
Test Driven Development
with a MATLAB example

Mike.Park@NASA.Gov
Computational AeroSciences Branch

FUN3D Software Development Team

2 April 2009



Sidebar before we start. . . Software Versioning
System

Git - http://git-scm.com/

Subversion - http://subversion.tigris.org/

CVS - https://www.cvshome.org/

Often overlooked or under emphasized

Zeroth principle of software engineering

Learning to work with it and not against it is key

personal and team programming (glue)

Safety net

Large impact on “Truck Number”

Convenient for accounts on multiple machines

Required for automated testing

Not just for software anymore

presentations, configuration files, home accounts

1



Why? (a CFD Developer’s Perspective)

Multidisciplinary problems require multiple discipline
experts, a large infrastructure, and standard interfaces

Reduce time from concept to application for vehicles and
algorithms

Mobility to respond to unforeseen challenges and increase
software lifespan

Research capabilities in a “production” code

Infrastructure to evaluate algorithms on large problems

Flexibility for implementing research algorithms

Stability to suit time-sensitive application needs and to
release to outside customers

Avoid being encumbered by high-ceremony software
development process

2



Software Testing
All of these can (and should) be automated!

Programmer’s I want a function that adds vectors, does
f([1,2], [3,4]) return [4,6]? (unit tests)

Integration Does my whole system compile and work
together?

Regression My code gave result x yesterday, does it give
answer x today?

Verification My code is supposed to exactly give this analytic
result, does it?

Validation Does my code give the same answer as a bench top
test or fight test measurement?

3



Unit Testing and Test Driven Development

Seems trivial at first

Hard to imagine benefit until the first major refactoring or

code simplification is experienced

Gains power as the number of tests and their coverage

increases

Your own custom debugger

Provides a clear completion to an implementation task

Code with a failing test is much easier to fix or extend

Inventing the tests required is generally harder

Code that is easy to test is often simpler and easier to read,

understand, and extend

Creating tests brings the design to the forefront; design is

difficult, but it is easiest in small increments

4



Test Driven Development Rhythm

Add a broken test

that covers the capability that you want to add or bug

you wish to fix

Run all tests, make sure that new one fails

to test the test and framework

Write simplest code possible

to satisfy the test, don’t get a head of yourself

Run all tests

to make sure that the new code fixes the new test and

does not break existing capability

Refactor

to clean up new code and remove duplication

5



Unit Testing Frameworks

Goals

Interface must allow for the easy creation and

management of tests

Minimal additional effort over writing the actual code

(benefit–cost)

Enable programmers to experience the benefits of

test-first programming as soon as possible

Legible as documentation

Flavors

http://c2.com/cgi/wiki?TestingFramework

Full featured (scripting languages)

Minimalistic (four lines of code)

Wrap code to utilize scripting language framework

“Roll your own”

6



Pair Programming

Two programmers work together at one computer on the

same task

One person driving the other navigating

Switch jobs when ever person driving can not follow the

navigator (navigator feels frustrated or driver feels lost)

Pairing station really helps

Great for debugging, knowledge transfer

Impeded by scheduling conflicts (i.e., the other stuff at

NASA)

7



MATLAB Example with Pairing

8



Appendix on Software Development Practices

9



Software development practices

�
�
�
�
�
��

T
T
T
T
T
TT

Ad hoc

AgilePlan-driven
“Kleb Triangle”

Ad hoc

“Code and Fix”

Plan-driven

Predictive, “Big up front design”

Delivering to the original contract

Capability Maturity Model (CMM), CMMI

Agile

Adaptive, “Evolutionary design”

Recognizes software development an empirical process

that can not always be defined

Extreme Programming

10



The Agile Manifesto values

individuals and interactions

over processes and tools

working software

over comprehensive documentation

responding to change

over following a plan

customer collaboration

over contract negotiation

11



Extreme Programming values

communication

simplicity

feedback

courage

12



Extreme Programming Practices

Sustainable pace productivity does not increase with hours worked.

Metaphor guide all development with a simple shared story of how the

whole system works.

Coding standard write all code in accordance with rules emphasizing

communication through the code.

Collective ownership anyone can change any code anywhere in the

system at any time.

Continuous integration integrate and build the system many times a day.

Small releases release new versions on a very short cycle.

13



Extreme Programming Practices (concluded)

Test-driven development any program feature without an automated

test simply does not exist.

Refactoring restructure the system without changing its behavior.

Simple design system should be designed as simply as possible at any

given moment.

Pair programming two programmers work together at one computer on

the same task.

On-site customer include a real, live user on the team.

Planning game combine business priorities and technical estimates to

determine scope of next release.

14



FUN3D Development

Sustainable pace work ∼40 hour weeks.

Metaphor engineering and scientific vocabulary (ρ, u, v, w).

Coding standard published to aid portability, automated parsing, and

collective ownership.

Collective ownership routinely fix minor bugs or extend methods created

by other people. Anyone is allowed to modify any file at anytime

through SVN.

Continuous integration very slow: Linux builds every 2-3 hours, SGI

builds every 8-9 hours.

Small releases application members of the team use (SVN), formally 2-3

times a year

15



FUN3D Development (concluded)

Test-driven development limited use in flow solver, extensive use in

scripting and grid adaptation.

Refactoring done only when necessary, extremely difficult, painful, and

nerve-racking without unit tests.

Simple design born as a result of refactoring and pair programming.

Pair programming limited to mostly debugging, knowledge transfer;

impeded by scheduling conflicts.

On-site customer research: we are our own customers?

Planning game comes more naturally in pair programming scheduling.

16



Communication

Collocation

Email list

WikiWikiWeb – http://c2.com/cgi/wiki?WelcomeVisitors

Scrum status meetings

What they did since last meeting

What they will do by next meeting

What got in the way (impediments)

Quick and efficient meeting style

Reduces the worst management sin (wasting people’s time)

The impediments is the often the hardest to express, but

the most important.

17


