
Unit Testing in Xcode 5
Josh Hinman	


Lead iOS Developer, Defy Media	


@joshhinman	


http://joshhinman.com

http://joshhinman.com


Types of tests

• Build+Run	



• Unit testing	



• Integration testing	



• Performance	



• Usability



Types of tests

• Build+Run	



• Unit testing	



• Integration testing	



• Performance	



• Usability



A unit test is a piece of 
code that tests another 

piece of code.



Monkey.h

@interface Monkey : NSObject!
!
@property (nonatomic, getter=isHungry) BOOL hungry;!
!
- (void)eat:(Banana *)banana;!
!
@end



Start with a requirement.

“When the monkey eats a banana, 
his hunger should be satisfied.”



Set pre-conditions

Exercise the method

Check post conditions

id b = [OCMockObject mockForClass:[Banana class]]; 
Monkey *monkey = [[Monkey alloc] init]; 
monkey.hungry = YES;

[monkey eat:b];

XCTAssertFalse(monkey.hungry);

Testing the Monkey class



Unit tests are:

• Isolated	



• Automated	


• via continuous integration when possible (Jenkins, Travis 

CI, Xcode Server)	



• Enforce requirements and contracts



Why write tests?

• Isolate problems	



• Including design problems!	



• Fearless refactoring	



• Prevent embarrassing regressions	



• Write better code!



Workflow



Workflow
Gather requirements

Done!

Write code

Write tests



Workflow
Gather requirements

Done!

Write code

Write tests



Workflow
Gather requirements

Done!

Write code

Write tests

Test-driven



Start with a requirement

“When the monkey eats a banana, 
his hunger should be satisfied.”



Start with a requirement
- (void)testMonkeyEatsBanana 
{ 
// preconditions 
id b = [OCMockObject mockForClass:[Banana class]]; 
Monkey *monkey = [[Monkey alloc] init]; 
m.hungry = YES; 
!
// test 
[monkey eat:b]; 

!
// postconditions 
XCTAssertFalse(monkey.hungry); 

}



Benefits of test-first

• YAGNI (you ain’t gonna need it)



Obligatory XKCD



Benefits of test-first

• YAGNI (you ain’t gonna need it)	



• Everything line of code you write has value



Benefits of test-first

• YAGNI (you ain’t gonna need it)	



• Everything line of code you write has value	



• Confidence to refactor	



• Red, Green, Refactor	



• Early encouragement	



• It really is the only way to get good coverage.



Where Unit Tests won’t help

• Misunderstood requirements	



• UI code is particularly hard to test	



• Errors in integration



Demonstration.



More Information

Test-Driven iOS Development
Graham Lee

http://www.amazon.com/dp/0321774183/

OCMock Framework
http://ocmock.org

Testing in Xcode 5
https://developer.apple.com/wwdc/videos/?id=409



The end.


