Example usage for android.media MediaCodec INFO_OUTPUT_BUFFERS_CHANGED

List of usage examples for android.media MediaCodec INFO_OUTPUT_BUFFERS_CHANGED

Introduction

In this page you can find the example usage for android.media MediaCodec INFO_OUTPUT_BUFFERS_CHANGED.

Prototype

int INFO_OUTPUT_BUFFERS_CHANGED

To view the source code for android.media MediaCodec INFO_OUTPUT_BUFFERS_CHANGED.

Click Source Link

Document

The output buffers have changed, the client must refer to the new set of output buffers returned by #getOutputBuffers from this point on.

Usage

From source file:com.c77.androidstreamingclient.lib.RtpMediaDecoder.java

@Override
public void decodeFrame(BufferedSample decodeBuffer) throws Exception {
    if (DEBUGGING) {
        // Dump buffer to logcat
        log.info(decodeBuffer.toString());
    }/*from   w ww  . ja  va  2s.co m*/

    // Queue the sample to be decoded
    decoder.queueInputBuffer(decodeBuffer.getIndex(), 0, decodeBuffer.getSampleSize(),
            decodeBuffer.getPresentationTimeUs(), 0);

    // Read the decoded output
    int outIndex = decoder.dequeueOutputBuffer(info, 10000);
    switch (outIndex) {
    case MediaCodec.INFO_OUTPUT_BUFFERS_CHANGED:
        if (DEBUGGING) {
            log.info("INFO_OUTPUT_BUFFERS_CHANGED");
        }
        outputBuffers = decoder.getOutputBuffers();
        break;
    case MediaCodec.INFO_OUTPUT_FORMAT_CHANGED:
        if (DEBUGGING) {
            log.info("New format " + decoder.getOutputFormat());
        }
        break;
    case MediaCodec.INFO_TRY_AGAIN_LATER:
        if (DEBUGGING) {
            log.info("dequeueOutputBuffer timed out!");
        }
        break;
    default:
        if (DEBUGGING) {
            ByteBuffer buffer = outputBuffers[outIndex];
            log.info("We can't use this buffer but render it due to the API limit, " + buffer);
        }

        decoder.releaseOutputBuffer(outIndex, true);
        break;
    }

    // All decoded frames have been rendered, we can stop playing now
    if (((info.flags & MediaCodec.BUFFER_FLAG_END_OF_STREAM) != 0) && DEBUGGING) {
        log.info("OutputBuffer BUFFER_FLAG_END_OF_STREAM");
    }
}

From source file:com.c77.androidstreamingclient.lib.rtp.RtpMediaDecoder.java

/**
 * Decodes a frame//from ww w.j  a  v  a  2s.  c o m
 *
 * @param decodeBuffer
 * @throws Exception
 */
@Override
public void decodeFrame(BufferedSample decodeBuffer) throws Exception {
    if (DEBUGGING) {
        // Dump buffer to logcat
        log.info(decodeBuffer.toString());
    }

    // Queue the sample to be decoded
    decoder.queueInputBuffer(decodeBuffer.getIndex(), 0, decodeBuffer.getSampleSize(),
            decodeBuffer.getPresentationTimeUs(), 0);

    // Read the decoded output
    int outIndex = decoder.dequeueOutputBuffer(info, 10000);
    switch (outIndex) {
    case MediaCodec.INFO_OUTPUT_BUFFERS_CHANGED:
        if (DEBUGGING) {
            log.info("The output buffers have changed.");
        }
        outputBuffers = decoder.getOutputBuffers();
        break;
    case MediaCodec.INFO_OUTPUT_FORMAT_CHANGED:
        if (DEBUGGING) {
            log.info("New format " + decoder.getOutputFormat());
        }
        break;
    case MediaCodec.INFO_TRY_AGAIN_LATER:
        if (DEBUGGING) {
            log.info("Call to dequeueOutputBuffer timed out.");
        }
        break;
    default:
        if (DEBUGGING) {
            ByteBuffer buffer = outputBuffers[outIndex];
            log.info("We can't use this buffer but render it due to the API limit, " + buffer);
        }

        // return buffer to the codec
        decoder.releaseOutputBuffer(outIndex, true);
        break;
    }

    // All decoded frames have been rendered, we can stop playing now
    if (((info.flags & MediaCodec.BUFFER_FLAG_END_OF_STREAM) != 0) && DEBUGGING) {
        log.info("All decoded frames have been rendered");
    }
}

From source file:com.musicplayer.AudioDecoderThread.java

/**
 * After decoding AAC, Play using Audio Track.
 * //from  w  w  w  .jav  a2 s  .com
 */

public void processTrack(Uri syncContentUri, final Genre classLabel, Context context,
        ProcessTrackRunnable lock) {

    // INITIALISE EXTRACTOR AND DECODER
    Log.v("", "Break Point 1");

    MediaExtractor extractor = new MediaExtractor();
    int sampleRate = 0;
    Uri contentUri = null;
    synchronized (lock) {
        contentUri = syncContentUri;
    }
    try {
        extractor.setDataSource(context, contentUri, null);
    } catch (IOException e) {
        e.printStackTrace();
    }
    int channel = 0;

    for (int i = 0; i < extractor.getTrackCount(); i++) {
        MediaFormat format = extractor.getTrackFormat(i);
        String mime = format.getString(MediaFormat.KEY_MIME);
        if (mime.startsWith("audio/")) {
            extractor.selectTrack(i);
            Log.d("", "format : " + format);
            //            ByteBuffer csd = format.getByteBuffer("csd-0");
            //            if(csd == null){
            //            Log.v("", "csd is null");
            //            } else{
            //               Log.v("", "csd is not null");
            //            }
            //            for (int k = 0; k < csd.capacity(); ++k) {
            //               Log.v("", "inside for loop 1");
            //               Log.e("TAG", "csd : " + csd.array()[k]);
            //            }
            sampleRate = format.getInteger(MediaFormat.KEY_SAMPLE_RATE);
            channel = format.getInteger(MediaFormat.KEY_CHANNEL_COUNT);
            break;
        }
    }
    //      MediaFormat format = makeAACCodecSpecificData(MediaCodecInfo.CodecProfileLevel.AACObjectLC, mSampleRate, channel);
    //      if (format == null)
    //         return;
    int countt = 0;
    boolean found = false;
    MediaFormat format = null;
    String mime = null;

    while (countt < extractor.getTrackCount() && !found) {
        format = extractor.getTrackFormat(countt);
        mime = format.getString(MediaFormat.KEY_MIME);
        sampleRate = format.getInteger(MediaFormat.KEY_SAMPLE_RATE);
        if (mime.startsWith("audio/")) {
            found = true;
        }
        countt++;
    }
    //format = mExtractor.getTrackFormat(count);
    //MediaCodecInfo codec = selectCodec(mime);
    //String name = codec.getName();
    MediaCodec decoder = MediaCodec.createDecoderByType(mime);

    //mDecoder = MediaCodec.createDecoderByType("audio/mp4a-latm");
    decoder.configure(format, null, null, 0);

    if (decoder == null) {
        Log.e("DecodeActivity", "Can't find video info!");
        return;
    }

    decoder.start();

    Log.v("", "Break Point 2");

    // Get decoded bytes

    ByteBuffer[] inputBuffers = decoder.getInputBuffers();
    ByteBuffer[] outputBuffers = decoder.getOutputBuffers();

    BufferInfo info = new BufferInfo();

    //      int buffsize = AudioTrack.getMinBufferSize(sampleRate, AudioFormat.CHANNEL_OUT_STEREO, AudioFormat.ENCODING_PCM_16BIT);
    //        // create an audiotrack object
    //      AudioTrack audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC, sampleRate,
    //                AudioFormat.CHANNEL_OUT_STEREO,
    //                AudioFormat.ENCODING_PCM_16BIT,
    //                buffsize,
    //                AudioTrack.MODE_STREAM);
    //      audioTrack.play();

    extractor.seekTo(WINDOW_START, MediaExtractor.SEEK_TO_CLOSEST_SYNC);

    long start = SystemClock.elapsedRealtimeNanos();

    Log.v("", "Break Point 3");

    // MUSICAL SURFACE FEATURES

    double[] flux = new double[NUM_CHUNKS];
    double[] zeroCrossings = new double[NUM_CHUNKS];
    double[] centroid = new double[NUM_CHUNKS];
    int[] rolloff = new int[NUM_CHUNKS];
    double[] rolloffFreq = new double[NUM_CHUNKS];
    double lowEnergy = 0.0;

    // Means across all chunks
    double fluxMean = 0.0;
    double zeroCrossingsMean = 0;
    double centroidMean = 0.0;
    double rolloffMean = 0;

    // Standard deviations across all chunks
    double fluxStdDeviation = 0.0;
    double zeroCrossingsStdDeviation = 0;
    double centroidStdDeviation = 0.0;
    double rolloffStdDeviation = 0;

    // Initialise some variables to use while iterating
    double[] fftSums = new double[NUM_CHUNKS];
    int iter = 0;
    int count = 0;
    FastFourierTransformer transformer = new FastFourierTransformer(DftNormalization.STANDARD);
    double po2 = 0.0;
    Complex[] input = null;
    Complex[] output = null;
    Complex[] previousOutput = null;
    Complex[] temp = null;
    double frequency = 0.0;
    double centroidNum = 0.0;
    double centroidDen = 0.0;
    double fftValue = 0.0;
    double fftPrevious = 0.0;
    double fluxSquared = 0.0;
    int r = 0;
    boolean foundRolloff = false;
    double sum = 0;
    ArrayList<Double> data = new ArrayList<Double>();
    ArrayList<Double> currentChunk = new ArrayList<Double>();
    int gap = 0;
    int tempCount = 0;
    byte[] chunk = null;
    ArrayList<Double> outputExample = new ArrayList<Double>();
    double normConst = 0.0;

    // Iterate through the chunks
    Log.v("", "count: " + String.valueOf(count));
    while (!eosReceived && count < NUM_CHUNKS) {
        Log.v("", "Break Point " + String.valueOf(count + 4));
        Log.v("", "Inside While Loop Break Point 1");
        if (count == 0) {
            //   Log.v("", "Timestamp of chunk 0: " + String.valueOf(extractor.getSampleTime()));
        }

        int inIndex = decoder.dequeueInputBuffer(TIMEOUT_US);
        if (inIndex >= 0) {
            ByteBuffer buffer = inputBuffers[inIndex];
            int sampleSize = extractor.readSampleData(buffer, 0);
            if (sampleSize < 0) {
                // We shouldn't stop the playback at this point, just pass the EOS
                // flag to mDecoder, we will get it again from the
                // dequeueOutputBuffer
                //Log.d("DecodeActivity", "InputBuffer BUFFER_FLAG_END_OF_STREAM");
                decoder.queueInputBuffer(inIndex, 0, 0, 0, MediaCodec.BUFFER_FLAG_END_OF_STREAM);

            } else {
                decoder.queueInputBuffer(inIndex, 0, sampleSize, extractor.getSampleTime(), 0);
                extractor.advance();
            }

            int outIndex = decoder.dequeueOutputBuffer(info, TIMEOUT_US);
            Log.v("", "Inside While Loop Break Point 2");
            switch (outIndex) {
            case MediaCodec.INFO_OUTPUT_BUFFERS_CHANGED:
                Log.d("DecodeActivity", "INFO_OUTPUT_BUFFERS_CHANGED");
                outputBuffers = decoder.getOutputBuffers();
                break;

            case MediaCodec.INFO_OUTPUT_FORMAT_CHANGED:
                MediaFormat mediaFormat = decoder.getOutputFormat();
                Log.d("DecodeActivity", "New format " + mediaFormat);
                //   audioTrack.setPlaybackRate(mediaFormat.getInteger(MediaFormat.KEY_SAMPLE_RATE));

                break;
            case MediaCodec.INFO_TRY_AGAIN_LATER:
                Log.d("DecodeActivity", "dequeueOutputBuffer timed out!");
                break;

            default:

                Log.v("", "Inside While Loop Break Point 3");
                ByteBuffer outBuffer = outputBuffers[outIndex];
                //Log.v("DecodeActivity", "We can't use this buffer but render it due to the API limit, " + outBuffer);

                chunk = new byte[info.size];
                if (chunk.length == 0) {
                    continue;
                }
                outBuffer.get(chunk); // Read the buffer all at once
                outBuffer.clear(); // ** MUST DO!!! OTHERWISE THE NEXT TIME YOU GET THIS SAME BUFFER BAD THINGS WILL HAPPEN

                gap = chunk.length / DOWN_FACTOR;
                currentChunk.clear();
                Log.v("", "Inside While Loop Break Point 4a");
                // ZERO CROSSINGS

                int increment = 1;
                if (chunk.length > 1000) {
                    increment = (int) ((double) chunk.length / ((double) 1000));
                }

                // Downsampling
                for (int i = 0; i < chunk.length; i = i + increment) {
                    data.add((double) chunk[i]);
                    currentChunk.add((double) chunk[i]);
                    tempCount++;

                    if (currentChunk.size() > 1) {
                        iter += FastMath.abs(sign(currentChunk.get(currentChunk.size() - 1))
                                - sign(currentChunk.get(currentChunk.size() - 2)));

                    }
                }
                increment = 0;

                tempCount = 0;
                zeroCrossings[count] = 0.5 * iter;

                po2 = FastMath.ceil(FastMath.log(currentChunk.size()) / FastMath.log(2));
                input = new Complex[(int) (FastMath.pow(2.0, po2))];

                Log.v("", "chunk length: " + chunk.length);
                Log.v("", "input length: " + input.length);
                for (int i = 0; i < input.length; i++) {
                    if (i < currentChunk.size()) {
                        input[i] = new Complex((double) currentChunk.get(i));
                    } else {
                        input[i] = new Complex(0.0);
                    }
                }

                // FFT
                output = transformer.transform(input, TransformType.FORWARD);

                outputExample.add(centroidDen);

                // CENTROID AND FLUX      

                for (int i = 0; i < output.length; i++) {

                    if (count > 0) {
                        fftPrevious = fftValue;
                    }
                    fftValue = FastMath.hypot(output[i].getReal(), output[i].getImaginary());
                    fluxSquared += (fftValue - fftPrevious) * (fftValue - fftPrevious);

                    centroidNum += i * fftValue;
                    centroidDen += fftValue;

                }

                //               for(int i = 0; i < output.length; i++){
                //                  
                //                  normConst += FastMath.hypot(output[i].getReal(), output[i].getImaginary()) *
                //                        FastMath.hypot(output[i].getReal(), output[i].getImaginary());
                //                  
                //                  
                //               }

                //               fluxSquared = fluxSquared / normConst;
                flux[count] = FastMath.sqrt(fluxSquared) / 1000.0;

                // ROLLOFF

                while (!foundRolloff && r < output.length - 1) {
                    r++;
                    sum += FastMath.hypot(output[r].getReal(), output[r].getImaginary());
                    foundRolloff = checkRolloff(ROLLOFF_PROPORTIONAL_ERROR, sum, centroidDen);
                }

                fftSums[count] = centroidDen;
                if (centroidDen != 0.0) {
                    centroid[count] = centroidNum / centroidDen;
                } else {
                    centroid[count] = 0.0;
                }
                rolloff[count] = r;

                iter = 0;
                fluxSquared = 0.0;
                centroidNum = 0.0;
                centroidDen = 0.0;
                r = 0;
                sum = 0.0;
                foundRolloff = false;
                count++;
                //audioTrack.write(chunk, info.offset, info.offset + info.size); // AudioTrack write data
                decoder.releaseOutputBuffer(outIndex, false);

                break;
            }

            // All decoded frames have been rendered, we can stop playing now
            if ((info.flags & MediaCodec.BUFFER_FLAG_END_OF_STREAM) != 0) {
                Log.d("DecodeActivity", "OutputBuffer BUFFER_FLAG_END_OF_STREAM");
                break;
            }

            if (count > 0) {
                previousOutput = output;
                output = null;
            }
        }
        if (count == NUM_CHUNKS) {
            //   Log.v("", "Timestamp of last chunk: " + String.valueOf(extractor.getSampleTime()));
            decoder.stop();
            decoder.release();
            extractor.release();
        }

    } // while loop

    currentChunk.clear();
    currentChunk = null;

    //      for(int i = 0; i < centroid.length; i++){
    //      Log.v("", "centroid: " + String.valueOf(centroid[i]));
    //      }
    double energySum = 0.0;
    double energyAverage = 0.0;
    int lowEnergyCount = 0;

    for (int i = 0; i < NUM_CHUNKS; i++) {
        energySum += fftSums[i];
    }

    energyAverage = energySum / NUM_CHUNKS;
    for (int i = 0; i < NUM_CHUNKS; i++) {
        if (fftSums[i] < energyAverage) {
            lowEnergyCount++;
        }
    }

    lowEnergy = 100.0 * (((double) lowEnergyCount) / ((double) NUM_CHUNKS));

    // Work out the means and standard deviations

    for (int i = 0; i < NUM_CHUNKS; i++) {

        fluxMean += flux[i];
        zeroCrossingsMean += zeroCrossings[i];
        centroidMean += centroid[i];
        rolloffMean += rolloff[i];

    }

    fluxMean = fluxMean / flux.length;
    zeroCrossingsMean = zeroCrossingsMean / zeroCrossings.length;
    centroidMean = centroidMean / centroid.length;
    rolloffMean = rolloffMean / rolloff.length;

    for (int i = 0; i < NUM_CHUNKS; i++) {

        fluxStdDeviation += (flux[i] - fluxMean) * (flux[i] - fluxMean);
        zeroCrossingsStdDeviation += (zeroCrossings[i] - zeroCrossingsMean)
                * (zeroCrossings[i] - zeroCrossingsMean);
        centroidStdDeviation += (centroid[i] - centroidMean) * (centroid[i] - centroidMean);
        rolloffStdDeviation += (rolloff[i] - rolloffMean) * (rolloff[i] - rolloffMean);

    }

    fluxStdDeviation = Math.sqrt(fluxStdDeviation / flux.length);
    zeroCrossingsStdDeviation = Math.sqrt(zeroCrossingsStdDeviation / zeroCrossings.length);
    centroidStdDeviation = Math.sqrt(centroidStdDeviation / centroid.length);
    rolloffStdDeviation = Math.sqrt(rolloffStdDeviation / rolloff.length);

    Log.v("", "fluxMean: " + String.valueOf(fluxMean));
    Log.v("", "zeroCrossingsMean: " + String.valueOf(zeroCrossingsMean));
    Log.v("", "centroidMean: " + String.valueOf(centroidMean));
    Log.v("", "rolloffMean: " + String.valueOf(rolloffMean));

    Log.v("", "fluxStdDeviation: " + String.valueOf(fluxStdDeviation));
    Log.v("", "zeroCrossingsStdDeviation: " + String.valueOf(zeroCrossingsStdDeviation));
    Log.v("", "centroidStdDeviation: " + String.valueOf(centroidStdDeviation));
    Log.v("", "rolloffStdDeviation: " + String.valueOf(rolloffStdDeviation));

    Log.v("", "lowEnergy: " + String.valueOf(lowEnergy));

    Log.v("", "data size: " + String.valueOf(data.size()));

    // BEAT ANALYSIS

    Transform t = new Transform(new FastWaveletTransform(new Daubechies4()));

    double[] dataArray = new double[data.size()];
    for (int i = 0; i < data.size(); i++) {
        dataArray[i] = data.get(i);
    }
    data.clear();
    data = null;

    double powerOf2 = FastMath.ceil(FastMath.log(chunk.length) / FastMath.log(2));
    double[] dataArrayPo2 = Arrays.copyOf(dataArray, (int) (FastMath.pow(2.0, powerOf2)));
    dataArray = null;

    double[] dataCurrentInputArray = null;
    double[] dataCurrentOutputArray = null;
    double[] dataCumulativeArray = new double[dataArrayPo2.length];
    for (int i = 0; i < dataCumulativeArray.length; i++) {
        dataCumulativeArray[i] = 0.0;
    }
    double temp1 = 0.0;
    double temp2 = 0.0;
    ArrayList<Double> tempList = new ArrayList<Double>();
    int k = 16; // Downsampling factor
    int tempCount1 = 0;
    double mean = 0.0;
    for (int level = 0; level < (int) FastMath.log(2.0, dataArrayPo2.length); level++) {

        dataCurrentInputArray = t.forward(dataArrayPo2, level);
        dataCurrentOutputArray = dataCurrentInputArray;
        dataCurrentOutputArray[0] = 0.0;
        for (int i = 1; i < dataCurrentOutputArray.length; i++) {
            temp1 = FastMath.abs(dataCurrentInputArray[i]); // Full-wave rectification
            dataCurrentOutputArray[i] = (1.0 - ALPHA) * temp1 - ALPHA * dataCurrentOutputArray[i - 1]; // Low-pass filtering
        }
        tempCount1 = 0;
        mean = 0.0;
        while (k * tempCount1 < dataCurrentOutputArray.length) {
            tempList.add(dataCurrentOutputArray[k * tempCount1]); // Downsampling by k
            mean += dataCurrentOutputArray[k * tempCount1];
            tempCount1++;
        }
        mean = mean / dataCurrentOutputArray.length;

        tempCount1 = 0;
        while (k * tempCount1 < dataCurrentOutputArray.length) {
            dataCumulativeArray[k * tempCount1] += tempList.get(tempCount1) - mean; // Mean removal
            tempCount1++;
        }

    }
    int N = dataCumulativeArray.length;
    ArrayList<Double> dataList = new ArrayList<Double>();
    double dataElement = 0.0;

    for (int i = 0; i < N; i++) {
        if (dataCumulativeArray[i] != 0.0) {
            dataElement = autocorrelate(i, N, dataCumulativeArray);
            dataList.add(dataElement);
            Log.v("", "dataList: " + String.valueOf(dataElement));
        }
    }

    PeakDetector peakDetector = new PeakDetector(dataList);
    int[] peakIndices = peakDetector.process(5, 2);
    HashSet<Integer> hs = new HashSet<Integer>();
    for (int i = 0; i < peakIndices.length; i++) {
        hs.add(peakIndices[i]);
    }
    ArrayList<Integer> indicesList = new ArrayList<Integer>();
    ArrayList<Double> valuesList = new ArrayList<Double>();

    indicesList.addAll(hs);
    Double tempDoub = 0.0;

    HashMap<Double, Integer> hm = new HashMap<Double, Integer>();
    for (int i = 0; i < indicesList.size(); i++) {
        tempDoub = dataList.get(indicesList.get(i));
        hm.put(tempDoub, indicesList.get(i));
    }

    indicesList.clear();
    valuesList.clear();

    Entry<Double, Integer> tempEntry = null;
    Iterator<Entry<Double, Integer>> it = hm.entrySet().iterator();
    while (it.hasNext()) {
        tempEntry = (Entry<Double, Integer>) it.next();
        if (tempEntry.getValue() < 75) {
            it.remove();
        } else {
            //indicesList.add(tempEntry.getValue());
            valuesList.add(tempEntry.getKey());
        }
    }

    Collections.sort(valuesList);
    for (int i = 0; i < valuesList.size(); i++) {
        indicesList.add(hm.get(valuesList.get(i)));
    }

    double valuesSum = 0.0;
    double histogramSum = 0.0;

    double beatStrength = 0.0;
    double P1 = 0.0;
    double P2 = 0.0;
    double A1 = 0.0;
    double A2 = 0.0;
    double RA = 0.0;

    for (int i = 0; i < dataList.size(); i++) {
        histogramSum += dataList.get(i);
    }

    for (int i = 0; i < valuesList.size(); i++) {
        valuesSum += valuesList.get(i);
    }

    //      if(histogramSum != 0.0 && valuesList.size() != 0){
    //         SUM = (1000.0 * valuesSum) / (histogramSum * valuesList.size());
    //      }
    if (valuesList.size() != 0) {
        beatStrength = valuesSum / valuesList.size();
    }

    if (indicesList.size() > 0) {

        // Set P1 as the largest peak
        P1 = (double) indicesList.get(indicesList.size() - 1);

    }

    if (indicesList.size() > 1) {
        int beatCount = indicesList.size() - 2;
        boolean beatFound = false;

        // Start with P2 as the second largest peak
        P2 = (double) indicesList.get(indicesList.size() - 2);
        double diff = 0;

        // Iterate backwards through the peaks, largest to smallest
        while (!beatFound && beatCount > -1) {
            diff = ((double) indicesList.get(beatCount)) - P1;

            if (FastMath.abs(diff) / P1 > 0.3) {
                // Set P2 as the period of the first peak that is reasonably different from P1
                P2 = (double) indicesList.get(beatCount);
                beatFound = true;
            }
            beatCount--;
        }
    }

    if (indicesList.size() > 0) {

        A1 = FastMath.abs(dataList.get((int) P1)) / histogramSum;
        if (P2 != 0.0) {
            A2 = FastMath.abs(dataList.get((int) P2)) / histogramSum;
        }

        if (A1 != 0.0) {
            RA = A2 / A1;

        }
    }

    for (int i = 0; i < valuesList.size(); i++) {
        Log.v("", String.valueOf(i) + ") valuesList: " + String.valueOf(valuesList.get(i)));
    }
    Log.v("", "P1: " + String.valueOf(P1));
    Log.v("", "P2: " + String.valueOf(P2));
    Log.v("", "A1: " + String.valueOf(A1));
    Log.v("", "A2: " + String.valueOf(A2));
    Log.v("", "RA: " + String.valueOf(RA));
    Log.v("", "SUM: " + String.valueOf(histogramSum));
    Log.v("", "Number of Peaks: " + String.valueOf(valuesList.size()));
    double[] result = { fluxMean, zeroCrossingsMean, centroidMean, rolloffMean, fluxStdDeviation,
            zeroCrossingsStdDeviation, centroidStdDeviation, rolloffStdDeviation, lowEnergy, P1, P2, A1, A2, RA,
            histogramSum, valuesList.size() };
    final DenseInstance denseInstance = new DenseInstance(result);
    if (P1 + P2 + A1 + A2 + RA != 0.0) {
        Handler handler = new Handler(Looper.getMainLooper());
        handler.post(new ReturnResultsRunnable(lock, mAudioCallback, denseInstance, classLabel));

    } else {
        Log.v("", "Track could not be classified!");
    }

    //      for(int i = 0; i < dataList.size(); i++){
    //         Log.v("", String.valueOf(i) + ") autocorrelation: " + String.valueOf(dataList.get(i)));
    //         histogramSum += dataList.get(i);
    //      }
    //      Log.v("", "indicesList size: " + String.valueOf(indicesList.size()));
    //      for(int i = 0; i < valuesList.size(); i++){
    //         Log.v("", "indicesList: " + String.valueOf(indicesList.get(i)) + ", value: " + String.valueOf(valuesList.get(i)));
    //         valuesSum += valuesList.get(i);
    //      }
    //Classifier c = new KNearestNeighbors(5);

    //      double A0 = valuesList.get(valuesList.size() - 1) / valuesSum;
    //      double A1 = valuesList.get(valuesList.size() - 2) / valuesSum;
    //      double RA = A1 / A0;
    //      double P0 = 1 / ((double) indicesList.get(indicesList.size() - 1));
    //      double P1 = 1 / ((double) indicesList.get(indicesList.size() - 2));
    //      
    //      Log.v("", "A0: " + String.valueOf(A0));
    //      Log.v("", "A1: " + String.valueOf(A1));
    //      Log.v("", "RA: " + String.valueOf(RA));
    //      Log.v("", "P0: " + String.valueOf(P0));
    //      Log.v("", "P1: " + String.valueOf(P1));
    //      Log.v("", "SUM: " + String.valueOf(histogramSum));

    long durationUs = SystemClock.elapsedRealtimeNanos() - start;
    double durationSecs = ((double) durationUs) / 1000000000.0;
    Log.v("", "count = " + String.valueOf(count) + ", Sample rate: " + String.valueOf(sampleRate)
            + ", Duration: " + String.valueOf(durationSecs));

    //      audioTrack.stop();
    //      audioTrack.release();
    //      audioTrack = null;
}

From source file:com.serenegiant.media.TLMediaEncoder.java

/**
 * drain encoded data and write them to intermediate file
 *//*from   w ww.ja va  2 s.c  o  m*/
protected void drain() {
    if (mMediaCodec == null)
        return;
    int encoderStatus;
    while (mIsRunning && (mState == STATE_RUNNING)) {
        // get encoded data with maximum timeout duration of TIMEOUT_USEC(=10[msec])
        try {
            encoderStatus = mMediaCodec.dequeueOutputBuffer(mBufferInfo, TIMEOUT_USEC);
        } catch (IllegalStateException e) {
            break;
        }
        if (encoderStatus == MediaCodec.INFO_TRY_AGAIN_LATER) {
            // wait 5 counts(=TIMEOUT_USEC x 5 = 50msec) until data/EOS come
            if (!mIsEOS) {
                break; // out of while
            }
        } else if (encoderStatus == MediaCodec.INFO_OUTPUT_BUFFERS_CHANGED) {
            if (DEBUG)
                Log.v(TAG, "INFO_OUTPUT_BUFFERS_CHANGED");
            // this should not come when encoding
            encoderOutputBuffers = mMediaCodec.getOutputBuffers();
        } else if (encoderStatus == MediaCodec.INFO_OUTPUT_FORMAT_CHANGED) {
            if (DEBUG)
                Log.v(TAG, "INFO_OUTPUT_FORMAT_CHANGED");
            // this status indicate the output format of codec is changed
            // this should come only once before actual encoded data
            // but this status never come on Android4.3 or less
            // and in that case, you should treat when MediaCodec.BUFFER_FLAG_CODEC_CONFIG come.
            // get output format from codec and pass them to muxer
            // getOutputFormat should be called after INFO_OUTPUT_FORMAT_CHANGED otherwise crash.
            if (mSequence == 0) { // sequence 0 is for saving MediaFormat
                final MediaFormat format = mMediaCodec.getOutputFormat(); // API >= 16
                try {
                    writeFormat(mCurrentOutputStream, mConfigFormat, format);
                    //                  changeOutputStream();
                } catch (IOException e) {
                    Log.e(TAG, "drain:failed to write MediaFormat ", e);
                }
            }
        } else if (encoderStatus < 0) {
            // unexpected status
            if (DEBUG)
                Log.w(TAG, "drain:unexpected result from encoder#dequeueOutputBuffer: " + encoderStatus);
        } else {
            final ByteBuffer encodedData = encoderOutputBuffers[encoderStatus];
            if (encodedData == null) {
                // this never should come...may be a MediaCodec internal error
                throw new RuntimeException("encoderOutputBuffer " + encoderStatus + " was null");
            }
            if ((mBufferInfo.flags & MediaCodec.BUFFER_FLAG_CODEC_CONFIG) != 0) {
                // You should set output format to muxer here when you target Android4.3 or less
                // but MediaCodec#getOutputFormat can not call here(because INFO_OUTPUT_FORMAT_CHANGED don't come yet)
                // therefor we should expand and prepare output format from buffer data.
                // This sample is for API>=18(>=Android 4.3), just ignore this flag here
                if (DEBUG)
                    Log.d(TAG, "drain:BUFFER_FLAG_CODEC_CONFIG");
                mBufferInfo.size = 0;
            }

            if (mBufferInfo.size != 0) {
                mFrameCounts++;
                if (mCurrentOutputStream == null) {
                    throw new RuntimeException("drain:temporary file not ready");
                }
                // write encoded data to muxer(need to adjust presentationTimeUs.
                mBufferInfo.presentationTimeUs = getPTSUs();
                try {
                    writeStream(mCurrentOutputStream, mSequence, mFrameCounts, mBufferInfo, encodedData,
                            writeBuffer);
                } catch (IOException e) {
                    throw new RuntimeException("drain:failed to writeStream:" + e.getMessage());
                }
                prevOutputPTSUs = mBufferInfo.presentationTimeUs;
            }
            // return buffer to encoder
            mMediaCodec.releaseOutputBuffer(encoderStatus, false);
            if ((mNumFrames > 0) && (mFrameCounts >= mNumFrames)) {
                setState(STATE_PAUSING, null); // request pause
            }
            if ((mBufferInfo.flags & MediaCodec.BUFFER_FLAG_END_OF_STREAM) != 0) {
                // when EOS come.
                mIsRunning = false;
                break; // out of while
            }
        }
    }
}