stripe. If

only information about the brightness change of the second

stripe is present at the input of the motion detection circuit, pre-

senting the second stripe on either side of the first stripe should

result in identical, direction-insensitive responses for long

enough delays between the two stripes. If, however, some infor-

mation about the first stripe, i.e., a tonic or DC component,

continues to be passed on to the motion detection circuit after

long delays, the responses to PD and ND should differ.

To investigate this point, we presented stimuli in which the first

stripe appeared on the screen 10 s before the second one. These

experiments revealed clear directionally selective responses

(Figures 3A and 3B; legend as in Figures 2B and 2C). Moreover,

the responses were highly reminiscent of those for short inter-

stimulus intervals depicted in Figures 2B and 2C. The extent of

direction selectivity is particularly remarkable because the inter-

stimulus interval of 10 s is almost three orders of magnitude

larger than the estimated low-pass filter time constant of the

motion detection circuit (Guo and Reichardt, 1987). These data

clearly contradict the assumption that only information about

brightness changes is passed on to the motion detection

circuitry. In contrast, and in line with previous results (Borst

et al., 2003; Reisenman et al., 2003), the motion detection circuit

is also informed about permanent brightness levels, resulting in

directionally selective responses to apparent motion stimuli

even when the two events are separated by 10 s. Although

a certain influence of the absolute brightness on lobula plate

tangential cell responses has been observed before (Hengsten-

berg, 1982), our measurements illustrate, to our knowledge, for

the first time to what large extent the motion detection circuit

uses this information, giving strongly direction-selective re-

sponses to quasi-isolated brightness steps.

Modeling a 2-Quadrant-Detector
The results presented above provide the crucial step for

proposing a modified 2-Quadrant-Detector as depicted in Fig-
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ure 4A. Here, the input, ranging from dimensionless values of

0.1 (OFF) to 0.5 (ON), is first preprocessed by a circuit that

aims to model the recorded responses of lamina cells L1 and

L2 (Laughlin and Hardie, 1978; Laughlin et al., 1987). The signal

is fed through a first-order high-pass filter (t = 250 ms) and,

after that, is added to a 10% fraction of the original input signal,

representing the DC component of the lamina cell responses.

The input to the ON-ON subunit is obtained by a half-wave

rectification with a clip point at zero, whereas the input to the

OFF-OFF subunit is computed by applying a half-wave rectifica-

tion with a slightly shifted clip point at 0.05. By this way, a small

component of the ON signal is included in the OFF pathway as

well. Both subunits are represented as standard Reichardt

Detectors, except that they now process only nonnegative input

signals. The two output lines of each subunit are subtracted, with

the inhibitory component being weighed by a constant of 0.92,

relative to the positive output. This differential weighing accounts

for the reported imbalance of the two half-detectors (Egelhaaf

et al., 1989). The effect of the filter stage and the rectifiers is

illustrated in Figure 4B. The upper-left panel depicts an example

stimulus; the lower-left panel shows the resulting signal after

high-pass filtering and adding a 10% fraction of the unfiltered

stimulus. The right two panels depict the ON and OFF compo-

nents extracted by the two rectifiers.

As the experiments with an interstimulus interval of 10 s

showed, temporally isolated single brightness changes strongly

affect the response depending on the brightness of the sur-

rounding area. Therefore, it is unlikely that the observed

responses stem from only one detector that observes both

stripes. Rather, it has to be assumed that other detectors that

correlate the surrounding area with either the left or the right

stripe strongly affect the response as well. We therefore used

an array of such 2-Quadrant-Detectors (see Experimental Proce-

dures) for modeling the responses to apparent motion stimuli as

well as to moving gratings (Figures 4C–4F).

The model reproduced the main characteristics of the

measurements for ON-ON and OFF-OFF sequences delivered
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Figure 4. Proposed 2-Quadrant-Detector Model and Its Response Properties

(A) Detailed structure of the 2-Quadrant-Detector. The input is first processed by a filter stage that feeds the signal through a first-order high-pass filter

(HP, t = 250 ms) but in parallel allows 10% of the original signal to pass (DC). These two signals then become added. The result is fed into two parallel half-wave

rectifiers, one forming the input to the ON (shown in red), the other to the OFF (shown in blue) pathway. The cutoff for the ON rectifier is set at zero. For the OFF

rectifier, it is shifted slightly toward positive signals (exaggerated here for illustration purposes) to account for the observed small ON component in the OFF

pathway (Reiff et al., 2010). As for the original Reichardt Detector, the ON and OFF subunits consist each of two first-order low-pass filters (LP, t = 50 ms), two

multipliers, and a subtraction stage.

(B) Illustration of ON/OFF extraction by the preprocessing stage depicted in (A). Upper-left panel shows example input consisting of a 1 s ON step and a 1 s OFF

step. Lower-left panel illustrates resulting signal (black line) after adding up the high-pass filtered stimulus (t = 250 ms) and a 10% fraction of the unfiltered

stimulus. Dashed lines represent threshold of the ON (red) and OFF (blue) rectifier. Right panels show ON and OFF components extracted by the two rectifiers.

(C) Simulated responses of the 2-Quadrant-Detector to apparent motion stimuli. The model exhibits responses similar to the experimental results (compare to

Figures 2B and 2C): for stimulus sequences of the same sign (ON-ON, OFF-OFF, red traces for PD, blue traces for ND), the response difference (PD response

minus ND response, black traces) is positive; for stimulus sequences of opposite sign (ON-OFF, OFF-ON), the response difference is negative. Until the

appearance of the second stimulus, the ND response (blue) is identical to the PD response and, therefore, covered by the red trace.

(D) Normalized steady-state response of an array of standard Reichardt Detectors (blue) and 2-Quadrant-Detectors (red) to a moving sine grating (spatial

wavelength l = 20�) as a function of the contrast frequency of a stimulus. The contrast frequency refers to the angular stimulus velocity, divided by the spatial

wavelength of the grating.

(E) Responses of a spatially integrated array of detectors to the onset of constant grating motion (spatial wavelength l = 20�; stimulus velocity v = 100�/s) under
two conditions: in one case the grating was visible before the onset of motion (red trace); in the other case the grating was invisible before motion onset (black

trace). The detector array exhibits strong oscillations if the grating was visible before motion onset. These oscillations are much weaker if a uniform illumination

was shown before the grating started moving.

(F) Responses of a spatially integrated array of standard Reichardt Detectors (blue) and 2-Quadrant-Detectors (red) to a sine grating (spatial wavelength l = 20�),
moving according to a random velocity profile (low-pass filtered with t = 500ms) for 10 s. The response of the 2-Quadrant-Detector (red) is largely identical to the

response of the Reichardt Detector (blue); therefore, the blue trace is largely covered by the red trace.
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with a 1 s interstimulus interval (compare Figures 2B and 2C, first

and second row, with Figure 4C, first and second row): for

sequences along the PD (red traces), the response to the second

stimulus was larger than the response to the first one; for

sequences along the ND (blue traces), the response to the

second stimulus was smaller than the response to the first one.

Therefore, the difference between the PD and the ND response

(black traces) was always positive. However, despite lacking
specific ON-OFF and OFF-ON subunits, this model also ex-

hibited responses to stimulus sequences of opposite sign (ON-

OFF, OFF-ON, Figure 4C, third and fourth row): For sequences

along the PD (red traces), the response to the second stimulus

was smaller than the response to the first one; for sequences

along the ND (blue traces), the response to the second stimulus

was larger than the response to the first one. Therefore, the

difference between the PD and the ND response (black traces)
Neuron 70, 1155–1164, June 23, 2011 ª2011 Elsevier Inc. 1159
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was always negative. Thus, the model also reproduced the

PD-ND inversion mentioned above. While the simulation results

constitute a good qualitative fit, there are quantitative differences

between the measurements depicted in Figures 2B and 2C and

the simulations in Figure 4C, such as stronger ND responses and

different decay time constants. We believe that these shortcom-

ings mainly stem from two deliberate choices: (1) the intentional

simplicity of our model that, for instance, is incapable of repro-

ducing the complex temporal responses of lamina monopolar

cells to brightness steps; and (2) the choice of a single parameter

set for fitting responses of two different fly species (extracellular

H1 recordings in Calliphora and whole-cell patch-clamp record-

ings in Drosophila). In addition, strong negative input cannot be

observed in extracellular recordings of a spiking cell because

firing rates can only decrease to 0 Hz.

These results demonstrate that the responses of a 2-Quad-

rant-Detector, equipped with experimentally justified stimulus

preprocessing stages, can be reconciled with the experimental

results to apparent motion stimuli shown in Figure 2. However,

the question arises as to whether this model is also able to repro-

duce experimentally confirmed response characteristics of the

original Reichardt Detector to other stimuli. We investigated

this point by comparing the responses of the 2-Quadrant-Model

with theReichardt Detector to stimuli where the outputs of a large

array of motion detectors are spatially integrated. In particular, it

has been shown that for moving sine gratings, steady-state

responses of lobula plate tangential cells exhibit an optimum

that depends on the contrast frequency of the stimulus (angular

velocity divided by the spatial wavelength). To this end, we

simulated an array of 200 motion detectors, either Reichardt

Detectors (Figure 1A) or 2-Quadrant-Detectors (Figure 4A), and

determined their spatially integrated responses to sine gratings

(wavelength l = 20�) moving at various velocities. For both

models, the input was preprocessed by the identical high-

pass/DC filter combination. We observed a high degree of

similarity between the two models in their steady-state response

amplitude: the response is maximum at a certain contrast

frequency and declines for frequencies beyond that point (Fig-

ure 4D). The only difference between the model responses

consists of a slightly reduced ND response amplitude of the

2-Quadrant-Detector as compared to the Reichardt Detector.

Next, we tested a more subtle response characteristic of the

Reichardt Detector, the so-called ‘‘afterimage effect’’ (Maddess,

1986; Harris and O’Carroll, 2002; Reisenman et al., 2003; Joesch

et al., 2008): The oscillatory component of motion detectors at

the motion onset of a sine grating depends on whether a static

grating or a uniform gray area is presented prior to motion onset.

As reported before for fly lobula plate tangential cells (Reisenman

et al., 2003) and the original Reichardt Detector (Borst et al.,

2003), the 2-Quadrant-Detector exhibits strong initial oscillations

when confronted with a standing grating before motion onset but

only slight modulations when a gray field was presented instead

(Figure 4E). We then compared the dynamic response properties

of the twomodels by stimulating the detector array with amoving

sine grating following a pseudorandom velocity profile (Fig-

ure 4F). Both types of models reveal an almost identical

response. This degree of similarity is particularly remarkable

regarding the complexity of the stimulus.
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Experimental Evidence for a 2-Quadrant-Detector
The simulations presented so far show that a slightly modified

2-Quadrant-Detector, albeit lacking specific subunits for corre-

lating ON and OFF inputs, reproduces the experimentally

observed PD-ND inversion for ON-OFF and OFF-ON apparent

motion stimuli. However, demonstrating that specific subunits

processing ON-OFF and OFF-ON stimuli are not necessary

does not allow for excluding them. To ultimately distinguish

between the two models, we were guided by the notion that

the PD-ND inversion depends on the DC component and is

largely independent of the interstimulus interval. Therefore, we

chose an apparent motion stimulus that emphasizes the delay-

and-correlate mechanism while removing the impact of the DC

component. To this end, we performed simulations and experi-

ments with sequences of two short brightness pulses (duration

16 ms) instead of brightness steps, separated by 25 ms (simula-

tions and Calliphora) or 48 ms (Drosophila), as depicted in

Figure 5A for an ON-ON PD sequence. Indeed, comparing the

simulated responses of an array of 4-Quadrant-Detectors

(Figure 5B) with those of a 2-Quadrant-Detector (Figure 5C)

reveals that the PD-ND inversion for ON-OFF and OFF-ON pulse

sequences is a distinguishing feature of the 4-Quadrant-

Detector (Figure 5B, third and fourth row). In contrast, a 2-Quad-

rant-Detector, lacking specific subunits for correlating ON and

OFF stimuli, exhibits only slight differences between the PD

and ND response (Figure 5C, third and fourth row).

Performing the corresponding experiments in Calliphora

reveals strong directionally selective responses for ON-ON and

OFF-OFF stimuli (Figure 5D, first and second row; n = 10 flies),

as predicted by both models—subtracting the ND from the PD

response gives a clearly positive signal. Most importantly, there

is no PD-ND inversion for ON-OFF and OFF-ON stimuli (Fig-

ure 5D, third and fourth row). In contrast, we even observe a

slight increase in firing rate in response to these mixed stimuli.

Furthermore, we found very similar response characteristics in

Drosophila (Figure 5E)—a strong degree of direction selectivity

for ON-ON and OFF-OFF pulse sequences, but no significant

difference between PD and ND stimulation with ON-OFF and

OFF-ON sequences. In contrast to the brightness step experi-

ments, we observed much smaller responses to OFF pulses

than to ON pulses in Drosophila, to an extent that forced us to

change the amplitude of the ON and OFF luminance steps to

make OFF responses visible. This might reflect different

response amplitudes in photoreceptor cells or laminamonopolar

cells in response to brightness pulses in the two species, or

biophysical differences in the implementation of the rectification

stages for extracting ON and OFF components. The results in

Figures 5D and 5E clearly refute the 4-Quadrant-Detector as

the model underlying motion detection but offer strong support

for a 2-Quadrant-Detector as proposed here.

DISCUSSION

Recent experiments demonstrated that flies split the photore-

ceptor output signal into its ON and OFF components, leading

to the idea that these components are processed by parallel

motion detector subunits. The goal of our study was to develop

and fortify a new model for the fly elementary motion detector
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Figure 5. Model and Experimental Responses to Apparent Motion Stimuli Consisting of Two Short Brightness Pulses
Simulations of a 4-Quadrant-Detector, a 2-Quadrant-Detector, and corresponding measurements in Calliphora and Drosophila for apparent motion stimuli

consisting of two brightness pulses (each lasting for 16 ms), separated by an interstimulus interval of 25 ms (simulations, Calliphora) or 48 ms (Drosophila).

For both models the same parameter set as in Figure 4 was used.

(A) Illustration of an ON-ON PD brightness pulse sequence. Each pulse lasted for 16 ms, and the interpulse interval was 25 ms for Calliphora and 48 ms for

Drosophila.

(B) Simulated responses of the 4-Quadrant-Detector to sequences of brightness pulses. For stimulus sequences of the same sign (ON-ON, OFF-OFF, red traces

for PD, blue traces for ND), the response difference (PD responseminus ND response, black traces) is positive. For stimulus sequences of opposite sign (ON-OFF,

OFF-ON), the response difference is negative with approximately the same amplitude as for ON-ON and OFF-OFF sequences.

(C) Simulated responses of the 2-Quadrant-Detector. For ON-ON and OFF-OFF sequences, the response difference is again positive; for ON-OFF and OFF-ON

sequences, the response difference is relatively small.

(D) Responses of the H1 neuron inCalliphora (average from ten flies). As predicted by both detector types, the response difference to stimulus sequences of same

sign is strong, positive, and very stable (first and second row; mean responses from ten flies). In contrast, the response differences to stimulus sequences of

different sign (ON-OFF, OFF-ON; third and fourth row) are rather small and highly variable across flies.

(E) Responses of VS cells in Drosophila (average from six flies). Responses to ON-ON and OFF-OFF stimuli again give rise to strongly direction-selective

responses, while there is no significant difference between PD and ND stimulation with ON-OFF or OFF-ON pulse sequences. These results contradict a

4-Quadrant-Detector scheme underlying motion detection where these stimuli should give a clearly negative response difference. The slight positive response

difference in the results fromCalliphora can be explained by adjusting the input filter parameters of the 2-Quadrant-Detector to result in amore biphasic response

of the input stage to brightness pulses.

Neuron

Internal Structure of the Fly Motion Detector
that takes these new findings into account. This model should

have an internal structure in accordance with these recent

results but also fit the previously reported input-output behavior

of the classical Reichardt model. The most basic question

that arises after the finding that input is split into ON and OFF

components is whether there exist four or two detector subunits

in parallel. A model with four subunits, one for each combination

of input signs (ON-ON, OFF-OFF, ON-OFF, OFF-ON) and,

therefore, termed 4-Quadrant-Detector, leads to the same

input-output behavior as the original Reichardt Detector (it is

mathematically identical). In contrast, a basic 2-Quadrant-

Detector as depicted in Figure 1B processes inputs of the

same sign (ON-ON, OFF-OFF) only. The obvious way to discrim-

inate between these two alternatives is to apply apparent motion

stimuli, consisting of sequences of distinct ON and OFF bright-

ness steps, while recording from large output neurons of the
visual system. In agreement with previous results (Egelhaaf

and Borst, 1992), we found consistent and significant responses

to sequences consisting of signals of same (ON-ON, OFF-OFF)

as well as to opposite sign (ON-OFF, OFF-ON) in two fly species,

Calliphora and Drosophila. This effect has also been observed in

neurons of the wallaby nucleus of the optic tract (Ibbotson and

Clifford, 2001) and in human psychophysics (Anstis, 1970). While

this would readily lead us to exclude the 2-Quadrant-Detector

model, the distinct nature of the neural substrate postsynaptic

to the L1 and L2 cells suggests the existence of two rather

than four different subunits (Bausenwein and Fischbach, 1992;

Bausenwein et al., 1992). This made us reconsider how a

2-Quadrant-Detector could be reconciled with the responses

to input sequences of opposite sign.

We found that introducing a DC component passing through

the initial filter stage, in addition to the high-pass filtered signal,
Neuron 70, 1155–1164, June 23, 2011 ª2011 Elsevier Inc. 1161
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is largely sufficient to account for these response properties in

the 2-Quadrant-Detector. We provide an experimental justifica-

tion for this assumption by demonstrating that even for interstim-

ulus intervals of 10 s, a strong directionally selective response in

lobula plate tangential cells is obtained. Purely high-pass-

filtering the input, in contrast, would remove information about

the absolute luminance after some 100 ms. In addition, the

low-pass filter time constant has been estimated to lie between

5 and 50 ms (Guo and Reichardt, 1987; Egelhaaf and Reichardt,

1987; Dror et al., 2001; Borst et al., 2003; Lindemann et al., 2005;

Spavieri et al., 2010). Thus, this filter is incapable of storing the

luminance information over a time period that exceeds its time

constant by almost three orders of magnitude. Assuming that

some fraction of the ongoing luminance, rather than only its

time derivative, is represented at the input of the rectifiers leads

to a ‘‘bleed-through’’ of ON signals into the OFF pathway and

vice versa. Indeed, when optically recording the calcium

changes at the axon terminals of L2 cells, which represent input

lines to the OFF pathway, a small but consistent decrease of

calcium concentration was found in response to ON stimuli, in

addition to the large increase in calcium in response to OFF

stimuli (Reiff et al., 2010). Adjusting the parameters of the

2-Quadrant-Detector to account for the responses to apparent

motion leads to a model that, with the same parameter settings,

also accounts for the response properties of the original Reich-

ardt Detector that have been investigated and tested in fly lobula

plate tangential cells in the past.

A closer investigation of why an array of 2-Quadrant-Detectors

is able to exhibit the PD-ND inversion for ON-OFF and OFF-ON

apparent motion step stimuli revealed that reproducing these

results requires a certain DC component in the input signal. At

the same time, this effect is largely independent of the actual

interstimulus interval. A conclusive test for the existence of sepa-

rate ON-OFF and OFF-ON subunits is therefore to remove this

tonic input and reduce the interstimulus interval by displaying

apparent motion stimuli consisting of two temporally nonover-

lapping brightness pulses, separated by a short delay. For these

kinds of stimuli, the two models discussed here predict very

different responses. While the 4-Quadrant-Detector produces

strongly direction-selective but inverted responses for ON-OFF

and OFF-ON stimuli, the 2-Quadrant-Detector responds to

such pulse sequences with only negligible amplitude. Our exper-

iments onCalliphora andDrosophila revealed that the responses

to these stimuli cannot be reconciled with a 4-Quadrant-

Detector but rather match the characteristics of a 2-Quadrant-

Detector. We therefore conclude that the fly motion detection

circuit is comprised of two parallel, noninteracting subunits for

detecting ON and OFF motion.

The responses to ON-OFF and OFF-ON pulse sequences

measured in Calliphora are not in perfect agreement with the

predictions of a 2-Quadrant-Detector. However, the experi-

mental data varied strongly across flies. The peak subtracted

firing rate for ON-OFF sequences was 78 ± 76 Hz (mean ± stan-

dard deviation across ten flies); for OFF-ON sequences, it

amounted to 56 ± 50 Hz. We suspect this effect to arise from

the biphasic responses of L1 and L2 to brightness pulses (van

Hateren, 1992). Indeed, the positivity of the subtracted

responses to ON-OFF and OFF-ON sequences can be repro-
1162 Neuron 70, 1155–1164, June 23, 2011 ª2011 Elsevier Inc.
duced in simulations by halving the input filter time constants

and DC fraction to give a more biphasic filter response to pulses

(data not shown).

An important implication of splitting visual input into ON and

OFF components is that the subsequent motion detection circuit

now is confronted with nonnegative signals only. This signifi-

cantly facilitates the implementation of the nonlinear operation

inherent to motion detection (Poggio and Reichardt, 1973), as

specified by the multiplication in the Reichardt Detector. Inde-

pendently of the exact kind of nonlinearity actually used in

motion detection, it is required to give a positive output for two

positive (excitatory) as well as for two negative (inhibitory) inputs.

Performing such an operation within one neuron is biophysically

implausible. In contrast, splitting the inputs into nonnegative

signals (ON and OFF) allows for a neural implementation of the

nonlinearity that operates on two nonnegative inputs, only. This

unit is replicated for the different signal components with a final

stage that combines the outputs.

Nonetheless, splitting of the input does not answer the ques-

tion of what exact kind of nonlinearity is used, and many ideas

have been put forward in the literature to this end (Grzywacz

and Koch, 1987; Gabbiani et al., 2002; Hausselt et al., 2007; En-

ciso et al., 2010). Onepossibility of approximating amultiplicative

interaction is the so-called log-exp-transform, where the two

factors are preprocessed by a saturating, e.g., logarithmic func-

tion, and their sum is fed through an exponential nonlinearity. This

mechanism has been experimentally confirmed in an identified

neuron of the locust involved in collision avoidance (Gabbiani

et al., 2002). Another possibility consists of a tonic voltage

gradient along thedendrite togetherwith ahigh voltage-activated

calciumcurrent, giving rise to a supra-linear relationship between

any two inputs along the dendrite, which has been tested in the

starburst amacrine cells of the rabbit retina (Hausselt et al.,

2007). What exact mechanism is implemented in the neurons

presynaptic to the fly lobula plate tangential cells can only be

answered by experimental investigation of the respective cells.

A further interesting question concerns the separation of the

input into its ON and OFF components. In their dendrites, both

L1 and L2 depolarize in response to OFF stimulation and hyper-

polarize in response to ON stimulation. Expressing a genetically

encoded calcium indicator in L2 neurons, Reiff et al. (2010) have

shown that the extraction of the OFF component occurs in the

axon terminals of L2. Given that blocking synaptic output of L1

removes lobula plate tangential cell responses to moving ON

edges, which are encoded by L1 dendritic hyperpolarizations,

we suggest that the ON component is extracted via a tonically

active, inhibitory synapse from L1 onto downstream neurons.

Along this way, the results presented abovemark an important

step by presenting unambiguous evidence for the existence of

two, not four, separate motion detectors acting in parallel on

appropriately processed input signals. This should facilitate the

identification of the corresponding neurons in the fly optic lobe.
EXPERIMENTAL PROCEDURES

Electrophysiology in Calliphora

We recorded extracellular spike trains from the motion-sensitive neuron H1 in

3- to 12-day-old blow flies (Calliphora vicina). Flies were fixed with wax, the
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head capsule was opened, and air sacks and fat tissue were removed. The

head was then aligned to the frontal pseudo-pupils. H1 activity was recorded

with a tungsten electrode inserted into the left lobula plate, amplified, band-

pass filtered, and recorded at a sampling frequency of 10 kHz. Spikes were

detected offline with a threshold operation. The traces depicted in this work

were generated by averaging over trials and convolving the result with

a Gaussian filter (standard deviation of 5 ms).

The visual stimulus was presented on a CRT monitor (M21LMAX; Image

Systems Corp., Minnetonka, MN, USA) updated at 240 Hz. For OFF, interme-

diate, and ON brightness values, we used 1 cd/m2, 14 cd/m2, and 57 cd/m2;

the intermediate luminance was chosen such that ON and OFF stimuli yielded

responses of similar amplitudes. The horizontal angular extent of one stripe

was set to 3�, the vertical extent amounted to 40�.

Electrophysiology in Drosophila

We used female wild-type Canton-S experimental flies, 1–2 days after eclo-

sion, raised on standard cornmeal-agar medium with a 12 hr light/12 hr dark

cycle, 25�C, and 60% humidity. Patch-clamp recordings were performed as

described in Joesch et al. (2008). VS-cell somata covered by ringer solution

(Wilson et al., 2004) were approached with a patch electrode filled with a red

fluorescent dye (intracellular solution as in Joesch et al. [2008]). Recordings

were established under visual control using a 403 water-immersion objective

(LumplanF; Olympus), a Zeiss Microscope (Axiotech vario 100; Zeiss, Oberko-

chen, Germany), and illumination (100W fluorescence lamp, hot mirror, neutral

density filter OD 0.3; all from Zeiss, Germany). To enhance tissue contrast, we

used two polarization filters, one located as an excitation filter and the other as

an emission filter, with slight deviation on their polarization plane. For eye

protection, we additionally used a 420 nm LP filter on the light path.

Visual stimuli were delivered using a custom-built light-emitting diode (LED)

arena (Reiser and Dickinson, 2008; Joesch et al., 2008; Schnell et al., 2010).

Horizontal stripes were presented in the front of the fly’s visual field. For the

results depicted in Figures 2 and 3, we used stripes covering the complete

arena in the horizontal plane and 10� in elevation (either from 0� to +10� or

�10� in elevation). The vertical angular extent of the stripe was set to match

twice the inter-ommatidial distance. The luminance values used for OFF,

intermediate, and ON stimuli were 0 cd/m2, 16 cd/m2, and 64 cd/m2, respec-

tively. For the brightness pulse experiments shown in Figure 5, we used two

stripes of 5� each in elevation, covered the contralateral side, and set the

luminance values for OFF, intermediate, and ON stimuli to 0 cd/m2, 48 cd/m2,

and 74 cd/m2, respectively. The intermediate luminance was increased to give

a stronger response amplitude to OFF brightness pulses.

Computer Simulations

The model was simulated using the parameters described in the Results

section with a time step of 1 ms. For Figures 4C, 5B, and 5C, we used five

individual but identical detectors: one observing both stripes, two observing

the environment and one of the two stripes, and two detectors observing

only one stripe. The latter two are necessary to approximate the comparatively

strong responses to the appearance of the first stripe especially in Drosophila,

where the slit width was set to approximately twice the inter-ommatidial

distance. The parameters of themodel (high-pass filter time constant, DC frac-

tion, clip point for the OFF rectification, low-pass filter time constant, synaptic

imbalance) were fitted to simultaneouslymatch the results shown in Figures 2B

and 2C. The parameter search was performed with a novel online technique.

A MIDI controller was connected to the computer performing the simulation,

and the positions of its control elements (sliders and knobs) were readout by

MATLAB using a custom middle-ware layer written in the Java programming

language (Oracle Corporation). These positions were then used to adjust the

unknown parametersmanually. The simulation was executed in a loop, repeat-

edly drawing the newest results on screen, while continuously adjusting the

parameters based on the input from the MIDI controller. This technique will

be described in more detail in a follow-up publication. Our aim was to find

a parameter set that matches both the results from Calliphora and Drosophila

in qualitative terms. The search for parameters of the input stage mimicking L1

and L2 was mainly unconstrained and aimed at properly reproducing the

apparent motion results given that relatively little is known about the synaptic

output of these cells. Our main considerations for the DC component, the time
constant, and the threshold were the data published in Laughlin et al. (1987)

andReiff et al. (2010). At the output level of the circuit, we did not use a conduc-

tance-based model but subtracted the responses of the two half-detectors in

a weighted manner to mimic excitatory and inhibitory synaptic transmission. It

is commonly assumed that the excitatory half-detector provides stronger

input, possibly due to an asymmetry of the synaptic reversal potentials (about

Einh =�80mV, Eexc = 0mV) relative to the restingmembrane potential of lobula

plate tangential cells (between�40 and�50 mV). We therefore used a factor g

to weight the output of the inhibitory half-detector before subtracting it from

the excitatory half-detector. During parameter search, the factor g was con-

strained by taking the assumed synaptic reversal potentials and the resting

potential into account, as well as a previously used value of g = 0.89 in Egelhaaf

et al. (1989). The parameter set found for the apparent motion experiments in

Figures 2B and 2C was then used for the simulation results shown in Figures

4D–4F and Figures 5B and 5C as well. In Figures 4D–4F, we simulated 200

identical motion detectors homogeneously covering one period of the moving

sine wave grating (wavelength l = 20�). The amplitude of the stimuli ranged

from 0.1 (OFF; sine grating minimum value) to 0.5 (ON; sine grating maximum

value), with an intermediate luminance of 0.3.
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