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Summary

Animals must quickly recognize objects in their environment
and act accordingly. Previous studies indicate that looming

visual objects trigger avoidance reflexes in many species
[1–5]; however, such reflexes operate over a close range

and might not detect a threatening stimulus at a safe dis-
tance. We analyzed how fruit flies (Drosophila melanogaster)

respond to simple visual stimuli both in free flight and in
a tethered-flight simulator. Whereas Drosophila, like many

other insects, are attracted toward long vertical objects [6–
10], we found that smaller visual stimuli elicit not weak attrac-

tion but rather strong repulsion. Because aversion to small
spots depends on the vertical size of a moving object, and

not on looming, it can function at a much greater distance
than expansion-dependent reflexes.The opposing responses

to long stripes and small spots reflect a simple but effective
object classification system. Attraction toward long stripes

would lead flies toward vegetative perches or feeding sites,
whereas repulsion from small spots would help them avoid

aerial predators or collisions with other insects. The motion

of flying Drosophila depends on a balance of these two sys-
tems, providing a foundation for studying the neural basis

of behavioral choice in a genetic model organism.

Results

Free Flight
To test whether flies respond differently to large and small
visual objects, we placed a long post (31 cm high; 1.27 cm
diameter), a short post (1.27 cm high, 1.27 cm diameter, sus-
pended centrally with thin nylon monofilament), or no post at
the center of an enclosed tunnel and tracked the trajectories
of Drosophila melanogaster with a multicamera system
(Supplemental Experimental Procedures available online)
(Figure 1A). The main result of these experiments was that flying
flies tended to steer clear of the small object, whereas they flew
much closer to the long vertical post (Figure 1B, left and center).
Trajectories in the long- and short-post conditions differed
qualitatively from the case in which no object was present in
the arena (Figure 1B, right), indicating that the animals were ac-
tively attracted to the long post and repulsed by the short one.

Flies rarely landed on the long post and instead turned away
just before contact to avoid collision. Preliminary evidence
suggests that flies are more likely to land on long posts if these
objects are associated with an attractive odor (data not
shown). However, under the conditions used in these experi-
ments (i.e., in the absence of odor) flies would often revisit
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the long object, turning away each time as they approached
within 1–2 cm (Figure 1B, center, dark trace). This avoidance
elicited by the long post at short distances is consistent with
a previously characterized collision-avoidance reflex [4] that
is triggered when an expanding object subtends w60� on
the retina [4]. The conflict between long-distance attraction
and short-distance avoidance of the long post is manifest in
residence probability functions as a small, 1- to 2-cm-diameter
exclusion zone within a larger zone of attraction (Figure 1B,
center). However, the expansion-avoidance reflex cannot
explain the considerably larger exclusion zone around the
short post (Figure 1B, left). Inspection of individual trajectories
(Figure 1B, left, dark trace) indicates that the flies reacted to
the small post at a greater distance, and thus a smaller angular
size, than in the long-post case.

We calculated the minimum Euclidean distance between
each trajectory and the central 3D coordinate of each post.
As expected from inspection of individual trajectories, flies
approached closer to the center of the long post than the short
post (Figure 1C; rank sum test, p = 4.2 3 1025). At distances
less than w7 cm from the small post, at which point it subtends
over 10�, there was a strong decay in the probability of
approach (Figure 1C, arrow). The larger exclusion zone around
the smaller object is also manifest in plots of residence prob-
ability as a function of distance from the x-y center of the arena
(Figure 1D). Consistent with the minimum-Euclidean-distance
analysis, these probability distributions showed that flies
avoided a larger area around the short post (rank sum test,
p < 0.0001). To more fairly compare the long- and short-post
data, we only considered sample points within a middle z slice
through the tunnel (15 cm thick) in these, and all subsequent,
quantitative analyses.

What behavioral algorithms explain these free-flight results?
One trivial possibility is that the flies took off closer to the long
post than the short post but otherwise flew randomly within the
arena. However, we found that the start locations of trajecto-
ries were consistent across the three experimental conditions
(Figure S1), indicating that any differences in flight distribution
must be due to the animals’ behavior once airborne. During
flight, behavioral reactions to the long and short post might
be either directional (i.e., taxis) or nondirectional (i.e., kineses)
[11]. A directional mechanism would involve explicitly steering
toward or away from the objects, whereas a nondirectional
mechanism would involve a change in translational speed or
the rate of turning as a function of distance to the objects.

We found that nondirectional mechanisms could not fully
explain the observed differences in residence probability
(see Supplemental Data and Figure S2). To test for the pres-
ence of directed responses, we extracted two angular metrics
for each sample point (Figure 2A), both determined after col-
lapsing the data to the horizontal plane and assuming that
the flies’ heads were oriented in the direction of flight. (The
extent to which the bodies or heads were not aligned with
the direction of flight [12] will add noise to the results but
should not bias them on average one way or the other.)
‘‘Post angle’’ is defined as the angle of the post relative to
the tangent of the flight trajectory. This metric serves as
a coarse estimate of the angular position of the post on the
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Figure 1. Flies in Free Flight Aggregate near a Long Post and far from a Short Post

(A) Arena.

(B) Residence probability and free-flight trajectories. A short post, a long post, or no post was placed at the center of the arena. In pseudocolor, we show

residence probability histograms of the flight trajectories (1 cm2 bins). Below, we plot raw trajectories in gray with one representative trace highlighted in

black. Trajectories had to be longer than 3 s to be included in the residence probability analysis and 40 s or longer to be included in the raw-trace panel. White

and red dots indicate the location of the posts, to scale.

(C) Distributions of the minimum 3D distance between flight trajectories and the center of the long post (n = 962) or short post (n = 715). The red curve depicts

how the angular size of the small post, or width of either post, changes with distance from the object.

(D) Distributions of data points as a function of distance from the x-y center of the arena. The long post contains 426,879 sample points. The short post

contains 314,232 sample points. The arrow in (C) and (D) indicates distance where small post subtends 10�. For (C) and (D), we analyzed trajectories

>3 s long and only considered sample points in a 15-cm-thick middle z slice.
fly’s retina. ‘‘Turn angle’’ is defined as the change in flight
direction between consecutive samples. We averaged our cal-
culation of turn angle within a 30 ms time window starting
30 ms after our determination of post angle. This delay was
used because freely flying flies are known to react to visual
stimuli within this time frame [13]. Plotting turn angle as a func-
tion of post angle, we observed that the flies actively turned
away from the short post (Figure 2B, top). That is, with the
post on the left (positive post angles), the animals turned right
(negative turn angles), and vice versa. An aversive turn
response was evident as far as 14 cm away from the short
post, and such a finding could readily explain the exclusion
zone in the residence probability functions (Figure 1B, left
panel). At a distance of 14 cm, the small post subtended an an-
gle of w5� on the retina, indicating that the flies could respond
to stimuli whose angular size was on the order of a single pho-
toreceptor’s acceptance angle. Note that with no post in the
tunnel, there was also a weak tendency for the flies to turn
away from the center of the arena (Figure 2B, bottom), possibly
explaining why the flies accumulated near the walls in the no-
post condition (Figure 1B, right). However, this background
response, probably due to the visual surround of the arena,
was substantially smaller than the small-post response.

The long post elicited measurable turn responses as well,
particularly 2–6 cm away from the object (Figure 2B, center).
In this case, however, the functions were more complicated,
presumably because they combined the effects of at least
two visuomotor reflexes: fixation and looming-dependent col-
lision avoidance. Fixation was evident from the positive slope
of the response function at zero post angle, which indicates
a stable equilibrium that kept the flies turning toward the
object. At post angles of 6 40�–80�, the responses reversed,
indicating that flies also steered away from the posts at these
close distances. The functions indicated two additional stable
equilibria at 6 90�, suggesting that some flies briefly orbited
around the long post in a circular arc. Although we did find
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examples of such trajectories (data not shown), interpretations
of these responses must be made with caution. In addition to
the fact that the functions in Figure 2 combined the effects of
fixation and collision avoidance, flies are known to fixate not
on the center but the edges of vertical stripes [10]. Edge fixa-
tion becomes an issue when flies are very close to the post,
where the angle subtended by the object is large (Figure 1C,
red line) and the difference between the center and the two
edges of the object is significant. Thus, the accuracy of our
post-angle measurements, which were coarse to begin with,
decreased further as flies approached close to the object. De-
spite these caveats, the analysis in Figure 2 clearly indicates
that flying Drosophila respond to short and long objects in
fundamentally different ways.

The data suggest that aversion to small objects is not driven
by expansion avoidance, but it is difficult to fully rule out this
possibility with free-flight data. In particular, it is possible
that expansion-based reflexes operate at a farther distance
with the short post compared to the long post because the
short post presents four expanding edges, whereas the long
post presents only two. Past work in a tethered-flight simulator
[4] argues against this explanation in that Drosophila behav-
ioral responses are triggered when a small, expanding object
reaches an angular size of w60� [4], whereas in free flight,
we observed aversion when the image of the short post was
as small as 5�–10�. Nevertheless, to directly determine
whether flies are averse to small, nonlooming objects, we con-
ducted tethered-flight experiments in which flies observed
stimuli that never expanded but had different shapes.

Figure 2. Flies Actively Turn toward a Long Post

and away from a Short Post in Free Flight

(A) Angle definitions. The post angle refers to the

angle of the post on the fly’s retina (+ post on the

left, 2 post on the right). The turn angle refers to

the change in the direction of heading between

consecutive samples, averaged 30–60 ms after

calculating the post angle (+ left turns, 2 right

turns).

(B) Mean ‘‘turn angle’’ as a function of ‘‘post an-

gle’’ (10� bins) at various distances to the objects.

Each plot averages w40,000 sample points

(min: 10,200; max. 67,540; mean: 46,673) from

R30 flies (with pseudoreplication) (Supplemental

Experimental Procedures). Standard errors are

shown as gray regions around each curve. In

the no-post condition, we calculated the distance

to where the post would have been at arena

center.

Tethered Flight
We measured the steering behavior of
tethered, flying Drosophila in response
to visual stimuli presented on an LED
display [14, 15] (Figure 3A and Supple-
mental Experimental Procedures). Flies
viewed a 15� wide vertical stripe of vari-
able height (8�–94�). Our initial measure-
ments were conducted under closed-
loop conditions, in which the animal
itself controlled the angular velocity of
the visual stimulus. The fly’s turn re-
sponse was measured optically with
a wing-beat analyzer [14], and the signal

was used to control the angular velocity of the surrounding
visual pattern (Supplemental Experimental Procedures). This
closed-loop paradigm simulated purely rotatory flight; when
the animal steered left, the stripe rotated rightward on the
LED display, and vice versa.

Figure 3B shows stripe position during a closed-loop exper-
iment from a single fly. When presented with a long stripe, the
fly stably maintained the stimulus in its line of flight (fixation [7,
8]). When presented with a short stripe, the fly first allowed the
stimulus to rotate around the arena for a few seconds (spin-
ning) and then kept the small object directly behind the line
of flight (antifixation). Although spinning and antifixation
superficially appear as distinct behaviors, it is likely that they
are both manifestations of the same aversive reaction. Dro-
sophila have a blind spot in the rear which leads to an instabil-
ity in anti-fixation that often results in a bout of spinning. Like
the individual in Figure 3B, flies presented with a short stripe
often switched between bouts of spinning and antifixation.
Further, the probability of spinning varied as a function of the
feedback gain used in the experiment (data not shown), indi-
cating that this behavioral state was strongly influenced by
the dynamics of the closed-loop conditions. Despite these
subtleties, the closed-loop data, like the free-flight results,
indicate that long stripes attract and short stripes repel.

To further quantify the closed-loop data, we converted the
time series of stripe positions into a polar format. We pro-
cessed the data with a boxcar filter that calculated the mean
vector orientation of the fly every 200 ms (Supplemental Ex-
perimental Procedures). After this transformation, fixation
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appears as a band of points at the top of the plot, antifixation
appears as a somewhat broader band near the bottom, and
spinning corresponds to points near center (Figure 3C). Aver-
aged polar-plot probability densities showed that Drosophila
fixated long stripes, whereas they antifixated or spun short
stripes (Figure 3D).

To estimate the amount of time flies spent fixating, antifixat-
ing, or spinning each stimulus, we calculated the percentage
of data points that fell in the front, back, or center of each polar
plot (Supplemental Experimental Procedures). On average,
flies fixated the longest stripe >95% of the time, and they anti-
fixated or spun the shortest stripe >85% of the time (Figure 3D,
bottom). A potential concern is that the flies were unable to see
the smallest stimuli, whose height approached the interomma-
tidial angle of w5� [16]. However, control experiments in which
the stripe was made invisible (but the angular position of this
invisible stripe was still recorded) indicated that the flies did
actively respond to even the smallest stimuli. The percentage
of time spent antifixating a small stripe was significantly
greater than the percentage of time spent antifixating in the
control case (23� stripe versus no stimulus: paired t test,
p = 1.8 3 1025; 8� stripe versus no stimulus: paired t test,
p = 2.3 3 1026). Conversely, the percentage of time spent
spinning a small stripe was significantly smaller than the per-
centage of time spent spinning in the no-stimulus control
(23� stripe versus no stimulus: paired t test, p = 2.2 3 10211;
8� stripe versus no stimulus: paired t test, p = 1.0 3 1027).

Males of many dipteran species chase conspecifics in flight.
Drosophila mating, however, does not involve aerial pursuit,

Figure 3. Flies Fixate Long Stripes, but Antifixate

or Spin Short Stripes in Closed-Loop Tethered

Flight

(A) Tethered-flight arena. The animal was teth-

ered at the center of a cylindrical LED array. The

beating wings produced signals in two optical

sensors below the animal.

(B) Raw data from one fly. 0� indicates the bar is

directly in front of the fly (+ bar on the left, 2 bar

on the right). 180� and 2180� indicates the bars

are directly behind the fly.

(C) Polar-plot depictions of the time series data

(see Supplemental Experimental Procedures).

(D) Polar-plot probability densities of one fly (top

row) and averaged among all 24 flies (second

row). We divided the polar plots into three non-

overlapping regions (colored icon; Supplemental

Experimental Procedures). The percentage of

data points that fell into each region indicated

the percentage of time the animals spent fixating,

antifixating, or spinning each stimulus. These

percentages are shown as a function of stripe

height. Averaged data (6SEM) are shown with

thick lines. Individual-fly data are shown with

thin lines.

suggesting that male fruit flies may also
be averse to small spots when flying.
We tested males in the identical closed
loop paradigm and found that male
Drosophila are averse to short stripes,
much like females (Figure S3).

In a natural scene, any object—such as
a vegetative perch or an aerial predator—

might appear as either a dark object on a bright background or
vice versa, depending on their position with respect to the ob-
server and the sun. Thus, if these reflexes are ethologically rel-
evant, one would predict them to be independent of contrast
polarity. For this reason, we repeated our flight-arena experi-
ments after reversing the contrast sign of our stimulus (i.e.,
bright objects on dark backgrounds). The result was that
long stripes attract, and short stripes repel, whether they are
dark stimuli on a bright background or vice versa (Figure S4).
This contrast invariance suggests that these phenomena are
distinct from those briefly described in prior research (p. 206
in [16]); however, they are consistent with a recent analysis
that systematically examined the effect of contrast on stripe
fixation [15].

To examine the response of Drosophila to different-sized
objects without the complication of feedback dynamics, we
conducted a set of open-loop experiments, in which flies re-
sponded to visual stimuli but could not control them. Flies
viewed a 15�-wide vertical stripe undergoing a sinusoidal hor-
izontal oscillation (22.5� amplitude; 1 Hz) about a static mean
angular position. In different trials, the stripe appeared at
one of five angular positions, with one of six heights (8�–94�).
The steering responses of a single fly are shown in Figure 4A.
This animal turned toward the first two stimuli presented,
which were long stripes, whereas it turned away from the third
stimulus, a short stripe.

As expected, flies were attracted to long stripes (>67�), but
repelled from short ones (<30�) (Figure 4B). We calculated
the mean turn response of individual flies in a 4 s window
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Figure 4. Flies Turn toward Long Stripes and

away from Short Stripes in Open-Loop Tethered

Flight

(A) Raw turn responses of one fly. Positive devia-

tions of the curve indicate rightward turns; nega-

tive deviations indicate leftward turns. Ten sec-

onds of closed-loop stripe fixation alternated

with 10 s of open-loop stimulus presentation

(gray regions) are shown. ‘‘L-R WBA’’ refers to

left minus right wingbeat amplitude.

(B) Averaged turn responses of 44 flies. On

a given trial, a stripe was presented with one of

six possible heights (columns) and at one of five

possible angular positions (rows; 2120�,260�,

0�, 60�, and 120�, top to bottom). The stimulus

was on the right for the top two rows, on the left

for the bottom two rows, and directly in front of

the fly for the middle row. Dotted lines indicate

the onset time of the open-loop stimulus. The

top-left plot includes the averaged response to

the presentation of a blank screen (curve near

zero). Standard errors are shown as gray regions

around each curve. For each row, we show the

distribution of mean values from individual flies

to the right (see main text). Distributions signifi-

cantly different from zero, with positive means,

are shown in red; distributions significantly differ-

ent in from zero, with negative means, are shown

in blue (t test, p < 0.01; Bonferroni correction for

30 comparisons). A random jitter was added to

each dot’s position along the abscissa for better

visualization of each distribution.
starting 1 s after stimulus onset (Figure 4B, distributions on
right). Long stimuli elicited attractive turn responses that
were significantly different from zero; short stimuli elicited re-
pulsive turn responses that were also significantly different
from zero (t test, p < 0.01; Bonferroni correction for multiple
comparisons). Note that tethered- and free-flight measure-
ments were in quantitative agreement; 8�–30� high stimuli
were aversive, whereas longer stimuli were attractive.

The open-loop responses revealed that long-stripe attrac-
tion and small-stripe repulsion have different dynamics.
When stimuli were presented in the front hemifield, flies
tracked the 1 Hz oscillation of the long stripe but responded
to only the mean position of short stripes (Figures 4A and
4B, middle three rows). These differences in response dynam-
ics could explain, in part, why closed-loop fixation of long
stripes was more precise and why antifixation often led to
spinning. Notably, flies did not follow the 1 Hz oscillation of
any stimulus presented in the rear hemifield (Figure 4B, top
and bottom row). Also, long-stripe attraction decayed with
continuous stimulus presentation, whereas small-stripe repul-
sion remained steady with prolonged stimulus presentation.
To characterize whether attraction and repulsion differed in
their sensitivity to stimulus speed, we rotated either a long or
short stripe around the flies in open loop, at various speeds,
and measured the flies’ steering responses (Figure S5).
Long-stripe attraction was highly direction selective, being
most sensitive to fast front-to-back motion [16, 17]. This selec-
tivity is consistent with a system used for orienting toward
landmarks; front-to-back motion would indicate drifting off
course and thus should trigger a strong corrective response.
In contrast, short-stripe repulsion was most sensitive to slow
stimulus speeds and exhibited a similar response for both
back-to-front and front-to-back motion. Taken together, these
differences in response polarity, dynamics, and direction se-
lectivity suggest that the attractive and aversive reactions
are mediated by separable sensory-motor pathways.

Discussion

Observations on free-flying flies (Figures 1 and 2) together with
experiments on tethered flies in closed and open loop (Figures
3 and 4) demonstrate that Drosophila possess two opposing
visuomotor reflexes that explain salient features of the ani-
mal’s flight behavior. Animals are attracted to long vertical
objects, whereas they are repulsed by small objects. The visu-
ally guided behaviors detailed in this manuscript are most
probably mediated by motion-sensitive neurons downstream
of photoreceptors R1–R6. Specifically, in the lobula plate of
blowflies, ‘‘feature-detecting’’ cells respond vigorously to
elongated vertical contours [18]. The homologs of these neu-
rons might mediate fixation of long stripes in Drosophila. In
houseflies and hoverflies, other neurons in the lobula plate
and lobula respond best to small stimuli [19–21], and the ho-
mologs of these cells might underlie small-object aversion in
Drosophila. Because we did not vary the chromaticity of our
stimuli, we cannot exclude the contribution of color as an
additional cue that flies use in triggering attractive and
aversive flight responses.

Males of many fly species, including houseflies (Musca
domestica, Fania cunnicularis), flesh flies (Sarcophaga
bullata), and hoverflies (Syritta pipiens), chase females as
part of courtship [13, 22, 23] (see also [C. Gilbert et al., 2003,
Soc. Neurosci., abstract]). Long-legged flies (Dolichopodidae)
and robber flies (Asilidae) prey upon small insects on the wing.
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Thus, at least in certain behavioral contexts, some flying dip-
terans are attracted toward small spots, not repelled.
Drosophila, however, do not prey on other insects, and court-
ship does not involve flight. From an ethological point of view,
Drosophila would do well to avoid any small object in midair,
even static objects (Figure 1), because these could only signify
a hazard. In contrast, dipterans that chase conspecifics, or
hunt while flying, require a more sophisticated algorithm that
may, for example, rely on more complex features of object mo-
tion or color to differentiate repulsive predators from attractive
mates and prey.

Our results indicate that flying flies use a rather simple
vision-based algorithm to avoid potentially harmful objects.
Might walking flies use a similar strategy? The visual-motor be-
haviors of walking Drosophila are likely to be more compli-
cated because these flies exhibit social behaviors such as
courtship and aggression while on the ground. For example,
male flies could not chase and orient toward female flies if
small objects were aversive to them. A brief report ([24] cited
in [16]), suggests that walking Drosophila might exhibit a simi-
lar behavior as the one reported here for flying Drosophila, i.e.,
attraction to tall stripes and aversion to small spots. However,
this behavior is not consistent with studies using ‘‘Buridan’s
paradigm,’’ which show that walking flies respond equivalently
to long and short visual objects [25], or an earlier study that did
not report either clear attraction to or repulsion by small ob-
jects [10]. Collectively, these studies do not present a simple
picture of comparable reflexes in walking Drosophila, as might
be expected from the more complicated suite of behaviors that
occur on the ground.

Here, we describe a new visuomotor reflex—small-object
repulsion—that has a measurable influence on free-flight be-
havior. Whereas the neural mechanisms of this reflex remain
unknown, the differing responses to long and short objects
suggest that the two behaviors may be, at least partly, medi-
ated by different neural circuits (although it is likely that
many of the same cells are activated in both behaviors, espe-
cially near the sensory and motor periphery). An intriguing pos-
sibility is that the visual control of flight in Drosophila arises
from a handful of partly nonoverlapping sensorimotor neural
pathways, including long-object fixation [14], small-object re-
pulsion, expansion avoidance [4, 5, 26], optomotor equilibrium
[27], and landing responses [5, 28–30]. These innate behaviors,
and potentially others yet to be discovered, could additionally
be modified by learning [31]. The molecular tools available in
Drosophila should allow for a rich, mechanistic description of
each individual pathway. More significantly, however, elemen-
tary rules governing the interaction of these putative sensori-
motor modules may come into sharper focus, thereby allowing
for the formulation of a bottom-up, biologically driven theory of
behavior.

Supplemental Data

Additional Discussion, Experimental Procedures, and five figures are avail-

able at http://www.current-biology.com/cgi/content/full/18/6/464/DC1/.
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27. Götz, K.G. (1975). The optomotor equilibrium of the Drosophila naviga-

tion system. J. Comp. Physiol. [A] 99, 187–210.

28. Borst, A., and Bahde, S. (1988). Visual information processing in the fly’s

landing system. J. Comp. Physiol. [A] 163, 167–173.

29. Fischbach, K.F. (1981). Habituation and sensitization of the landing

response of Drosophila melanogaster. Naturwissenschaften 68, 332.

30. Srinivasan, M.V., Zhang, S.W., Chahl, J.S., Barth, E., and Venkatesh, S.

(2000). How honeybees make grazing landings on flat surfaces. Biol.

Cybern. 83, 171–183.

31. Heisenberg, M., Wolf, R., and Brembs, B. (2001). Flexibility in a single

behavioral variable of Drosophila. Learn. Mem. 8, 1–10.


	A Simple Vision-Based Algorithm for Decision Making in Flying Drosophila
	Results
	Free Flight
	Tethered Flight

	Discussion
	Supplemental Data
	Acknowledgments
	References


