List of usage examples for com.google.common.base Stopwatch start
public Stopwatch start()
From source file:processing.ActCalculator.java
private static List<Map<Integer, Double>> startActCreation(BookmarkReader reader, int sampleSize, boolean sorting, boolean userBased, boolean resBased, int dVal, int beta) { timeString = ""; int size = reader.getUserLines().size(); int trainSize = size - sampleSize; Stopwatch timer = new Stopwatch(); timer.start(); ActCalculator calculator = new ActCalculator(reader, trainSize, dVal, beta, userBased, resBased); timer.stop();// w w w .ja v a 2 s .co m long trainingTime = timer.elapsed(TimeUnit.MILLISECONDS); List<Map<Integer, Double>> results = new ArrayList<Map<Integer, Double>>(); if (trainSize == size) { trainSize = 0; } timer = new Stopwatch(); timer.start(); for (int i = trainSize; i < size; i++) { // the test-set UserData data = reader.getUserLines().get(i); Map<Integer, Double> map = calculator.getRankedTagList(data.getUserID(), data.getWikiID(), sorting); results.add(map); } timer.stop(); long testTime = timer.elapsed(TimeUnit.MILLISECONDS); timeString += ("Full training time: " + trainingTime + "\n"); timeString += ("Full test time: " + testTime + "\n"); timeString += ("Average test time: " + testTime / (double) sampleSize) + "\n"; timeString += ("Total time: " + (trainingTime + testTime) + "\n"); return results; }
From source file:processing.FolkRankCalculator.java
private static void startFolkRankCreation(BookmarkReader reader, int sampleSize) { timeString = ""; System.out.println("\nStart FolkRank Calculation for Tags"); frResults = new ArrayList<int[]>(); prResults = new ArrayList<int[]>(); int size = reader.getUserLines().size(); int trainSize = size - sampleSize; Stopwatch timer = new Stopwatch(); timer.start(); FactReader factReader = new WikipediaFactReader(reader, trainSize, 3); FactPreprocessor prep = new FactReaderFactPreprocessor(factReader); prep.process();/*from w w w . j ava 2s.co m*/ FolkRankData facts = prep.getFolkRankData(); FolkRankParam param = new FolkRankParam(); FolkRankPref pref = new FolkRankPref(new double[] { 1.0, 1.0, 1.0 }); int usrCounts = facts.getCounts()[1].length; System.out.println("Users: " + usrCounts); int resCounts = facts.getCounts()[2].length; System.out.println("Resources: " + resCounts); double[][] prefWeights = new double[][] { new double[] {}, new double[] { usrCounts }, new double[] { resCounts } }; FolkRankAlgorithm folk = new FolkRankAlgorithm(param); timer.stop(); long trainingTime = timer.elapsed(TimeUnit.MILLISECONDS); timer = new Stopwatch(); // start FolkRank for (int i = trainSize; i < size; i++) { timer.start(); UserData data = reader.getUserLines().get(i); int u = data.getUserID(); int[] uPrefs = (u < usrCounts ? new int[] { u } : new int[] {}); int r = data.getWikiID(); int[] rPrefs = (r < resCounts ? new int[] { r } : new int[] {}); pref.setPreference(new int[][] { new int[] {}, uPrefs, rPrefs }, prefWeights); FolkRankResult result = folk.computeFolkRank(facts, pref); int[] topTags = new int[10]; SortedSet<ItemWithWeight> topKTags = ItemWithWeight.getTopK(facts, result.getWeights(), 10, 0); int count = 0; for (ItemWithWeight item : topKTags) { topTags[count++] = item.getItem(); } frResults.add(topTags); timer.stop(); int[] topTagsPr = new int[10]; SortedSet<ItemWithWeight> topKTagsPr = ItemWithWeight.getTopK(facts, result.getAPRWeights(), 10, 0); count = 0; for (ItemWithWeight item : topKTagsPr) { topTagsPr[count++] = item.getItem(); } prResults.add(topTagsPr); //System.out.println(u + "|" + data.getTags().toString().replace("[", "").replace("]", "") + // "|" + Arrays.toString(topTags).replace("[", "").replace("]", "") + // "|" + Arrays.toString(topTagsPr).replace("[", "").replace("]", "")); } long testTime = timer.elapsed(TimeUnit.MILLISECONDS); timeString += ("Full training time: " + trainingTime + "\n"); timeString += ("Full test time: " + testTime + "\n"); timeString += ("Average test time: " + testTime / (double) sampleSize) + "\n"; timeString += ("Total time: " + (trainingTime + testTime) + "\n"); }
From source file:itemrecommendations.CFResourceCalculator.java
private static List<Map<Integer, Double>> startBM25CreationForResourcesPrediction(BookmarkReader reader, int sampleSize, boolean userBased, boolean resBased, boolean allResources, boolean bll, Features features) {//from ww w . java2s. c om int size = reader.getBookmarks().size(); int trainSize = size - sampleSize; Stopwatch timer = new Stopwatch(); timer.start(); CFResourceCalculator calculator = new CFResourceCalculator(reader, trainSize, false, userBased, resBased, 5, Similarity.COSINE, features); timer.stop(); long trainingTime = timer.elapsed(TimeUnit.MILLISECONDS); timer.reset(); timer.start(); List<Map<Integer, Double>> results = new ArrayList<Map<Integer, Double>>(); for (Integer userID : reader.getUniqueUserListFromTestSet(trainSize)) { Map<Integer, Double> map = null; map = calculator.getRankedResourcesList(userID, -1, true, allResources, bll, true, false); // TODO results.add(map); } timer.stop(); long testTime = timer.elapsed(TimeUnit.MILLISECONDS); timeString = PerformanceMeasurement.addTimeMeasurement(timeString, true, trainingTime, testTime, sampleSize); return results; }
From source file:com.codereligion.cherry.benchmark.BenchmarkRunner.java
public static Func1<Input, Observable<Output>> benchMark() { return new Func1<Input, Observable<Output>>() { @Override/*from w ww. j a v a 2s . com*/ public Observable<Output> call(final Input input) { final Output output = Output.from(input); output.withGuavaContestant(benchMark(input.getRepetitions(), input.getGuavaResult())); output.withCherryContestant(benchMark(input.getRepetitions(), input.getCherryResult())); return Observable.just(output); } private ContestantResult benchMark(final long repetitions, final Contestant contestant) { int checkInt = 0; final Stopwatch stopwatch = Stopwatch.createUnstarted(); final ContestantResult contestantResult = ContestantResult.from(contestant); for (long reps = 0; reps < repetitions; reps++) { System.gc(); stopwatch.start(); checkInt |= contestant.run(); stopwatch.stop(); final long timeInNanos = stopwatch.elapsed(TimeUnit.NANOSECONDS); contestantResult.addRunTime(timeInNanos); stopwatch.reset(); } System.out.println("check int:" + checkInt); return contestantResult; } }; }
From source file:org.apache.beam.sdk.io.synthetic.delay.SyntheticDelay.java
/** Keep cpu busy for {@code delayMillis} by calculating lots of hashes. */ private static void cpuDelay(long delayMillis) { // Note that the delay is enforced in terms of walltime. That implies this thread may not // keep CPU busy if it gets preempted by other threads. There is more of chance of this // occurring in a streaming pipeline as there could be lots of threads running this. The loop // measures cpu time spent for each iteration, so that these effects are some what minimized. long cpuMicros = delayMillis * 1000; Stopwatch timer = Stopwatch.createUnstarted(); while (timer.elapsed(TimeUnit.MICROSECONDS) < cpuMicros) { // Find a long which hashes to HASH in lowest MASK bits. // Values chosen to roughly take 1ms on typical workstation. timer.start(); long p = INIT_PLAINTEXT; while (true) { long t = Hashing.murmur3_128().hashLong(p).asLong(); if ((t & MASK) == (HASH & MASK)) { break; }/*from w ww . jav a 2 s .co m*/ p++; } timer.stop(); } }
From source file:processing.BM25Calculator.java
private static List<Map<Integer, Double>> startBM25CreationForTagPrediction(BookmarkReader reader, int sampleSize, boolean userBased, boolean resBased, int beta) { timeString = ""; int size = reader.getUserLines().size(); int trainSize = size - sampleSize; Stopwatch timer = new Stopwatch(); timer.start(); BM25Calculator calculator = new BM25Calculator(reader, trainSize, true, userBased, resBased, beta); timer.stop();/*from www . j a v a 2 s . c om*/ long trainingTime = timer.elapsed(TimeUnit.MILLISECONDS); List<Map<Integer, Double>> results = new ArrayList<Map<Integer, Double>>(); timer = new Stopwatch(); timer.start(); for (int i = trainSize; i < size; i++) { UserData data = reader.getUserLines().get(i); Map<Integer, Double> map = null; map = calculator.getRankedTagList(data.getUserID(), data.getWikiID(), true); results.add(map); //System.out.println(data.getTags() + "|" + map.keySet()); } timer.stop(); long testTime = timer.elapsed(TimeUnit.MILLISECONDS); timeString += ("Full training time: " + trainingTime + "\n"); timeString += ("Full test time: " + testTime + "\n"); timeString += ("Average test time: " + testTime / (double) sampleSize) + "\n"; timeString += ("Total time: " + (trainingTime + testTime) + "\n"); return results; }
From source file:processing.BLLCalculator.java
private static List<Map<Integer, Double>> startActCreation(BookmarkReader reader, int sampleSize, boolean sorting, boolean userBased, boolean resBased, double dVal, int beta, CalculationType cType, Double lambda) {/*from w w w .jav a 2 s . co m*/ int size = reader.getBookmarks().size(); int trainSize = size - sampleSize; Stopwatch timer = new Stopwatch(); timer.start(); BLLCalculator calculator = new BLLCalculator(reader, trainSize, dVal, beta, userBased, resBased, cType, lambda); timer.stop(); long trainingTime = timer.elapsed(TimeUnit.MILLISECONDS); List<Map<Integer, Double>> results = new ArrayList<Map<Integer, Double>>(); if (trainSize == size) { trainSize = 0; } timer.reset(); timer.start(); for (int i = trainSize; i < size; i++) { // the test-set Bookmark data = reader.getBookmarks().get(i); Map<Integer, Double> map = calculator.getRankedTagList(data.getUserID(), data.getResourceID(), sorting, cType); results.add(map); } timer.stop(); long testTime = timer.elapsed(TimeUnit.MILLISECONDS); timeString = PerformanceMeasurement.addTimeMeasurement(timeString, true, trainingTime, testTime, sampleSize); return results; }
From source file:com.android.build.gradle.shrinker.AbstractShrinker.java
public static void logTime(String section, Stopwatch stopwatch) { if (System.getProperty("android.newShrinker.profile") != null) { System.out.println(section + ": " + stopwatch); stopwatch.reset();/*from w ww . j a va2 s . c om*/ stopwatch.start(); } }
From source file:processing.MalletCalculator.java
public static List<Map<Integer, Double>> startLdaCreation(BookmarkReader reader, int sampleSize, boolean sorting, int numTopics, boolean userBased, boolean resBased, boolean topicCreation, boolean smoothing) { timeString = ""; int size = reader.getUserLines().size(); int trainSize = size - sampleSize; Stopwatch timer = new Stopwatch(); timer.start(); MalletCalculator userCalc = null;/*w w w . j a v a 2 s.c om*/ List<Map<Integer, Integer>> userMaps = null; //List<Double> userDenoms = null; if (userBased) { userMaps = Utilities.getUserMaps(reader.getUserLines().subList(0, trainSize)); userCalc = new MalletCalculator(userMaps, numTopics); userCalc.predictValuesProbs(); //userDenoms = getDenoms(userPredictionValues); System.out.println("User-Training finished"); } MalletCalculator resCalc = null; List<Map<Integer, Integer>> resMaps = null; //List<Double> resDenoms = null; if (resBased) { resMaps = Utilities.getResMaps(reader.getUserLines().subList(0, trainSize)); resCalc = new MalletCalculator(resMaps, numTopics); resCalc.predictValuesProbs(); //resDenoms = getDenoms(resPredictionValues); System.out.println("Res-Training finished"); } List<Map<Integer, Double>> results = new ArrayList<Map<Integer, Double>>(); if (trainSize == size) { trainSize = 0; } timer.stop(); long trainingTime = timer.elapsed(TimeUnit.MILLISECONDS); timer = new Stopwatch(); timer.start(); for (int i = trainSize; i < size; i++) { // the test set UserData data = reader.getUserLines().get(i); int userID = data.getUserID(); int resID = data.getWikiID(); //Map<Integer, Integer> userMap = null; //if (userBased && userMaps != null && userID < userMaps.size()) { // userMap = userMaps.get(userID); //} //Map<Integer, Integer> resMap = null; //if (resBased && resMaps != null && resID < resMaps.size()) { // resMap = resMaps.get(resID); //} double userTagCount = 0.0;//Utilities.getMapCount(userMap); double resTagCount = 0.0;//Utilities.getMapCount(resMap); /* double userDenomVal = 0.0; if (userDenoms != null && userID < userDenoms.size()) { userDenomVal = userDenoms.get(userID); } double resDenomVal = 0.0; if (resDenoms != null && resID < resDenoms.size()) { resDenomVal = resDenoms.get(resID); } */ Map<Integer, Double> userPredMap = null; if (userCalc != null) { userPredMap = userCalc.getValueProbsForID(userID, topicCreation); } Map<Integer, Double> resPredMap = null; if (resCalc != null) { resPredMap = resCalc.getValueProbsForID(resID, topicCreation); } Map<Integer, Double> map = getRankedTagList(reader, userPredMap, userTagCount, resPredMap, resTagCount, sorting, smoothing, topicCreation); results.add(map); } timer.stop(); long testTime = timer.elapsed(TimeUnit.MILLISECONDS); timeString += ("Full training time: " + trainingTime + "\n"); timeString += ("Full test time: " + testTime + "\n"); timeString += ("Average test time: " + testTime / (double) sampleSize) + "\n"; timeString += ("Total time: " + (trainingTime + testTime) + "\n"); return results; }
From source file:matching.naive.BranchAndBoundMatching.java
/** * Tiny tests / benchmarks./*ww w . j av a 2 s.com*/ */ public static void _main(final String[] args) { /* final double[][] matrix = { { 0, 1, 2, 3 }, { 1, 0, 10, 20 }, { 2, 10, 0, 10 }, { 3, 20, 10, 0 }, }; */ final double[][] matrix = { // A B C D /*A*/{ 0, 1, 5, 10 }, /*B*/{ 1, 0, 1, 1 }, /*C*/{ 5, 1, 0, 1 }, /*D*/{ 10, 1, 1, 0 } }; // TODO ? normaliser la matrice entre 0 et 1 ? /* final double[][] matrix = { { 0, 1, 1, 1, 1, 1 }, { 1, 0, 1, 1, 1, 1 }, { 1, 1, 0, 1, 1, 1 }, { 1, 1, 1, 0, 1, 1 }, { 1, 1, 1, 1, 0, 1 }, { 1, 1, 1, 1, 1, 0 }, }; */ /* final double[][] matrix = { { 0, 10, 1, 1, 1, 1, 1, 1 }, { 10, 0, 1, 1, 1, 1, 1, 1 }, { 1, 1, 0, 1, 1, 1, 1, 1 }, { 1, 1, 1, 0, 1, 1, 1, 1 }, { 1, 1, 1, 1, 0, 1, 1, 1 }, { 1, 1, 1, 1, 1, 0, 1, 1 }, { 1, 1, 1, 1, 1, 1, 0, 1 }, { 1, 1, 1, 1, 1, 1, 1, 0 }, }; */ final BranchAndBoundMatching matching = new BranchAndBoundMatching(matrix); final List<String> labels = Lists.newArrayList("A", "B", "C", "D", "E", "F"); final Function<Position, String> mapping = new Function<Position, String>() { @Override public String apply(final Position position) { return labels.get(position.getRowIndex()) + labels.get(position.getColumnIndex()); } }; final Stopwatch stopwatch = new Stopwatch(); stopwatch.start(); //final Match firstMatch = matching.match(Extremum.MIN); //System.out.println(firstMatch); //System.out.println(firstMatch.apply(mapping)); final Iterable<Match> matches = matching.matchAll(); stopwatch.stop(); for (final Match match : matches) System.out.println(match.apply(mapping)); System.out.println(stopwatch.elapsedTime(TimeUnit.NANOSECONDS) + " " + TimeUnit.NANOSECONDS.toString()); }