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Role of Nondirectional Mechanisms in Explaining
the Free-Flight Distributions

During flight, behavioral reactions to the long and short post
can be either directional (i.e., taxis) or nondirectional (i.e., kine-
ses). A directional mechanism would involve explicitly steering
toward or away from the objects. A nondirectional mechanism
would involve a change in translational speed or the rate of
turning as a function of distance to the objects. The role of
directional mechanisms in explaining the free-flight distribu-
tions is discussed in the main text (Figure 2).

To examine the role of non-directional mechanisms, we plot-
ted translational speed and angular velocity in the tunnel (Fig-
ures S2A–S2C) and found that the flies did in fact slow down
and turn more when they were within 3 cm of the long post—
a velocity pattern that may have contributed to the increased
residence probability near the long object. A decrease in trans-
lational speed is expected in this region because as the post
loomed, many animals exhibited a collision-avoidance sac-
cade, a stereotyped behavior that involves a transient de-
crease in flight speed [S1]. However, the attractiveness of
the long post was manifest at distances greater than 3 cm,
indicating that a spatial modulation of flight velocity was not
the only factor at play. The velocities of the flies in the presence
of the short post did not differ substantially from those in the
no-post condition, except for a weak increase in angular veloc-
ity (i.e., increased turning) 0–5 cm from the small object.

One can further assess the influence of flight speed by plot-
ting probability histograms in which bin values are incre-
mented when a fly first enters each tiny region, but not for sub-
sequent consecutive samples within the region. In these ‘‘flux’’
transit-probability histograms, slow- and fast-moving flies
contribute equally to the final distribution. We performed this
normalization, which removed w90% of the original sample
points (samples removed: 381728/426879 with the long post,
281353/314232 with the short post, 281353/314232 with no
post). The resulting distributions resembled the unnormalized
plots (Figures S2D and S2E), indicating that changes in flight
speed do not explain the major differences in the residence
probability across conditions.
Explanation of 1 Hz Behavioral Oscillation to Small Stripes

Presented in Open-Loop Directly in Front of the Flies
Small bars directly in front of the flies drove a 1 Hz oscillation in
the steering response (Figure 4B, middle row, right two col-
umns). These short-stripe oscillations were smaller in ampli-
tude and slightly phase advanced (w45�) to those driven by
a long stripe; however, they probably still reflected an attrac-
tive response because they were not 180� out of phase and
aversion did not typically show fast dynamics. These re-
sponses to small stripes oscillating directly in front of the ani-
mal suggest that many of our stimuli probably engaged both
the attractive and repulsive pathways simultaneously, albeit
with a relative strength that depended on stripe length. In
this view, the motor programs for attraction and repulsion
are not mutually exclusive and the net behavior of the flies
represents a summation of two parallel pathways, not a
‘‘winner-take-all’’ scheme [S2, S3].

Supplemental Experimental Procedures

Flies

We studied 3- to 5-day-old Drosophila melanogaster Miegen from our

laboratory stock. Flies were anaesthetized on a Peltier stage held at

w4�C, and females were selected for experimentation. The animals were

given at least 30 min to recover from anesthesia.

Free Flight

We placed flies in an enclosed tunnel (31 3 31 3 86 cm) and tracked their 3D

flight trajectories, which were reconstructed from five simultaneously cap-

tured 2D video images taken through the tunnel’s clear plexiglass ceiling

(see below). The arena was illuminated from above with infrared LEDs at

a wavelength to which the animals are blind (880 nm). The arena had a black

floor and white side walls. Green LEDs were used to back-project an array of

circles (w6 cm diameter) on the two long side walls of the tunnel. These

background patterns provided contrast to help the animals orient. In each

experiment, ten sated flies were placed in the arena for at least 12 hr. The

system could track up to two flies simultaneously, and it was rare that

more than two flies flew at once. During each 12 hr run, we recorded roughly

300 trajectories that were >3 s long, or w30 trajectories for each individual.

However, we could not uniquely identify individual flies, and thus our data

set contains pseudoreplication. We conducted three experiments with the

long post, three experiments with the short post, and four experiments

with no post. Data across different experiments were consistent and there-

fore combined for analysis. In post analysis, trajectories were purposefully

clipped 2 cm away from the arena’s walls, floor, and ceiling so as to remove

bouts of walking from the data set.

Free-Flight Tracking System

We used five monochrome digital cameras that captured images at 100

frames per s (model A602f, Basler Vision Technologies, Germany). Each

camera was connected via IEEE 1394 bus to a dedicated image processing

computer, which extracted the 2D position of the fly’s image by means of

a background subtraction algorithm. These coordinates were transmitted

over gigabit ethernet LAN to a central computer, which performed the 2D-

to-3D triangulation and tracking. The basic algorithm was a linear least-

squares fit of the intersection of N rays, defined by the 2D image points

and 3D camera centers of each of the N cameras [S4]. Only processed

data were saved, although some raw image sequences were also stored

for verification purposes. The mean re-projection error from the 3D coordi-

nates versus the original 2D image-space coordinates was less than

0.5 pixels.

With a simple dynamic model and Bayesian statistics in the form of a Kal-

man filter, an online prediction was made of the 3D position, velocity, accel-

eration, and associated covariance matrix of the fly in the current and sub-

sequent frames. The model, which was linear and discrete, was an update

matrix describing the laws of motion for a particle in which maneuvering

is performed through changes in acceleration. The prediction from the prior

frame was used in following frames so that we could determine which 2D

features, and which cameras, were most likely to contain useful information

about the position of the tracked fly. Trajectories ended when the fly had not

been observed for several frames.

Camera calibrations were obtained in two ways. First, we used a relatively

high-error calibration to estimate the camera centers with images of calibra-

tion objects and the Direct Linear Transformation (DLT) algorithm [S5].

Although this calibration can be used for tracking, it does not, in the form

we used, deal with optical distortions related to deviations from a pinhole

camera and it uses only a few, manually entered, 3D points and 2D image

locations. Therefore, we also used an automated ‘‘Multi-Camera Self Cali-

bration’’ algorithm and software [S6]. This method constrains the camera

locations by utilizing the inherent redundancy when three or more cameras

view a single 3D point. By recording raw 2D coordinates of fly positions as



Figure S1. Trajectory Start Locations Do Not Differ Appreciably between Free-Flight Conditions

We extracted the start location of trajectories within the imaged volume (2 cm inward from the top, bottom, and two side walls; w10 cm inward from the front

and back walls) and plotted this coordinate as a point on the nearest surface edge. For analysis, trajectories had to start within 4 cm of the top, bottom, and

two side walls and within w12 cm of the front and back walls.
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viewed by the individual cameras, for hundreds of different (unknown) 3D

locations, a single, overdetermined solution is made. The camera centers

from the DLT calibration are used to place this solution in lab frame coordi-

nates. As a final step, the software iteratively estimated a nonlinear radial

distortion term for each camera [6].

Tethered Flight

We attached a stainless-steel pin (127 mm diameter) to the fly’s anterior

notum by using ultraviolet-activated cement (Duro, Düsseldorf, Germany).

The tether was attached such that the flies were in a normal hovering flight

posture during experiments, with a pitch angle of w60� from horizontal (Fig-

ure 3A). For some flies, we immobilized the head by gluing it to the tether;

with other flies, we did not restrain the head (see below).

Flies were centered in a flight arena consisting of a cylindrical array of

LEDs (Figure 3A). The complete display consisted of 32 rows 3 96 columns

of LEDs at a 7 cm radius surrounding the fly (94� high; 360� around). Eight

columns of LEDs (w30�) were removed from the arena’s rear to allow for in-

serting the tethered animal. This open area resided within the blind spot in

the animal’s rear visual hemifield. The luminance of the fully lit arena was

72 cd/m2 [S7].

To measure steering responses, flies were illuminated with an infrared

diode from above so that the flapping wings cast oscillating shadows

over infrared sensors below, with one sensor per wing. The sensors yielded

oscillating signals whose amplitude and frequency provided a measure of

wing-stroke amplitude and frequency with time [S8]. The difference in bilat-

eral stroke amplitude is highly correlated with yaw torque [S9], thus indicat-

ing an intended turn. All tethered-flight data were sampled at 1 kHz.

In closed-loop experiments, the difference between the left and right

wingbeat amplitude was fed back to control the angular velocity of the visual

pattern, a 15�-wide vertical stripe. Stripe height varied pseudorandomly
across trials, ranging from 8� to 94�. We averaged 7.1 presentations of

each stripe per animal, 20 s per presentation. This yielded w2 min of

closed-loop data per stripe (min 40 s; max 160 s). Between stimuli, we

always showed the flies a full-length (94�-high) stripe for 8 s. Because the

animals stabilized long stripes in the front visual field, this tended to stan-

dardize the behavioral state and stimulus position prior to each trial. The

long-stripe intertrial data are shown in the gray windows of Figure 3B and

the left-most column of Figure 3D.

To create the polar plots in Figure 3, we ran a 2 s boxcar filter through the

data at 200 ms steps. At each filter location, we treated the 2000 associated

angular stripe positions as unit vectors and calculated their mean. The angle

of this mean vector denoted the average stripe position within the window.

The eccentricity (r) of the mean vector provided a measure of dispersion

(r z1 indicates low dispersion; r z 0 indicates high dispersion). We dis-

carded the first two seconds of data for each stimulus to reduce any residual

effects of the response to the stripe presented between trials. The polar

plots allowed us to classify the behavior into three categories. Points with

r > 0.6 and angles in the front hemifield denoted ‘‘fixation’’ (stripe was

kept stably in the front). Points with r > 0.6 and angles in the rear hemifield

denoted ‘‘antifixation’’ (stripe was kept stably in the back). Points with r < 0.6

denoted ‘‘spinning’’ (instability). Closed-loop data are shown only for head-

glued flies. Head-free flies predominantly spun, rather than antifixated, the

small stimuli, probably due to stimulus jitter associated with unmeasured

head movements.

In the primary open-loop experiment (Figure 4), we presented flies with an

oscillating 15�-wide vertical stripe of varying heights (8�–94�) and measured

steering responses. Between stimulus presentations, we allowed the flies to

fixate a long stripe in closed loop for 10 s. This returned the animals to

a zero-mean turn response prior to the next trial. Stimuli were presented

in a pseudorandom order for at least 10 s per presentation. Each stimulus



Figure S2. Nondirectional Changes in Free-Flight Velocities Do Not Fully Explain the Free-Flight Aggregations

(A) Mean translational speed, calculated using the central difference method and after collapsing all data to the x-y plane.

(B) Mean absolute value of angular velocity, calculated after collapsing all data to the x-y plane.

(C) Mean 3D angular velocity, calculated with the dot product between adjacent 3D heading vectors.

(D) Residence probability.

(E) Flux transit probability, in which histogram bin counters were only incremented when a trajectory first entered an x-y bin, but not for subsequent samples

in the bin, thus normalizing for differences in flight speed. All plots in this figure show data from a 15-cm-thick middle z slice for better comparison of the

long- and short-post data. White dots indicate the location of the posts, to scale.
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was repeated one to four times per animal (mean 2.4). In a second open-loop

experiment (Figure S5), we rotated either a 94�-high or 8�-high stripe (15�

wide) around the animals at varying speeds, clockwise or counterclockwise.

Between stimulus presentations, we allowed the flies to fixate a long stripe

in closed loop for 10 s. Stimuli were presented for 2 s, or one full rotation cy-

cle, whichever was longer for a given rotation speed. Each stimulus was pre-

sented in pseudorandom order, one to five times per animal (mean 3.8). In

open-loop analyses, we pooled data from head-glued and head-free flies

because these groups provided qualitatively similar results.
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Figure S3. Male Drosophila Are Attracted to Long Stripes and Repelled by Short Stripes in Closed-Loop Tethered Flight

Data plotted in the same format as Figure 3D.
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Figure S4. Flies Are Attracted to Long Stripes

and Repelled by Short Stripes Independent of

the Contrast Sign of the Stimulus

Closed-loop tethered-flight data plotted in the

same format as Figure 3D. For each fly, we alter-

nated between blocks of dark stripes, our typical

stimulus, and bright stripes. Thus, the same 20

flies contributed data to each plot. For data pre-

sented in other figures, tethered-flight experi-

ments were conducted in a dark room. However,

when the bright stripe was the only source of

luminance, we were concerned that its diffuse re-

flection might interfere with normal fixation be-

havior. For this reason, we turned on the over-

head halogen lights during these experiments

(for both dark and bright stripes) to reduce the

contrast of the reflection. With halogen lights

on, the Michelson contrast [(lmax 2 lmin)/(lmax +

lmin)] was 0.883 for the bright stripe and 0.716

for the dark stripe (luminances of the stripe and

a patch of LEDs immediately adjacent to the

stripe were measured with a Minolta Chroma-

meter CS-100A). In a dark room, contrast values

were 0.996 for the bright stripe and 0.812 for the

dark stripe. A prior brief report (Figure 109 in

[S10]) suggested that Drosophila are innately at-

tracted toward long dark stripes but are repelled

by, or show ambiguous behavior in response to,

long bright stripes. In our experiments, however,

flies responded similarly to dark and bright

stripes. There are several possible explanations

for this discrepancy, including differences in

closed-loop feedback gain, closed-loop appara-

tus (torque meter versus optical wingbeat ana-

lyzer), visual presentation (LED array versus

backlit drum), genetic background of flies tested,

and rearing conditions.
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Figure S5. Long-Stripe Attraction and Short-Stripe

Repulsion Differ in Sensitivity to Stimulus Speed

and Direction

(A) Averaged turn responses of 15 flies to a 94�-high

or an 8�-high stripe rotated around the arena in open-

loop. Positive L-R WBA indicates turns to the right.

Positive stimulus positions indicate bar locations

on the left, and vice versa (note, however, that the

stimulus position’s y axis has been flipped, with pos-

itive values downward, so that turns toward the stim-

ulus bring the steering-response and stripe-position

curves closer together). 0� indicates the bar was

directly in front of the flies. Standard errors are

shown as gray regions around each curve.

(B) Mean responses are plotted as a function of stim-

ulus speed. Responses from the first 40% of the rota-

tion cycle—during back-to-front motion—are plotted

in light red for individual flies and in dark red for the

average (6SEM). Responses from the final 40% of

the rotation cycle—during front-to-back motion—

are plotted in gray for individual flies and in black

for the average (6SEM). Clockwise and counter-

clockwise stimulus presentations were combined,

and L-R WBA responses were inverted, as neces-

sary, so that positive values indicate turning toward

the stripe and negative values indicate turning away

from the stripe.
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