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Two articles in this issue of Neuron (Eichner et al. and Clark et al.) attack the problem of explaining how
neuronal hardware inDrosophila implements the Reichardt motion detector, one of themost famous compu-
tational models in neuroscience, which has proven intractable up to now.
Motion detection is a critical aspect of

vision. It allowsanimals to locomote, avoid

collisions, detect predators and prey, as

well as reconstruct a model of the three

dimensional world. The neural mecha-

nisms of motion detection were first

described in insects by a simple model

put forth half a century ago. It consists of

two channels sampling changes in the

brightness of light at two distinct loca-

tions, whose outputs are multiplied after

delaying one of them. Subtracting two

such mirror symmetric ‘‘half-correlators’’

yields a signal that is positive for motion

in one direction and negative for the oppo-

site direction, resulting in a fully directional

motion detector. Graphically, the Reich-

ardt or Hassenstein-Reichardt correlator

is illustrated by the diagram of Figure 1A.

The multiplication operation central to

this algorithm was originally proposed, in

part, because when light of positive (ON)

or negative (OFF) polarity was delivered

to the two input channels in all four

sequence combinations, the resulting op-

tomotor responses (turning left or right),

followed the sign rule of a multiplication

(Figure 1B). The Reichardt model is

universal: variants of it are thought to

accurately describe motion detection

from insects to higher vertebrates,

including primates. Although much has

been learned about motion detection

since themodel was put forth, its biophys-

ical implementation has been very difficult

to pinpoint. Explaining how such an algo-

rithm is mapped onto neuronal hardware

would shed light on how multiplication

is implemented by neurons and neural

networks, an important step toward

understanding how the brain computes

based on sensory inputs (Koch, 1999).

To address this question, an impressive

collective effort has been undertaken in
the past 10 years, toward applying the

genetic tools developed over the past

century in the fruit fly Drosophila to the

visual system (Bellen et al., 2010). This

push is mirrored by a similar focus in

vertebrate systems neuroscience to study

vision in the mouse, where genetic tools

are also available. But whereas the

architecture of the mouse visual system

likely differs in important ways from those

of carnivores or primates, the circuitry

underlying motion detection is broadly

conserved across insects, including

Drosophila (Buschbeck and Strausfeld,

1996). As a result of this effort, transgenic

fly lines now allow the targeting of specific

cells in the visual system for inactivation

or imaging using genetically encoded

calcium indicators (Rister et al., 2007;

Gao et al., 2008; Mank et al., 2008).

Behavioral assays have been developed

that are amenable to simultaneous

neuronal monitoring and a complete

anatomical wiring diagram of the visual

system appears within reach (Seelig

et al., 2010; Maimon et al., 2010; Chklov-

skii et al., 2010). Taking advantage of

these tools, two groups describe their

first results concerning the mapping of

the Reichardt model onto neuronal hard-

ware. The minimal circuitry that is thought

to be involved in motion detection

consists of photoreceptors in the retina,

which synapse onto two types of large

monopolar cells called L1 and L2 in the

next neuropil, the lamina. These cells

project in turn onto neurons in themedulla

called Mi1 and Tm1 that contact T4 and

T5 cells before reaching large tangential

cells in the lobula plate that are well char-

acterized and known to represent the

output of the Reichardt model (Figure 1C).

The starting point of the first article, by

Eichner and colleagues (2011) (this issue
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ofNeuron), is the recognition that multipli-

cation over the entire range of negative

and positive brightness fluctuations, as

required by the Reichardt model, is

unlikely to be achieved by single neurons.

This led to the proposal that brightness

changes be initially half-wave rectified

and then multiplied, which should be

much easier to implement in single

neurons. That is, multiplication would

be carried out on signals that are clipped

at zero, sON(t) = max(0, s(t)) and sOFF(t) =

max(�s(t),0), resulting in four distinct

subbranches of the Reichardt model:

ON-ON, ON-OFF, OFF-ON, and OFF-

OFF, respectively (Figure 1B of Eichner

et al., 2011). Indeed, since this formulation

is equivalent to the original model,

a wealth of experimental data supports

it (e.g., Figure 2 of Eichner et al., 2011).

Yet, the tangential cell recordings re-

ported by Eichner and colleagues suggest

that half-wave rectification of fast bright-

ness fluctuations is not the only signal

driving the Reichardt detector: quite

remarkably, brightness changes occur-

ring up to 10 s earlier in the first stimulated

channel still impact changes in the

second one (their Figure 3). Clark et al.

(2011) (discussed below) essentially

confirms this result at the behavioral level

(their Figure 6D). This leads Eichner and

colleagues (2011) to formulate a model

that includes thesemuch slower changes,

or ‘‘DC’’ components (terminology bor-

rowed from electrical engineering; their

Figure 4A). As a byproduct, two of the

four subbranches of the original imple-

mentation, the ON-OFF and the OFF-

ON, can be entirely disposed of, while still

reproducing a wide range of experimental

data. The two remaining subbranches,

ON-ON and OFF-OFF, are naturally iden-

tified with L1 and L2 since their earlier
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Figure 1. Reichardt Correlator, Multiplication Sign Rule, and Associated Circuitry
(A) Schematics of the Reichardt correlation model. For simplicity, an initial stage emphasizing transient brightness changes (high-pass filter) has been omitted.
Green and red half-correlators are most sensitive to motion in the direction of the corresponding arrows.
(B) Top: the main stimuli used by Eichner et al. (2011) and Clark et al. (2011) are brightness step increases and decreases relative to a background level (dashed
black line), offset in time and of varying duration. Bottom: these stimuli lead either to turns from left to right (+) or vice-versa, following the multiplication sign rule.
(C) Schematics of minimal circuitry candidate to implement the Reichardt model. For reasons explained by Takemura et al. (2008), this circuit anatomy is not yet
definitively confirmed.
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characterization is compatible with half-

wave rectification (Reiff et al., 2010;

Joesch et al., 2010), leading to an

economical model that matches well the

known anatomy of the motion detection

pathway. A final experiment eliminates

DC components by presenting brief

brightness changes in the two input chan-

nels and concludes that the new model

accounts for this data while the original

Reichardt model does not. Thus, when

compared to the two subbranch model,

the four subbranch one appears convinc-

ingly ruled out.

The second article, by Clark and

colleagues (2011) (this issue of Neuron),

presents an extensive new set of experi-

mental andmodeling results that substan-

tially remodels the landscape sketched

above. In one of these experiments, the

calcium signals generated in response to

ON and OFF brightness changes, as well

as moving edges, are directly compared

in the axonal terminals of L1 and L2 for

the first time (Figure 4 of Clark et al.,

2011). Since L2was known to codemainly

for OFF brightness changes (Reiff et al.,

2010), a separation in two half-wave recti-

fied channels would predict that L1 codes

mainly for ON brightness changes. Rather

unexpectedly, this is not the case: the

calcium signals recorded from L1 are

very similar to those obtained from L2. In
1024 Neuron 70, June 23, 2011 ª2011 Elsevi
the next figure, Clark and colleagues

(2011) further test the hypothesis of half-

wave rectification at the level of L1 and

L2 by looking at the encoding of dynamic

random brightness changes. The encod-

ing is found to be largely linear, again

arguing against half-wave rectification

within L1 and L2. The earlier evidence

for half-wave rectification was obtained

by recording from tangential cells in

response to light (ON) and dark (OFF)

translating edges (Joesch et al., 2010). In

these experiments, selective inactivation

of L1 led to a loss of responses to ON

edges and L2 inactivation to OFF edges.

Clark and colleagues (2011) confirm this

finding at the behavioral level (their

Figure 3). Thus, taken together these

results suggest that half-wave rectifica-

tion has to occur downstream of L1 and

L2. However, the experiment discussed

next yields another surprise: Clark and

colleagues (2011) measure the turning

behavior of flies in response to all four

combinations of ON and OFF light pulses,

essentially repeating the original 1956

experiment of Hassenstein and Reichardt

with an important improvement. Now,

they can study the impact of L1 and

L2 by selectively inactivating them.

The strongest behavioral changes from

inactivation are observed in response to

OFF-ON and ON-OFF stimuli, with L1
er Inc.
coding for the first and L2 for the second

ones. Based on this insight, Clark and

colleagues (2011) point out that a dark

edge moving from left to right will not

only stimulate the half-correlator sensitive

to that direction ofmotion (the greenone in

Figure 1A of this preview), due to succes-

sive OFF-OFF brightness changes as the

edge passes by, but also the half-corre-

lator of opposite directional sensitivity

(the red one), since it will experience

a concurrent ON-OFF sequence of bright-

ness changes. Thus, according to this

view, dark edge selectivity does not arise

from a half-wave rectified pathway for

OFF edges, but rather through the

summed output of mirror symmetric

OFF-OFF and ON-OFF half-correlators.

The resultingmodel can indeed reproduce

the edge selectivity observed behaviorally

(their Figure 8).

Given these results and the different

conclusions about the internal structure

of the Reichardt correlator reached by

the two groups, one experiment that

would rank high on our wish list would

be to record from HS tangential cells in

response to all four combinations of

ON and OFF pulses during selective

inactivation of L1 or L2. The prediction

drawn from behavioral experiments is

that inactivation of L1 will abolish

responses to ON-OFF stimuli and vice
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versa for L2. Such an outcome would

confirm the behavioral results of Clark

et al. (2011) at the neuronal level and

help clarify the relative role played by

half-wave rectified (ON-ON, OFF-OFF)

versus mixed luminance (ON-OFF, OFF-

ON) channels along the L1/L2 pathways.

Alternatively, it may be that HS cells

are not the main determinants of the

observed behavioral output, although

earlier experiments generally suggested

this to be the case (Pflugfelder and Hei-

senberg, 1995). Even though the models

proposed by Eichner et al. (2011) and by

Clark et al. (2011) are quite different,

both of them reproduce a wide range of

experimental data. This results from the

inclusion of substantial nonlinear compo-

nents and the emphasis on different

contributions of L1 and L2 in motion

processing. We are optimistic that in the

near future, as these contributions are

considered simultaneously, as additional

experimental data become available and
additional cells in the circuit become

genetically targetable, they will converge

toward a unified picture of howDrosophila

neural circuits implement the Reichardt

correlation model. These are indeed

exciting times for Drosophila and, more

generally, insect vision.
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In this issue, two studies, one by Zhou and Desimone and another by Cohen and Maunsell, provide new
insights into the mechanisms of feature-based attention (FBA). The former demonstrates a new role of the
frontal eye fields in the origins of FBA and the latter shows that FBA is coordinated across both hemispheres.
The primate brain sensory systems have

a limited processing capacity. For

example, the visual system, comprising

nearly 50% of the neocortex, can only

effectively process a small percentage of

the information entering the retinas at

a given time (Van Essen et al., 1992). An

effective solution to this problem has

been to develop an attentional filtering

mechanism that separates relevant from

irrelevant incoming sensory signals in

order to concentrate processing re-

sources in the former. Two types of atten-
tional filtering have been identified—one

driven by bottom-up (stimulus saliency)

and the other by top-down (internal goals)

cues. Decades of experimental work have

also led to the identification of key struc-

tures and mechanisms that play specific

roles in both types of attention. For the

case of top-down attention, we have

learned that the responses of neurons

to visual stimuli in feature-selective and

retinotopically organized visual areas of

the macaque brain are strongly modu-

lated when animals attend to a stimulus
feature or location. This has led re-

searchers to classify the top-down atten-

tional modulation of visual neurons

response into feature-based (Treue and

Martı́nez Trujillo, 1999), spatial (McAdams

and Maunsell, 1999), and a third type

called object-based attention (Roelfsema

et al., 1998). One controversial topic in

attentional research has been whether

the two former types of attention share

similar neural mechanisms. In this

issue of Neuron, two different electro-

physiological studies using advanced
0, June 23, 2011 ª2011 Elsevier Inc. 1025

mailto:julio.martinez@mcgill.ca
http://dx.doi.org/10.1016/j.neuron.2011.06.001

	A Genetic Push to Understand Motion Detection
	References


