Set operations: union, intersection, difference, symmetric difference, is subset, is superset : Set « Collections « Java Tutorial

import java.util.Set;
import java.util.TreeSet;

public class Main {
  public static <T> Set<T> union(Set<T> setA, Set<T> setB) {
    Set<T> tmp = new TreeSet<T>(setA);
    return tmp;

  public static <T> Set<T> intersection(Set<T> setA, Set<T> setB) {
    Set<T> tmp = new TreeSet<T>();
    for (T x : setA)
      if (setB.contains(x))
    return tmp;

  public static <T> Set<T> difference(Set<T> setA, Set<T> setB) {
    Set<T> tmp = new TreeSet<T>(setA);
    return tmp;

  public static <T> Set<T> symDifference(Set<T> setA, Set<T> setB) {
    Set<T> tmpA;
    Set<T> tmpB;

    tmpA = union(setA, setB);
    tmpB = intersection(setA, setB);
    return difference(tmpA, tmpB);

  public static <T> boolean isSubset(Set<T> setA, Set<T> setB) {
    return setB.containsAll(setA);

  public static <T> boolean isSuperset(Set<T> setA, Set<T> setB) {
    return setA.containsAll(setB);

  public static void main(String args[]) {
    TreeSet<Character> set1 = new TreeSet<Character>();
    TreeSet<Character> set2 = new TreeSet<Character>();



    System.out.println("set1: " + set1);
    System.out.println("set2: " + set2);

    System.out.println("Union: " + union(set1, set2));
    System.out.println("Intersection: " + intersection(set1, set2));
    System.out.println("Difference (set1 - set2): " + difference(set1, set2));
    System.out.println("Symmetric Difference: " + symDifference(set1, set2));

    TreeSet<Character> set3 = new TreeSet<Character>(set1);

    System.out.println("set3: " + set3);

    System.out.println("Is set1 a subset of set2? " + isSubset(set1, set3));
    System.out.println("Is set1 a superset of set2? " + isSuperset(set1, set3));
    System.out.println("Is set3 a subset of set1? " + isSubset(set3, set1));
    System.out.println("Is set3 a superset of set1? " + isSuperset(set3, set1));


9.18.1.Convert a List to a Set
9.18.2.Convert an ArrayList to HashSet
9.18.3.Creating a Sorted Set
9.18.4.Create new sets from Iterable, var argv
9.18.5.Create an array containing the elements in a set
9.18.6.Comparable with a sorted collection.
9.18.7.Duplicate elements are discarded
9.18.8.Creating a Set That Retains Order-of-Insertion
9.18.9.Convert Set into array
9.18.10.Convert Set into List
9.18.11.Copy all the elements from set2 to set1 (set1 += set2), set1 becomes the union of set1 and set2
9.18.12.Remove all the elements in set1 from set2 (set1 -= set2), set1 becomes the asymmetric difference of set1 and set2
9.18.13.Get the intersection of set1 and set2, set1 becomes the intersection of set1 and set2
9.18.14.Set operations: union, intersection, difference, symmetric difference, is subset, is superset
9.18.15.Remove all elements from a set
9.18.16.List Set
9.18.17.Set implementation that use == instead of equals()
9.18.18.Set union and intersection
9.18.19.Set with values iterated in insertion order.
9.18.20.Implements the Set interface, backed by a ConcurrentHashMap instance
9.18.21.A weak HashSet: element stored in the WeakHashSet might be garbage collected
9.18.22.An IdentitySet that uses reference-equality instead of object-equality
9.18.23.A thin wrapper around a List transforming it into a modifiable Set.
9.18.24.Concurrent set
9.18.25.Set that compares object by identity rather than equality