
Aricie.LuceneSearch

Documentation

Latest update: February 2013

Module version: 1.7.1

Aricie.LuceneSearch Documentation 1

Aricie.LuceneSearch Documentation 2

Table of contents

1 About the module

2 Step-by-step installation

2.1 Prerequisites

2.2 Install the module

2.2.1 Install latest Aricie libraries (required)

2.2.2 Install the LuceneSearch PA

3 QuickStart

4 Concepts

4.1 Lucene

4.2 Native search items

4.3 Providers

4.4 Search vs filtering

4.4.1 Url parameters

4.5 Skin object and integration in skins

4.5.1 Installation

4.5.2 Configuration

5 Configuration

5.1 Portal settings

5.1.1 Indexing tab

5.1.2 Existing index tab

5.1.3 Search behavior tab

5.1.4 Autocomplete tab

5.1.5 Sitemap settings tab

5.1.6 Logs tab

5.1.7 Commands

5.2 General settings

Aricie.LuceneSearch Documentation 3

https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.gjdgxs
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.gjdgxs
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.30j0zll
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.30j0zll
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.1fob9te
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.1fob9te
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.3znysh7
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.3znysh7
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.2et92p0
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.2et92p0
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.tyjcwt
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.tyjcwt
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.3dy6vkm
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.3dy6vkm
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.4d34og8
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.4d34og8
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.2s8eyo1
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.2s8eyo1
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.17dp8vu
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.17dp8vu
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.3rdcrjn
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.3rdcrjn
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.26in1rg
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.26in1rg
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.lnxbz9
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.lnxbz9
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.35nkun2
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.35nkun2
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.1ksv4uv
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.1ksv4uv
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.44sinio
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.44sinio
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.2jxsxqh
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.2jxsxqh
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.z337ya
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.z337ya
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.3j2qqm3
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.3j2qqm3
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.1y810tw
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.1y810tw
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.4i7ojhp
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.4i7ojhp
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.2xcytpi
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.2xcytpi
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.1ci93xb
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.1ci93xb
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.3whwml4
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.3whwml4
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.2bn6wsx
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.2bn6wsx
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.qsh70q
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.qsh70q

5.2.1 Search layout tab

5.2.2 Search behavior tab

5.2.3 Results layout tab

5.2.4 Results behavior tab

5.2.5 Results template tab

5.2.6 Results highlights tab

5.2.7 Commands

6 How to

6.1 Search the content of doc and pdf documents?

6.2 Use a custom control for filters

6.3 Use a custom control for results?

6.4 Tweak the returned results?

6.5 Use the tokens available in the results?

6.5.1 Content related tokens

6.5.2 DotNetNuke related tokens

6.5.3 Search related tokens

7 Support

Aricie.LuceneSearch Documentation 4

https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.3as4poj
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.3as4poj
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.1pxezwc
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.1pxezwc
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.49x2ik5
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.49x2ik5
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.2p2csry
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.2p2csry
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.147n2zr
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.147n2zr
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.3o7alnk
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.3o7alnk
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.23ckvvd
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.23ckvvd
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.ihv636
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.ihv636
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.32hioqz
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.32hioqz
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.1hmsyys
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.1hmsyys
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.41mghml
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.41mghml
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.2grqrue
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.2grqrue
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.vx1227
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.vx1227
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.3fwokq0
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.3fwokq0
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.1v1yuxt
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.1v1yuxt
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.4f1mdlm
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.4f1mdlm
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.2u6wntf
https://docs.google.com/document/d/sId5gMmT_CQhc4eEpR65jVQ/headless/print#heading=h.2u6wntf

1. About the module

Aricie – LuceneSearch (LS) is a search module for DotNetNuke that replaces the native search

module and provides much more advanced features, flexibility and power to your website. Based

on the ubiquitous Lucene engine, the module plugs directly into the DotNetNuke architecture for

all you search needs. It goes beyond the default search engine bundled with DotNetNuke and also

sidesteps some of the limitations you may encounter in the DotNetNuke ecosystem by letting you

create search providers for modules that don’t support DNN search natively, customizing how your

search results are displayed, storing unlimited fields for your content, etc.

When you install LS, it comes bundled with a list of providers for commonly used modules and is

ready to search your indexed data. From there, you can define new data to search as well as the

way you want to search and display this data.

Required DNN version: 4.8.1 or above.

This documentation was created based on DNN 6.1 and the 1.7.1 version of LuceneSearch.

Aricie.LuceneSearch Documentation 5

2. Step-by-step installation

1. Prerequisites

To install the module on your DotNetNuke site, you need to have a DotNetNuke installation at

least version 4.8.1. Please note that LuceneSearch uses features from the .Net framework 3.5.

2. Install the module

To install LS on your website, please follow these steps

1. Install Latest Aricie libraries (required)

You must install the Aricie.Shared common module, which is available on

http://www.aricie.com. In order to install it, you can follow the same instructions as the

ones to install the LuceneSearch PA.

2. Install the LuceneSearch PA

1. Download the Aricie LuceneSearch module in the Download section of our website,

www.aricie.com

2. Connect to your DotNetNuke site as Host

3. Go to Host > Extensions

4. Click Install Extension Wizard

5. Click on the Browse button and select the Aricie.LuceneSearch.x.x.x.Release.zip file

6. Click Next

7. You may receive a message warning you about file types that may not be accepted by

your website. This is due to some of the files in the LuceneSearch package such as

webservices, synonyms files, etc. Please check the check box to let the package install

correctly and then click Next.

8. On the package information display click Next.

9. The release notes will contain any important information regarding a new version. You

don’t have to install incremental upgrades, you can go straight with the version you

want to install. Click Next.

10. Next is the licence agreement. Check the box and click Next.

Aricie.LuceneSearch Documentation 6

http://www.google.com/url?q=http%3A%2F%2Fwww.aricie.com&sa=D&sntz=1&usg=AFQjCNGNITs5FjlFzMLWMLoNNUnM_0LZEQ
http://www.google.com/url?q=http%3A%2F%2Fwww.aricie.com&sa=D&sntz=1&usg=AFQjCNGNITs5FjlFzMLWMLoNNUnM_0LZEQ

11. Once the module is successfully installed, click Return

Ɣ That’s it! Now you are ready to add your module to a page.

IMPORTANT: Some errors may appear in red during installation. If such an error happens, please

check first if it is not a dependency error (in which case you may want to check if you installed the

Aricie.Shared module). If you did, then don’t hesitate to take a screenshot and send it to

support@aricie.fr for us to have a look at it.

Aricie.LuceneSearch Documentation 7

mailto:support@aricie.fr

3. QuickStart

To install LS, please follow the standard DotNetNuke installation procedure. Below is a quickstart

setup procedure using DotNetNuke 6.1. The process should remain the same for all supported

versions.

Add the module to the page where you want to use LuceneSearch:

Once the module is installed you will have to register it into the

DotNetNuke architecture. To do so, you must click on the Install

LuceneSearch action command that appears in the module actions,

under the Manage button for the module.

The module warns you that it isn’t installed correctly in the

web.config file. Click on the Install LuceneSearch link to confirm the

installation

Now the default interface of LuceneSearch shows up.

Aricie.LuceneSearch Documentation 8

No type is available because no data has been indexed yet. To index data you must configure

LuceneSearch to tell it what data it needs to process. Go to the “portal settings” action in the

manage menu

In the Indexing tab, select the modules whose content must be handled by LuceneSearch.

We are going to finish our quickstart by forcing DotNetNuke to re-index its data; this way

LuceneSearch will get to process the data needed and populate its index for the first time.

Go to Host > Search Admin, and there click the “Re-index content” link. After a while, the indexing

will be done and you LuceneSearch module is ready to display the data it found.

Aricie.LuceneSearch Documentation 9

Get back to your LuceneSearch module. The Type filter is now visible in the interface and provides

the type of contents to search. Enter ‘cycles’ (DNN 6.1 default template is for a cycle store, so

there will be hits for this term) and see what comes out of your first search.

That’s it, we have our first result and you completed the setup for LuceneSearch. You can now start

using its features which are further detailled.

Aricie.LuceneSearch Documentation 10

4. Concepts

1. Lucene library

From Wikipedia:

Apache Lucene is a free/open source information retrieval software library, originally created in

Java by Doug Cutting. It is supported by the Apache Software Foundation and is released under the

Apache Software License.

Lucene is based on a field concept, where a field and its content are added to the Lucene index

and queries can be run against these fields. There is no predefined structure to the Lucene index,

and different information and fields can be stored.

LuceneSearch takes advantage of this field concept by storing the original data coming out of the

DotNetNuke search engine indexation and adding its own data to the structure it is given.

Aricie.LuceneSearch Documentation 11

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFree_software&sa=D&sntz=1&usg=AFQjCNFj4GeubHfhh0pc1Tt3kO_cbCIZxw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FOpen_source_software&sa=D&sntz=1&usg=AFQjCNG9ZPJxr5URsLN1NmRDMEK7RXpLTA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FInformation_retrieval&sa=D&sntz=1&usg=AFQjCNEDKbn5Om6of_Fm0A2GpZNQLP7Qjg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLibrary_%2528computing%2529&sa=D&sntz=1&usg=AFQjCNGwPIwlLDw9fV1E7Mj6KOQoJQZULA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FJava_%2528programming_language%2529&sa=D&sntz=1&usg=AFQjCNHD8Htcn2qvxiV9SVgBAT9xAzqgCw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDoug_Cutting&sa=D&sntz=1&usg=AFQjCNHoeg-nvKp5DCLWXzNZJ9XGlEo5qw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FApache_Software_Foundation&sa=D&sntz=1&usg=AFQjCNGLZ-kfwpqAwJ9wE_sdNF18UiiHcw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FApache_Software_License&sa=D&sntz=1&usg=AFQjCNG2JBfhCr8-680opunb8zeve89EsQ

2. Native search items

In order to be searchable, a module must implement ISearchable from the DotNetNuke

framework. This interface allows it to return search items that will be then passed by DotNetNuke

onto the search engine that is configured.

Since LuceneSearch follows the conventions of the DotNetNuke search system, any module that

declares itself searchable will be handled automatically by LuceneSearch.

Aricie.LuceneSearch Documentation 12

3. Providers

What’s more, it is also possible to replace the behavior of a searchable module through

LuceneSearch custom providers. These providers can complete and replace search behaviors for

modules. They can even implement search behaviors for modules that don’t allow native search.

A series of tutorials tells you how to create your own providers.

Providers in LuceneSearch: part 1 – standing on the shoulders of giants

Providers in LuceneSearch: part 2 – pretenders and replacements

Providers in LuceneSearch: part 3 – going solo

LuceneSearch comes with a suite of providers which will help you hit the ground running.

Ɣ AjaxFAQ

Ɣ DNNArticle

Ɣ DocumentExchange

Ɣ Document

Ɣ EngagePublish

Ɣ Forum

Ɣ LiveTabs

Ɣ NewsArticle (articles and latest articles)

Ɣ PackFlash

Ɣ PropertyAgent

Ɣ Repository

Ɣ UltraMedia Gallery

We are also available to code providers to any module you desire. Please contact us directly at

support@aricie.fr for more information.

marque page TCH 28/02/13

Aricie.LuceneSearch Documentation 13

http://www.google.com/url?q=http%3A%2F%2Fdotnetnuke.aricie.com%2FDefault.aspx%3Ftabid%3D358%26EntryId%3D10%26language%3Dfr-FR&sa=D&sntz=1&usg=AFQjCNGiQCEniCVvml4sE30S-QEr3efCvA
http://www.google.com/url?q=http%3A%2F%2Fdotnetnuke.aricie.com%2FDefault.aspx%3Ftabid%3D358%26EntryId%3D11%26language%3Dfr-FR&sa=D&sntz=1&usg=AFQjCNFOgaF4wNLjgnrjxxwBksAWVFYCyg
http://www.google.com/url?q=http%3A%2F%2Fdotnetnuke.aricie.com%2FDefault.aspx%3Ftabid%3D358%26EntryId%3D12%26language%3Dfr-FR&sa=D&sntz=1&usg=AFQjCNHFJ9ceuOGCgQsQJuGryVc4hYcx7A
mailto:support@aricie.fr

4. Search vs filtering

There are two ways LuceneSearch can help you find content you need: search and filters.

Search will be run against the fields you configured either at the portal level or the module level

(see 5.1.3 Search behavior tab and 5.2.2 Search behavior tab). What you type in a search element

is directly taken into account by Lucene since it is taken into account as a string.

Filters are more declarative; they define at declaration time what fields they will query on and

return a Lucene query directly.

In this example from the light filter search, keywords are a search field, and the module selection

control as well as the page selection control are filter fields. This is because we know that they will

have to be focused on one specific field in the LuceneSearch index.

1. Url parameters

Every time LuceneSearch refreshes the page, every parameter (search of filter) is passed in the url

for the LuceneSearch module to retrieve them if possible. Such a refresh can occur when the

current LuceneSearch module doesn’t use Ajax, or if you configure it to redirect to another page.

In some cases, it is possible that the url contains search parameters that will not be usable by the

destination LuceneSearch module. If you start from a LuceneSearch module that filters on the

module name of your content and redirects to another LuceneSearch module without any filter

displayed, the destination module will pick up the url parameters to use them. It will try to match

its own filters and search controls to what was passed in the url and – failing – will apply them

directly to the Lucene query. However, if you are connected as an administrator of the module, it

will display a warning message.

Aricie.LuceneSearch Documentation 14

This message is only displayed if you are connected as an administrator and serves only as a

warning against incorrect configuration. Users won’t see it and it doesn’t prevent the search from

being launched.

Aricie.LuceneSearch Documentation 15

5. Skin object and integration in skins

LuceneSearch comes with a skin object that can replace the native search skin object from

DotNetNuke. This skin objects handles the auto completion feature and search redirection to

LuceneSearch if needed.

1. Installation

You have to declare the skin object [LUCENESEARCH] in your skin.

 In the menu Host/Extensions, click “Create New Extension”, declare a new Skin object called

LUCENESEARCH pointing to the SearchSkinObject.ascx control in LuceneSearch.

Go into the skin used for the portal. Replace the DNN token [SEARCH] by the new token

[LUCENESEARCH].

2. Configuration

It is possible to configure the skin object to behave according to what is needed by your skin.

Ɣ ResultsTabId: lets you specify the page you want the skin object launch the search on.

Ɣ UseLanguageFilter: automatically filter the query with the current locale.

Ɣ Submit: submit text

Ɣ CssClass: define the css class on the command button

Ɣ ShowFilter: display module filtering

Ɣ DisableFuzzyRatio: disables the fuzzy factor in the search query

Ɣ SubmitImageURL: url for the image button

Ɣ IncludeSkinObjectCSS: lets the skin object include its css. If true, the SkinObjectCSS

parameter is used

Ɣ SkinObjectCSS: the path to the CSS to include if necessary. By default, the included css is

the same one as shown on http://www.aricie.com

Ɣ LocalResourceFile: resource file used for translations

Aricie.LuceneSearch Documentation 16

http://www.google.com/url?q=http%3A%2F%2Fwww.aricie.com&sa=D&sntz=1&usg=AFQjCNGNITs5FjlFzMLWMLoNNUnM_0LZEQ

5. Configuration

1. Portal settings

LuceneSearch works independently on each portal in a website. So the portal settings are shared

between all LuceneSearch modules in this portal. Here is a look at what is available for

configuration

1. Indexing tab

The indexing tab drives what data will be indexed and how.

Path to index folder: for each portal a Lucene index must be created. This is the name of the folder

where the Lucene index will live.

Search modules: this list contains everything that can be indexed by the LuceneSearch module,

whether it is a native module or a provider that adds data or replace the module behavior.

Set portal locale as default: LuceneSearch handles locales during its indexation if they are

available. However locales are not supported by the native DotNetNuke search system and native

modules won’t be able to register the culture they are related with. Checking this setting will

Aricie.LuceneSearch Documentation 17

automatically add the current portal’s default language to the indexed data.

Use language-specific analysers: analysers in Lucene are tools that will try to determine whether

two words are supposed to be the same: “indexed” and “indexing” are two different words yet

they share a common root. If checked, LuceneSearch will only keep the root data for these two

words and will match them both to a search for “indexation”

ż
Important: you should clear the index or wait until it is naturally
updated, since the tokenizer used at query time must match the
tokenizer used at index time for accurate results.

Enable content taxonomy indexing: This setting is only visible if the standalone taxonomy

provider is enabled in the configuration of LuceneSearch. If checked, special items will be created

as taxonomy documents. These taxonomy documents will try and redirect you to the search

interface

Enable linked documents indexation: This setting is only visible if the reflexive provider is

enabled in the configuration of LuceneSearch. If checked, the LuceneSearch engine looks for

documents in the content that has already been indexed. These documents’ indexation will be

configured by the following two parameters

Reflexive indexation: accepted file extensions: lists the document extensions (separated by

semi-columns) that the reflexive provider will look for.

Reflexive indexation: maximum operation time (seconds): sets the maximum time to spend

indexing the documents before continuing. Since documents can take a long time to index,

LuceneSearch acts in incremental steps. This setting allows the indexation to stop after the

elapsed time and resume in the next indexation.

Aricie.LuceneSearch Documentation 18

Enable document indexation: if checked, the LuceneSearch engine will look for documents in the

portal folders on the server disk. These documents’ indexation will be configured by the following

two parameters. Please see 6.1 Search the content of doc and pdf documents.

Indexed Documents: lists the document extensions (separated by semi-columns) to be indexed.

Portal Folders to index: a checkbox list of the folders that exist under the portal folder on the

server disk. Each folder will be searched for documents with an extension in the Indexed

Documents parameter.

2. Existing index tab

The existing index settings handle how LuceneSearch will handle the creation and old items

management.

Upgrading duration: lets you define how long in seconds the upgrade process of LuceneSearch will

Aricie.LuceneSearch Documentation 19

last. The upgrade step usually is the longest operations in the indexation, such as parsing and

indexing an external document, or making use of a very big datasource.

Indexing duration: lets you define how long in seconds the storage process of LuceneSearch will

last.

Max nb documents per commit: The maximum number of documents that LuceneSearch will store

in one go. This parameter can be tweaked for optimized performance purposes. Since

performance depends on the documents type and size, it should be configured depending on your

data.

Max indexed age: Sets the age after which a document is declared as obsolete.

Min nb of documents to turn over: the minimum number of documents that will refreshed during

each indexation.

Old documents indexing ratio: the ratio of documents that will be refreshed during each

indexation.

Trust publication dates: LuceneSearch tries to optimize the time spent indexing by checking if the

publication date of an item is more recent than the latest indexation. However some modules

don’t fill in the publication date correctly when returning the data natively, and this setting lets

you ignore the publication date returned.

3. Search behavior tab

Aricie.LuceneSearch Documentation 20

The search behavior regroups the configuration of how the data will be searched.

Use shared index reader: a common index reader is shared and kept open across the various threads and

functions querying the index. Otherwise, a specific index reader is created and closed on each operation.

Desktop filter values: this list lets you define what modules will appear in some filter menus in

the UI.

Search fields: you can define the fields that will be searched by default on the whole portal. You

will be able to override these values at the module level.

4. Autocomplete tab

Aricie.LuceneSearch Documentation 21

The autocomplete adds an autocomplete behavior to the LuceneSearch skin object in order to

allow fast search from anywhere on the skins.

Enable autocomplete: check to enable autocomplete feature.

1. Server settings

Min size for autocomplete: the autocomplete will be triggered after this number of characters has

Aricie.LuceneSearch Documentation 22

been typed in the skin object textbox

Number of search results: the autocomplete will return at most this number of results.

Fields returned: you can configure what fields will be returned by the server to your client-side

object. This is so you won’t send on the wire unused data.

Sorting fields: you can define what fields the returned values will be sorted against.

2. Client settings

Enable custom positioning: when checked, lets you define how the autocomplete will be

positioned regarding the skin object.

Custom positioning of autocomplete: lets you type how the autocomplete will appear in regard to

the skin object.

Enable header text: check this to define a custom html header that will appear on top of your

results list.

Header text: the html header that will appear on top of your results list.

Aricie.LuceneSearch Documentation 23

Enable grouping: check to group items.

Group name: defines what field the items will be grouped against; when grouping, the sort order

takes the upper hand against sorting. The results will be sorted, then grouped which can alter the

previous sorting.

Group template text: the javascript template that needs to be applied to the group. The template

uses the micro-templating engine which can be found here:

http://www.west-wind.com/weblog/posts/2008/Oct/13/Client-Templating-with-jQuery

Item template text: the javascript template that needs to be applied to each item. The template

uses the micro-templating engine which can be found here:

Aricie.LuceneSearch Documentation 24

http://www.google.com/url?q=http%3A%2F%2Fwww.west-wind.com%2Fweblog%2Fposts%2F2008%2FOct%2F13%2FClient-Templating-with-jQuery&sa=D&sntz=1&usg=AFQjCNEhOWGlQtAfSfcRIGmQWbDK8BtCjQ
http://www.google.com/url?q=http%3A%2F%2Fwww.west-wind.com%2Fweblog%2Fposts%2F2008%2FOct%2F13%2FClient-Templating-with-jQuery&sa=D&sntz=1&usg=AFQjCNEhOWGlQtAfSfcRIGmQWbDK8BtCjQ

http://www.west-wind.com/weblog/posts/2008/Oct/13/Client-Templating-with-jQuery

No results text: what will appear when no results are found.

Enable highlights: if checked, the autocomplete will try and display the searched terms in

highlights in the autocomplete dropdown.

Handling method for click on elements: if you want to open some links in different windows, for

example external websites, you can write down a javascript function here that will be run against

the item clicked on. If the function returns null, the link is opened in the current window. If the

function returns a string, a new window will be opened with this identifier. You can return the

same value for different item types so that they all open in a different window.

Include custom styles and scripts: LuceneSearch’s autocomplete tries to display itself as robustly

as possible, but there may be times when you don’t want it to include scripts or styles directly in

your code. In order to avoid that, you can check this setting to control what will be included in the

webpages of your site.

Url to a version of jQuery: type the url to the jQuery version needed

Url to a version of jQueryUI: type the url to the jQueryUI version needed

Overwrite existing versions of jQueryUI: if checked, the autocomplete will try to replace previous

versions of jQueryUI (for example if some modules pre-embed them in their ressources).

Url to your Autocomplete custom CSS: the url to the css you want to use with the skinobect to skin

the autocomplete.

5. Sitemap settings tab

Because Lucene is able to index items beyond the page level by indexing modules’ content, it is

also able to create a much more comprehensive site map for your website SEO.

Default Priority Percentage: set the percentage of priority by default, the value range between 0

and 100.

Compute Priority: enable to compute the priority automatically.

Aricie.LuceneSearch Documentation 25

http://www.google.com/url?q=http%3A%2F%2Fwww.west-wind.com%2Fweblog%2Fposts%2F2008%2FOct%2F13%2FClient-Templating-with-jQuery&sa=D&sntz=1&usg=AFQjCNEhOWGlQtAfSfcRIGmQWbDK8BtCjQ

Compute Change Frequency: enable to compute the change frequency automatically.

6. Logs tab

Trace indexing in event log: check to generate event progressing logs in the admin event viewer.

This allows monitoring the metrics of the indexing procedure according to the various parameters.

Activate search logs: traces the searches launched by the users.

Logs duration: number of days to retain logs.

7. Commands

The following commands are available on the portal settings:

Ɣ Save and continue: saves the current settings and stays on the settings edition page

Ɣ Save and return: saves the current settings and goes back to the LuceneSearch module

Ɣ Cancel: goes back to the LuceneSearch module without saving

Ɣ Clear portal index: clears the index for the portal

Aricie.LuceneSearch Documentation 26

2. General settings

Each instance of a LuceneSearch module can be configured independently to allow users to

finetune what behaviors are desired.

1. Search layout tab

This tab contains the control dealing with the presentation of the search area for the module.

Display search panel: displays or hides the search panel. Unchecking this parameter will hide all

others parameters.

Display searching filters: displays or hides the searching filters.

Select searching filters: only displayed if the “Display searching filters” is checked. This

dropdownlist lets you select alternate search interfaces.

Filters control path: only displayed if the “Select searching filters” parameter is set to “Custom

filter”. This lets you type the path to a user control (*.ascx) completely customized to your needs.

Please see 6.2 Use a custom control for filters for more information.

Display search button: displays or hides the search button, independently of the searching filters.

Display reset button: displays or hides the reset button, which empties the user interface.

Display search panel collapse/expand: displays or hides accordions in the UI.

2. Search behavior tab

Aricie.LuceneSearch Documentation 27

The search behavior tab contains every setting that handles the way queries are processed in the

module.

Activate Ajax: enables the module to search data in an asynchronous way like Ajax behavior. If you

check it, the results will appear without page refresh when you click the button “Search”. If you

disable it, you will have to select the page you wish to display after the search has been launched.

Results page Id: This parameter only appears if you unchecked the activate Ajax parameter. It’s a

dropdownlist of your portal pages in which you can choose what page the search is going to

redirect to. If you select the empty entry, the search will simply postback to the server but stay on

the same page.

Enable warnings from url filtering: when checked, this settings displays a message if the search

interface wasn’t able to process every parameter that was optionally passed in the url. This

warning is only displayed to administrators and is useful during the initial configuration setup.

Apply default language filter: check to apply the current user language as a language filter. Make

sure indexed contents contain language information, and set the indexer settings so that no

localized contents have the portal language by default.

Aricie.LuceneSearch Documentation 28

Additional lucene filter: lets you add a Lucene query directly from the configuration in order to

finetune the search you want. To see what the syntax looks like you can consult the page at

http://lucene.apache.org/core/old_versioned_docs/versions/2_9_1/queryparsersyntax.html

Enable token replace on additional filter: lets you use tokens in the lucene filter so you can use

dynamic values at search time. Available tokens are the common DotNetNuke tokens.

Permission filter: A dropdownlist that lets you select between filtering the results according to the

user rights or not filtering the users. Credentials for the user at the time of search are compared to

the credentials of each stored document (according to the page and module settings, and even

the document settings for some modules) and only matching results are returned. The document

credentials are stored during indexation.

Search fields: the list of fields that will be searched for search elements on this module. This

setting overrides the search fields from the portal settings.

Default fuzzy value: default value for fuzzy configuration on the search controls.

3. Results layout tab

The result layout settings control how the results will be displayed to your users when search

results are returned.

Show results panel: hides or display the result panel. This is useful if the search panel and result

panel are on different pages.

Aricie.LuceneSearch Documentation 29

http://www.google.com/url?q=http%3A%2F%2Flucene.apache.org%2Fcore%2Fold_versioned_docs%2Fversions%2F2_9_1%2Fqueryparsersyntax.html&sa=D&sntz=1&usg=AFQjCNHD47IvPELChWE-uT9qKw7ogDfLTA

Show backlink: displays a backlink on LS details pages

Backlink layout: token-enabled html snippet that will be used for the backlink from the details

page

Display result panel collapse/expand: displays or hides accordions in the UI.

Display # of results: displays the total number of results found by the search query.

Enable paging: activates the paging in the results UI.

Display # of pages: displays the total number of pages found by the search query.

Pager navigation: selects the style of pager that will be used by the results panel.

Page size: sets the number of items returned per page.

Custom paging: lets users define their own page size through a dropdown list on the UI.

Custom grouping: lets users group the results on some interfaces.

Custom sorting: lets the users sort the results on some interfaces.

Show print button: displays or hides a link to a print page for the search results

Aricie.LuceneSearch Documentation 30

Disable skin for printing: check to have the print window stripped of its skin.

Disable paging for printing: for some report-type printing, paging is not desirable, the user

needing the whole data set to print. Check to retrieve all data on one page.

4. Results behavior tab

The results behavior tab drives how the results will appear on your module.

Show no results until Search: if checked results will only be displayed after a search is launched by

the user. If unchecked, a search is launched as soon as a user arrives on the module.

Redirect if single result: if only one result is found, the module automatically redirects the user to

the result link.

Group by: the field you want to group against by default

Descending group order: reverse the grouping order

Sort by: the field you want to sort against by default

Descending sort order: reverse the sort order

Cache duration: the duration during which the results are cached

5. Results template tab

Aricie.LuceneSearch Documentation 31

The results template tab lets you define how your results will be displayed. It lets you define your

templates at three levels:

Display mode: lets you choose between 3 display modes for the search results.

Ɣ TemplateView: displays an html template where you can use the token replace on the

result item. You can use tokens on the result item: Relevance, GoToUrl, Title, Description,

Highlights, FriendlyModuleName, AuthorName, PubDate, IndexedDate, GoToFullUrl.

These are common tokens; to see the full list of available tokens please see 6.5 Use the

tokens available in the results?

Ɣ GridView: displays the grid template. The grid template uses the same tokens as the

Template view.

Ɣ CustomView: the custom view lets you enter the path to a control which will be used as

the result control. See section 6.2 for more information about how to use this custom

results control.

Scope: lets you define how the templates you are working on will be handled. Host defines

templates for the whole website, Portal for the portal and module only for the module you are

working on.

Customize templates for each locale: lets you define different templates for different locales.

Aricie.LuceneSearch Documentation 32

Customize templates for each content: lets you define different templates for different content

types, usually different modules.

Results templates are used for search results, details templates are used for content that can

manage a detailed view (at the time, very few contents are able to display details; usually details

are used for content that cannot be displayed in the native DNN UI, such as documents).

Templates are looked for from the most specific to the least specific. A template declared in a

module will take precedence over a template declared for a host. In the same way, a template

declared for a locale is more important that a generic template. Templates per content override

templates per locale which override simple templates; module templates override portal

templates which override site templates.

6. Results highlights tab

The results highlights allow you to put the information that was searched for in evidence by using

the highlight mode of Lucene.

Show highlight section: enables highlights to be computed for display

Max # of samples per result: maximum numbers of highlights that will appear for each entry

Max size of a sample: the size of the surrounding region for the highlight

Aricie.LuceneSearch Documentation 33

Highlight section: html template with tokens that will display the highlight section

Fragment separator: html template of what is inserted between each fragment

Highlight layout: html template with tokens that will display the highlight itself

7. Commands

The following commands are available on the module settings:

Ɣ Save and continue: saves the current settings and stays on the settings edition page

Ɣ Save and return: saves the current settings and goes back to the LuceneSearch module

Ɣ Cancel: goes back to the LuceneSearch module without saving

Aricie.LuceneSearch Documentation 34

6. How to

1. Search the content of doc and pdf documents

To index Word and Excel files you must install “IFilter for Office” on your webserver:

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=5cd4dcd7-d3e6-4970-875e-aba9

3459fbee

To index PDF files you must install “IFilter for PDF” on your webserver:

http://www.adobe.com/support/downloads/detail.jsp?ftpID=2611

2. Customize your search interface

If the default search controls bundled with LuceneSearch don’t fit with your website or if you need

to create your own search interface, create a control that will be used as a search filter control.

To create such a control, the best thing is to start from the CommonFilter.ascx as an example.

This above control shows three kinds of filters:

Ɣ Type filter is a dropdown list filter: it is attached to a Lucene field and pulls out all possible

values for this field into a dropdown. Selecting an item in the dropdown list will then

create a Lucene query that will match exactly the value you chose. This filter is best used

on small lists in order to avoid creating a dropdown list with too many items

Ɣ Keywords filter is a prefix filter: any text typed in this area will be searched as if it were

the beginning of a word. Typing “index” will return content with “indexed”, “indexing”,

etc. Typing multiple words - separated with a space - will search on all the words without

order, with only the last one used as a prefix. If no fields are defined for this filter, it

defaults to using the search fields in the configuration.

Ɣ Period filter lets you search for a date or a period in the index. By defaut, it points to the

published date. You can set it to any date field your content uses.

In order to use these filters in your custom control, just register them from the LuceneSearch

module as regular controls in the \DesktopModules\Aricie.LuceneSearch\Controls folder. Use

them in your markup. Here a very simple filter that only uses the prefix filter on the Description

field.

Aricie.LuceneSearch Documentation 35

http://www.google.com/url?q=http%3A%2F%2Fwww.microsoft.com%2Fdownloads%2Fen%2Fdetails.aspx%3FFamilyID%3D5cd4dcd7-d3e6-4970-875e-aba93459fbee&sa=D&sntz=1&usg=AFQjCNGtPOoSJL_KraojDONrdorcC8r2yg
http://www.google.com/url?q=http%3A%2F%2Fwww.microsoft.com%2Fdownloads%2Fen%2Fdetails.aspx%3FFamilyID%3D5cd4dcd7-d3e6-4970-875e-aba93459fbee&sa=D&sntz=1&usg=AFQjCNGtPOoSJL_KraojDONrdorcC8r2yg
http://www.google.com/url?q=http%3A%2F%2Fwww.adobe.com%2Fsupport%2Fdownloads%2Fdetail.jsp%3FftpID%3D2611&sa=D&sntz=1&usg=AFQjCNG5NjQUBEAqrqkTS7rdnQUZARMenA

<%@ Control Language="vb" AutoEventWireup="true" Inherits="Aricie.DNN.UI.Controls.AricieUserControlBa

se, Aricie.DNN" %>

<%@ Register Assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf38

56ad364e35" Namespace="System.Web.UI" TagPrefix="asp" %>

<%@ Register Src="/DesktopModules/Aricie.LuceneSearch/Controls/PrefixFilter.ascx" TagPrefix="Filters"

 TagName="Prefix"%>

<div>

 <Filters:Prefix id="prefix" runat="server" QueryMode="Filter" Fields="Description" />

</div>

There are plenty of other filters available and you can also create your own. If you need assistance

to create your custom control filters, please contact us at support@aricie.fr.

3. Use a custom control for results

Just as for the search controls, you can decide to use a custom control to display the LuceneSearch

results.

First you must create a user control that inherits from the following class:

Aricie.DNN.Modules.LuceneSearch.UI.LuceneResultsControlBase

Then in the Load event, you will have to call the InitQuery method from the base class when first

loading your control:

Protected Overrides Sub OnLoad(e As System.EventArgs)

 If Not Page.IsPostBack Then

 InitQuery()

 End If

 MyBase.OnLoad(e)

End Sub

Once your control inherits from this class, you will have to override the method DisplayResults.

This method is called with a list of LuceneSearchResultsInfo that matches the query that was sent

to Lucene. This list can then be used as a datasource for any databinding control you want in the

user control.

Public Overrides Sub DisplayResults(_

resultsList As System.Collections.Generic.IList(Of Aricie.DNN.Modules.LuceneSearch.Business.LuceneSea

rchResultsInfo), _

nbResultFound As Integer, _

sortFieldName As String, _

printMode As Boolean, _

Optional pageIndex As Integer = -1)

Although this looks simple, more options are available in order to drive configuration in the base

class: grouping, paging, etc. Your control will have to pass data to the base class in order to

transmit the configuration set by the user to the query engine of LuceneSearch.

Aricie.LuceneSearch Documentation 36

mailto:support@aricie.fr

As for every open behavior for LuceneSearch, we are available to help you if needed. Just contact

us at support@aricie.fr.

Aricie.LuceneSearch Documentation 37

mailto:support@aricie.fr

4. Tweak the returned results

It is possible to tweak the results by using the parameter “Additional Lucene filter” in the “Search

behavior” tab for the results configuration. By typing the query that should be added to the search

you can exclude some pages from being in the results, or some modules.

For example, if you have a HTML module as a footer on every page, you can choose to exclude it

from the results by using its title:

This query lets you retrieve every module except the ones where the title is “footer”. Using this

technique you can force only a subset of results to be returned.

To exclude several modules from the Lucence index, repeat the command as follows (mind the

Lucene syntax. Spaces are important !).

+ModuleTitle:* -ModuleTitle:Title1 -ModuleTitle:Title2 -...

Aricie.LuceneSearch Documentation 38

5. Use the tokens available in the results

Here is a list of tokens available within the results templates. The syntax to insert a token like Title

in your template will be [Result:Title].

1. Content related tokens

Ɣ Title

Ɣ Description

Ɣ Author: author id in DNN

Ɣ PubDate

Ɣ SearchKey

Ɣ Guid

Ɣ AuthorName

Ɣ AdditionalFields: a list of data indexed by fields; this list can contain various data depending

on the provider that handled the item

Ɣ ForcedUrl: optional url that the item must redirect to

Ɣ GoToUrl: computed url for the item

Ɣ LocaleCode

Ɣ Image: image id in DNN

Ɣ IconPath

Ɣ Category

Ɣ ContentTaxonomy: taxonomy (tags) from DNN, as a list of string. This field is reserved and not

used at the time.

Ɣ ModuleTaxonomy: taxonomy of the module as a list of string if applicable

Ɣ TabTaxonomy: taxonomy of the tab as a list of string if applicable

Ɣ CompoundedTaxonomy: the merged list of all taxonomies

Ɣ Culture: .Net Culture info

2. DotNetNuke related tokens

Ɣ PortalId

Ɣ TabId

Ɣ ModuleId

Ɣ ModuleName

Ɣ ModuleInfo: as the DotNetNuke ModuleInfo class

Ɣ FriendlyModuleName

Ɣ ModuleTitle

Ɣ TabInfo: as the DotNetNuke TabInfo class

Ɣ TabName

Ɣ TabTitle

Aricie.LuceneSearch Documentation 39

Ɣ TabDescription

Ɣ TabViewRoles: string containing the authorized roles for the tab

Ɣ ParentTab: as the DotNetNuke TabInfo class

Ɣ ParentTabId

Ɣ ParentTabName

Ɣ ParentTabTitle

Ɣ ParentTabDescription

3. Search related tokens

Ɣ Occurrences

Ɣ Relevance

Ɣ Score

Ɣ Boost

Ɣ Highlights: computed highlights if the settings authorize them

Ɣ Field

Ɣ ProviderName

Ɣ ItemType: translated item type for the index

Ɣ ItemGroup: translated item group in the index

Ɣ RawItemType: untranslated item type for the index

Ɣ RawItemGroup: untranslated item group in the index

Ɣ IndexedDate

7. Support

Our technical support team is committed to providing top support service. Please check out our

support conditions on our website.

For best reactivity, please contact us on our Support forum:

http://www.aricie.com/en/resources/support.aspx

Need an special feature? Just tell us what you need and we will make a quote within 24 hours.

Have a great Aricie experience with Aricie.LuceneSearch!

Aricie.LuceneSearch Documentation 40

http://www.google.com/url?q=http%3A%2F%2Fwww.aricie.com%2Fen%2Fresources%2Fsupport.aspx&sa=D&sntz=1&usg=AFQjCNEGGu2kIFw2crI-iPMBdlFcc2nu-Q

