Example usage for javax.media.j3d BranchGroup BranchGroup

List of usage examples for javax.media.j3d BranchGroup BranchGroup

Introduction

In this page you can find the example usage for javax.media.j3d BranchGroup BranchGroup.

Prototype

public BranchGroup() 

Source Link

Document

Constructs and initializes a new BranchGroup node object.

Usage

From source file:LightTest.java

protected BranchGroup createFloor() {
    final int LAND_WIDTH = 12;
    final float LAND_HEIGHT = -4.0f;
    final int LAND_LENGTH = 12;

    final int nTileSize = 2;

    // calculate how many vertices we need to store all the "tiles"
    // that compose the QuadArray.
    final int nNumTiles = ((LAND_LENGTH / nTileSize) * 2) * ((LAND_WIDTH / nTileSize) * 2);
    final int nVertexCount = 4 * nNumTiles;
    Point3f[] coordArray = new Point3f[nVertexCount];
    Color3f[] colorArray = new Color3f[nVertexCount];

    // create an Appearance
    Appearance app = new Appearance();

    // create the parent BranchGroup
    BranchGroup bg = new BranchGroup();

    int nItem = 0;

    Color3f whiteColor = new Color3f(1, 1, 1);
    Color3f blackColor = new Color3f(0, 0, 0);

    // loop over all the tiles in the environment
    for (int x = -LAND_WIDTH; x <= LAND_WIDTH; x += nTileSize) {
        for (int z = -LAND_LENGTH; z <= LAND_LENGTH; z += nTileSize) {
            // if we are not on the last row or column create a "tile"
            // and add to the QuadArray. Use CCW winding and assign texture
            // coordinates.
            if (z < LAND_LENGTH && x < LAND_WIDTH) {
                coordArray[nItem] = new Point3f(x, LAND_HEIGHT, z);
                colorArray[nItem++] = blackColor;

                coordArray[nItem] = new Point3f(x, LAND_HEIGHT, z + nTileSize);
                colorArray[nItem++] = whiteColor;

                coordArray[nItem] = new Point3f(x + nTileSize, LAND_HEIGHT, z + nTileSize);
                colorArray[nItem++] = blackColor;

                coordArray[nItem] = new Point3f(x + nTileSize, LAND_HEIGHT, z);
                colorArray[nItem++] = whiteColor;
            }//from  w w w  . j a  va  2  s  .c o  m
        }
    }

    // create a GeometryInfo and generate Normal vectors
    // for the QuadArray that was populated.
    GeometryInfo gi = new GeometryInfo(GeometryInfo.QUAD_ARRAY);

    gi.setCoordinates(coordArray);
    gi.setColors(colorArray);

    NormalGenerator normalGenerator = new NormalGenerator();
    normalGenerator.generateNormals(gi);

    // wrap the GeometryArray in a Shape3D
    Shape3D shape = new Shape3D(gi.getGeometryArray(), app);

    // add the Shape3D to the parent BranchGroup
    bg.addChild(shape);

    return bg;
}

From source file:SimpleGame.java

/**
 * This builds the ball that acts as the bullet for our gun. The ball is
 * created from a sphere primitive, and a transform group and interpolator
 * are added so that we can 'fire' the bullet.
 * //from  w  w w  .  jav a2s .c om
 * @return BranchGroup that is the root of the ball branch.
 */
protected BranchGroup buildBall() {
    BranchGroup theBall = new BranchGroup();

    Appearance ballApp = new Appearance();
    Color3f ambientColour = new Color3f(1.0f, 0.0f, 0.0f);
    Color3f emissiveColour = new Color3f(0.0f, 0.0f, 0.0f);
    Color3f specularColour = new Color3f(1.0f, 1.0f, 1.0f);
    Color3f diffuseColour = new Color3f(1.0f, 0.0f, 0.0f);
    float shininess = 20.0f;
    ballApp.setMaterial(new Material(ambientColour, emissiveColour, diffuseColour, specularColour, shininess));

    Sphere ball = new Sphere(0.2f, ballApp);

    TransformGroup ballMovXfmGrp = new TransformGroup();
    ballMovXfmGrp.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
    ballMovXfmGrp.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    ballMovXfmGrp.addChild(ball);
    theBall.addChild(ballMovXfmGrp);

    ballAlpha = new Alpha(1, 0, 0, 500, 0, 0);
    Transform3D axis = new Transform3D();
    axis.rotY(Math.PI / 2);
    moveBall = new PositionInterpolator(ballAlpha, ballMovXfmGrp, axis, 0.0f, 50.0f);
    moveBall.setSchedulingBounds(bounds);
    theBall.addChild(moveBall);

    return theBall;

}

From source file:InterpolatorTest.java

private BranchGroup createBranchGroup(TransformGroup bgShared, Interpolator interpolator) {
    BranchGroup bg = new BranchGroup();
    bg.addChild(bgShared);/*  w w w. j a v  a  2  s  .co  m*/
    bg.addChild(interpolator);
    interpolator.setSchedulingBounds(getApplicationBounds());

    // strip the package name from szClass (everything before the final ".")
    String szClass = interpolator.getClass().getName();
    int nIndex = szClass.lastIndexOf(".");

    String szTrimedClass = szClass;

    if (nIndex > -1)
        szTrimedClass = szClass.substring(nIndex + 1, szClass.length());

    Text2D text = new Text2D(szTrimedClass, new Color3f(1, 1, 1), "SansSerif", 20, Font.PLAIN);
    bg.addChild(text);

    return bg;
}

From source file:SplineInterpolatorTest.java

protected Background createBackground() {
    // add the sky backdrop
    Background back = new Background();
    back.setApplicationBounds(getApplicationBounds());

    BranchGroup bgGeometry = new BranchGroup();

    // create an appearance and assign the texture image
    Appearance app = new Appearance();
    Texture tex = new TextureLoader("sky.gif", this).getTexture();
    app.setTexture(tex);//from w  w w  .  j ava2  s.  c  om

    Sphere sphere = new Sphere(1.0f, Primitive.GENERATE_TEXTURE_COORDS | Primitive.GENERATE_NORMALS_INWARD,
            app);

    bgGeometry.addChild(sphere);
    back.setGeometry(bgGeometry);

    return back;
}

From source file:PlatformTest.java

public BranchGroup createSceneGraph() {
    final int LAND_WIDTH = 12;
    final float LAND_HEIGHT = -1.0f;
    final int LAND_LENGTH = 12;
    final int nTileSize = 2;

    // calculate how many vertices we need to store all the "tiles"
    // that compose the QuadArray.
    final int nNumTiles = ((LAND_LENGTH / nTileSize) * 2) * ((LAND_WIDTH / nTileSize) * 2);
    final int nVertexCount = 4 * nNumTiles;
    Point3f[] coordArray = new Point3f[nVertexCount];
    Point2f[] texCoordArray = new Point2f[nVertexCount];

    // create an Appearance and load a texture
    Appearance app = new Appearance();
    Texture tex = new TextureLoader("land.jpg", this).getTexture();
    app.setTexture(tex);/*from   ww w.  j  av  a2s.c  om*/

    // create the parent BranchGroup
    BranchGroup bg = new BranchGroup();

    int nItem = 0;

    // loop over all the tiles in the environment
    for (int x = -LAND_WIDTH; x <= LAND_WIDTH; x += nTileSize) {
        for (int z = -LAND_LENGTH; z <= LAND_LENGTH; z += nTileSize) {
            // if we are on the border of the environment create a
            // TransformGroup to position a ColorCube to create a "wall"
            if (x == -LAND_WIDTH || x == LAND_WIDTH || z == -LAND_LENGTH || z == LAND_LENGTH) {
                TransformGroup tg = new TransformGroup();
                Transform3D t3d = new Transform3D();
                t3d.setTranslation(new Vector3d(x, 0, z));
                tg.setTransform(t3d);
                tg.addChild(new ColorCube(nTileSize / 2));
                bg.addChild(tg);
            }

            // if we are not on the last row or column create a "tile"
            // and add to the QuadArray. Use CCW winding and assign texture
            // coordinates.
            if (z < LAND_LENGTH && x < LAND_WIDTH) {
                coordArray[nItem] = new Point3f(x, LAND_HEIGHT, z);
                texCoordArray[nItem++] = new Point2f(0, 0);
                coordArray[nItem] = new Point3f(x, LAND_HEIGHT, z + nTileSize);
                texCoordArray[nItem++] = new Point2f(1, 0);
                coordArray[nItem] = new Point3f(x + nTileSize, LAND_HEIGHT, z + nTileSize);
                texCoordArray[nItem++] = new Point2f(1, 1);
                coordArray[nItem] = new Point3f(x + nTileSize, LAND_HEIGHT, z);
                texCoordArray[nItem++] = new Point2f(0, 1);
            }
        }
    }

    // create a GeometryInfo and generate Normal vectors
    // for the QuadArray that was populated.
    GeometryInfo gi = new GeometryInfo(GeometryInfo.QUAD_ARRAY);

    gi.setCoordinates(coordArray);
    gi.setTextureCoordinates(texCoordArray);

    NormalGenerator normalGenerator = new NormalGenerator();
    normalGenerator.generateNormals(gi);

    // wrap the GeometryArray in a Shape3D
    Shape3D shape = new Shape3D(gi.getGeometryArray(), app);

    // add the Shape3D to the parent BranchGroup
    bg.addChild(shape);

    // create some lights for the scene
    Color3f lColor1 = new Color3f(0.7f, 0.7f, 0.7f);
    Vector3f lDir1 = new Vector3f(-1.0f, -1.0f, -1.0f);
    Color3f alColor = new Color3f(0.2f, 0.2f, 0.2f);

    AmbientLight aLgt = new AmbientLight(alColor);
    aLgt.setInfluencingBounds(m_Bounds);
    DirectionalLight lgt1 = new DirectionalLight(lColor1, lDir1);
    lgt1.setInfluencingBounds(m_Bounds);

    // add the lights to the parent BranchGroup
    bg.addChild(aLgt);
    bg.addChild(lgt1);

    // create a light gray background
    Background back = new Background(new Color3f(0.9f, 0.9f, 0.9f));
    back.setApplicationBounds(m_Bounds);
    bg.addChild(back);

    // compile the whole scene
    //bg.compile();

    return bg;
}

From source file:SwingTest.java

/**
 * Create the scene side of the scenegraph
 *///from   ww  w  .java 2s  . c om
protected BranchGroup createSceneBranchGroup() {
    // create the root of the scene side scenegraph
    BranchGroup objRoot = new BranchGroup();

    // create a TransformGroup to rotate the objects in the scene
    // set the capability bits on the TransformGroup so that it
    // can be modified at runtime
    TransformGroup objTrans = new TransformGroup();
    objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

    // create a spherical bounding volume
    BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0);

    // create a 4x4 transformation matrix
    Transform3D yAxis = new Transform3D();

    // create an Alpha interpolator to automatically generate
    // modifications to the rotation component of the transformation matrix
    Alpha rotationAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE, 0, 0, 4000, 0, 0, 0, 0, 0);

    // create a RotationInterpolator behavior to effect the TransformGroup
    rotator = new RotationInterpolator(rotationAlpha, objTrans, yAxis, 0.0f, (float) Math.PI * 2.0f);

    // set the scheduling bounds on the behavior
    rotator.setSchedulingBounds(bounds);

    // add the behavior to the scenegraph
    objTrans.addChild(rotator);

    // create the BranchGroup which contains the objects
    // we add/remove to and from the scenegraph
    sceneBranchGroup = new BranchGroup();

    // allow the BranchGroup to have children added at runtime
    sceneBranchGroup.setCapability(Group.ALLOW_CHILDREN_EXTEND);
    sceneBranchGroup.setCapability(Group.ALLOW_CHILDREN_READ);
    sceneBranchGroup.setCapability(Group.ALLOW_CHILDREN_WRITE);

    // add both the cube and the sphere to the scenegraph
    sceneBranchGroup.addChild(createCube());
    sceneBranchGroup.addChild(createSphere());

    // create the colors for the lights
    Color3f lColor1 = new Color3f(0.7f, 0.7f, 0.7f);
    Vector3f lDir1 = new Vector3f(-1.0f, -1.0f, -1.0f);
    Color3f alColor = new Color3f(0.2f, 0.2f, 0.2f);

    // create the ambient light
    AmbientLight aLgt = new AmbientLight(alColor);
    aLgt.setInfluencingBounds(bounds);

    // create the directional light
    DirectionalLight lgt1 = new DirectionalLight(lColor1, lDir1);
    lgt1.setInfluencingBounds(bounds);

    // add the lights to the scenegraph
    objRoot.addChild(aLgt);
    objRoot.addChild(lgt1);

    // wire the scenegraph together
    objTrans.addChild(sceneBranchGroup);
    objRoot.addChild(objTrans);

    // return the root of the scene side of the scenegraph
    return objRoot;
}

From source file:OrientedTest.java

public void init() {
    // the paths to the image files for an applet
    if (earthImage == null) {
        try {/*from  w  w  w.j ava2s . c o m*/
            earthImage = new java.net.URL(getCodeBase().toString() + "/earth.jpg");
        } catch (java.net.MalformedURLException ex) {
            System.out.println(ex.getMessage());
            System.exit(1);
        }
    }
    if (stoneImage == null) {
        try {
            stoneImage = new java.net.URL(getCodeBase().toString() + "/stone.jpg");
        } catch (java.net.MalformedURLException ex) {
            System.out.println(ex.getMessage());
            System.exit(1);
        }
    }
    setLayout(new BorderLayout());
    GraphicsConfiguration config = SimpleUniverse.getPreferredConfiguration();

    Canvas3D c = new Canvas3D(config);
    add("Center", c);

    // Create a simple scene and attach it to the virtual universe
    BranchGroup scene = createSceneGraph();
    u = new SimpleUniverse(c, 4);

    // add mouse behaviors to ViewingPlatform
    ViewingPlatform viewingPlatform = u.getViewingPlatform();

    // there is a special rotate behavior, so can't use the utility
    // method
    MouseRotateY rotate = new MouseRotateY(MouseRotateY.INVERT_INPUT);
    rotate.setTransformGroup(viewingPlatform.getMultiTransformGroup().getTransformGroup(0));
    BranchGroup rotateBG = new BranchGroup();
    rotateBG.addChild(rotate);
    viewingPlatform.addChild(rotateBG);
    BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0);
    rotate.setSchedulingBounds(bounds);

    MouseZoom zoom = new MouseZoom(c, MouseZoom.INVERT_INPUT);
    zoom.setTransformGroup(viewingPlatform.getMultiTransformGroup().getTransformGroup(1));
    zoom.setSchedulingBounds(bounds);
    BranchGroup zoomBG = new BranchGroup();
    zoomBG.addChild(zoom);
    viewingPlatform.addChild(zoomBG);

    MouseTranslate translate = new MouseTranslate(c, MouseTranslate.INVERT_INPUT);
    translate.setTransformGroup(viewingPlatform.getMultiTransformGroup().getTransformGroup(2));
    translate.setSchedulingBounds(bounds);
    BranchGroup translateBG = new BranchGroup();
    translateBG.addChild(translate);
    viewingPlatform.addChild(translateBG);

    // This will move the ViewPlatform back a bit so the
    // objects in the scene can be viewed.
    u.getViewingPlatform().setNominalViewingTransform();

    u.addBranchGraph(scene);
}

From source file:SimpleGame.java

/**
 * This puts all the content togther. It used the three 'build' functions to
 * create the duck, the gun and the ball. It also creates the two behaviours
 * from the DuckBehaviour and GunBehaviour classes. It then puts all this
 * together./*from   w  w w  . j av a  2  s .  c  om*/
 * 
 * @return BranchGroup that is the root of the content.
 */
protected BranchGroup buildContentBranch() {
    BranchGroup contentBranch = new BranchGroup();
    Node theDuck = buildDuck();
    contentBranch.addChild(theDuck);
    Node theBall = buildBall();
    contentBranch.addChild(theBall);
    DuckBehaviour hitTheDuck = new DuckBehaviour(theDuck, duckSwitch, duckAlpha, bounds);
    GunBehaviour shootTheGun = new GunBehaviour(ballAlpha, moveBall, gunXfmGrp, bounds);
    contentBranch.addChild(hitTheDuck);
    contentBranch.addChild(shootTheGun);
    contentBranch.addChild(buildGun());
    addLights(contentBranch);
    return contentBranch;
}

From source file:SplineAnim.java

public BranchGroup createSceneGraph() {

    // Colors for lights and objects
    Color3f aColor = new Color3f(0.2f, 0.2f, 0.2f);
    Color3f eColor = new Color3f(0.0f, 0.0f, 0.0f);
    Color3f sColor = new Color3f(1.0f, 1.0f, 1.0f);
    Color3f coneColor = new Color3f(0.9f, 0.1f, 0.1f);
    Color3f sphereColor = new Color3f(0.1f, 0.7f, 0.9f);
    Color3f bgColor = new Color3f(0.0f, 0.0f, 0.0f);
    Color3f lightColor = new Color3f(1.0f, 1.0f, 1.0f);

    // Root of the branch grsph
    BranchGroup root = new BranchGroup();

    // Create transforms such that all objects appears in the scene
    sceneTransform = new Transform3D();
    sceneTransform.setScale(0.14f);//from  w  w w .jav a2  s. co  m
    Transform3D yrot = new Transform3D();
    yrot.rotY(-Math.PI / 5.0d);
    sceneTransform.mul(yrot);
    sceneTransformGroup = new TransformGroup(sceneTransform);
    sceneTransformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    sceneTransformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
    root.addChild(sceneTransformGroup);

    // Create bounds for the background and lights
    bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0f);

    // Set up the background
    Background bg = new Background(bgColor);
    bg.setApplicationBounds(bounds);
    sceneTransformGroup.addChild(bg);

    // Create the transform group node for the lights
    lightTransform1 = new Transform3D();
    lightTransform2 = new Transform3D();
    Vector3d lightPos1 = new Vector3d(0.0, 0.0, 2.0);
    Vector3d lightPos2 = new Vector3d(1.0, 0.0, -2.0);
    lightTransform1.set(lightPos1);
    lightTransform2.set(lightPos2);
    light1TransformGroup = new TransformGroup(lightTransform1);
    light2TransformGroup = new TransformGroup(lightTransform2);
    sceneTransformGroup.addChild(light1TransformGroup);
    sceneTransformGroup.addChild(light2TransformGroup);

    // Create lights
    AmbientLight ambLight = new AmbientLight(aColor);
    Light dirLight1;
    Light dirLight2;

    Vector3f lightDir1 = new Vector3f(lightPos1);
    Vector3f lightDir2 = new Vector3f(lightPos2);
    lightDir1.negate();
    lightDir2.negate();
    dirLight1 = new DirectionalLight(lightColor, lightDir1);
    dirLight2 = new DirectionalLight(lightColor, lightDir2);

    // Set the influencing bounds
    ambLight.setInfluencingBounds(bounds);
    dirLight1.setInfluencingBounds(bounds);
    dirLight2.setInfluencingBounds(bounds);

    // Add the lights into the scene graph
    sceneTransformGroup.addChild(ambLight);
    sceneTransformGroup.addChild(dirLight1);
    sceneTransformGroup.addChild(dirLight2);

    // Create a cone and add it to the scene graph.
    objTransform = new Transform3D();
    objTransformGroup = new TransformGroup(objTransform);
    objTransformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    sceneTransformGroup.addChild(objTransformGroup);

    Material m = new Material(coneColor, eColor, coneColor, sColor, 100.0f);
    Appearance a = new Appearance();
    m.setLightingEnable(true);
    a.setMaterial(m);
    Cone cone = new Cone(0.4f, 1.0f);
    cone.setAppearance(a);
    objTransformGroup.addChild(cone);

    // Create transform groups for each knot point
    // knot point 0
    Transform3D t3dKnot = new Transform3D();
    t3dKnot.set(pos0);
    TransformGroup k0TransformGroup = new TransformGroup(t3dKnot);
    sceneTransformGroup.addChild(k0TransformGroup);

    // knot point 1
    t3dKnot = new Transform3D();
    t3dKnot.set(pos1);
    TransformGroup k1TransformGroup = new TransformGroup(t3dKnot);
    sceneTransformGroup.addChild(k1TransformGroup);

    // knot point 2
    t3dKnot = new Transform3D();
    t3dKnot.set(pos2);
    TransformGroup k2TransformGroup = new TransformGroup(t3dKnot);
    sceneTransformGroup.addChild(k2TransformGroup);

    // knot point 3
    t3dKnot = new Transform3D();
    t3dKnot.set(pos3);
    TransformGroup k3TransformGroup = new TransformGroup(t3dKnot);
    sceneTransformGroup.addChild(k3TransformGroup);

    // knot point 4
    t3dKnot = new Transform3D();
    t3dKnot.set(pos4);
    TransformGroup k4TransformGroup = new TransformGroup(t3dKnot);
    sceneTransformGroup.addChild(k4TransformGroup);

    // knot point 5
    t3dKnot = new Transform3D();
    t3dKnot.set(pos5);
    TransformGroup k5TransformGroup = new TransformGroup(t3dKnot);
    sceneTransformGroup.addChild(k5TransformGroup);

    // Create spheres for each knot point's transform group
    ColoringAttributes sphereColorAttr = new ColoringAttributes();
    sphereColorAttr.setColor(sphereColor);
    Appearance sphereAppearance = new Appearance();
    sphereAppearance.setColoringAttributes(sphereColorAttr);
    k0TransformGroup.addChild(new Sphere(0.10f, sphereAppearance));
    k1TransformGroup.addChild(new Sphere(0.10f, sphereAppearance));
    k2TransformGroup.addChild(new Sphere(0.10f, sphereAppearance));
    k3TransformGroup.addChild(new Sphere(0.10f, sphereAppearance));
    k4TransformGroup.addChild(new Sphere(0.10f, sphereAppearance));
    k5TransformGroup.addChild(new Sphere(0.10f, sphereAppearance));

    return root;
}

From source file:ViewProj.java

public BranchGroup createVWorldViewSG() {
    // Create the root of the branch graph
    BranchGroup objRoot = new BranchGroup();
    objRoot.setCapability(BranchGroup.ALLOW_DETACH);

    // setup a transform group to hold the scaled scene
    TransformGroup objTrans = new TransformGroup();
    objRoot.addChild(objTrans);//from  ww  w  . j ava 2  s.  c o m

    // get the eye point, field of view and clip distances
    float fov = (float) view.getFieldOfView();

    // figure out the angle factors to find points along the edges
    // of the FOV
    // X = fovSpreadX * (Y - eyeVW.y) + eyeVW.x;
    float fovSpreadX = (float) Math.tan(fov / 2);
    // Z = fovSpreadZ * (X - eyeVW.x) + eyeVW.z;
    float fovSpreadZ = 1.0f / fovSpreadX;
    //System.out.println("fovSpreadX = " + fovSpreadX);
    //System.out.println("fovSpreadZ = " + fovSpreadZ);

    Transform3D vpTransform = new Transform3D();
    viewingPlatform.getViewPlatformTransform().getTransform(vpTransform);
    Vector3f vpTranslation = new Vector3f();
    vpTransform.get(vpTranslation);
    eyePtVW.set(vpTranslation);
    eyePtVW.negate();
    // get the eye point in our 2D coord system.
    Point3f eyePt = new Point3f(0.0f, eyePtVW.z, 0.1f);
    float frontClipDist = (float) view.getFrontClipDistance();
    float backClipDist = (float) view.getBackClipDistance();

    // set up the clip plane lines
    Point3f[] cpPoints = new Point3f[5];
    cpPoints[0] = new Point3f(frontClipDist * fovSpreadX, eyePtVW.z + frontClipDist, 0.1f);
    cpPoints[1] = new Point3f(cpPoints[0]);
    cpPoints[1].x *= -1;
    Point3f backLeft = new Point3f(-backClipDist * fovSpreadX, eyePtVW.z + backClipDist, 0.1f);
    cpPoints[2] = backLeft;
    Point3f backRight = new Point3f(backLeft);
    backRight.x *= -1;
    cpPoints[3] = backRight;
    cpPoints[4] = cpPoints[0];
    //for (int i = 0; i < 4; i++) {
    //    System.out.println("cpPoints[" + i + "] = " + cpPoints[i]);
    //}
    int[] cpLength = new int[1];
    cpLength[0] = 5;
    LineStripArray cpLines = new LineStripArray(5, LineArray.COORDINATES, cpLength);
    cpLines.setCoordinates(0, cpPoints);
    Appearance cpApp = new Appearance();
    ColoringAttributes cpCa = new ColoringAttributes(blue, ColoringAttributes.SHADE_FLAT);
    cpApp.setColoringAttributes(cpCa);
    Shape3D cpShape = new Shape3D(cpLines, cpApp);
    objTrans.addChild(cpShape);

    // get the limits of the space
    float minY = eyePt.y;
    float maxY = backLeft.y;
    float minX = backLeft.x;
    float maxX = backRight.x;

    // figure out the X and Y extents and offsets
    float deltaX = maxX - minX;
    float deltaY = maxY - minY;
    float offsetX = -(maxX + minX) / 2.0f;
    float offsetY = -(maxY + minY) / 2.0f;
    float gridSize = Math.max(deltaX, deltaY);

    // scale the grid slightly to give a border around the edge
    gridSize *= 1.1f;

    //System.out.println("offsetX = " + offsetX);
    //System.out.println("offsetY = " + offsetY);

    // Scale the view to fit -1 to 1
    Transform3D trans = new Transform3D();
    trans.set(new Vector3f(offsetX, offsetY, 0.0f), 2.0f / gridSize);
    objTrans.setTransform(trans);

    // figure out a grid step that is a multiple of 10 which keeps the
    // number of steps less than 30.
    float gridStep = 1.0f;
    while ((gridSize / gridStep) > 30.0) {
        gridStep *= 10;
    }
    int gridNumSteps = (int) Math.ceil(gridSize / gridStep) + 1;

    // allocate the grid points array, four points for each step (x and y)
    // with a couple extra points for the extra grid points added
    // below
    int gridNumPoints = 4 * (gridNumSteps + 4);
    Point3f[] gridPts = new Point3f[gridNumPoints];
    for (int i = 0; i < gridNumPoints; i++) {
        gridPts[i] = new Point3f();
    }

    // find the grid limits. Add a step on each side to make sure
    // the grid is larger than the view
    float gridMinY = gridStepFloor(minY, gridStep) - gridStep;
    float gridMaxY = gridStepCeil(maxY, gridStep) + gridStep;
    float gridMinX = gridStepFloor(minX, gridStep) - gridStep;
    float gridMaxX = gridStepCeil(maxX, gridStep) + gridStep;
    //System.out.println("gridMinY = " + gridMinY);
    //System.out.println("gridMaxY = " + gridMaxY);
    //System.out.println("gridMinX = " + gridMinX);
    //System.out.println("gridMaxX = " + gridMaxX);

    // set up the background grid
    Appearance bgApp = new Appearance();
    ColoringAttributes bgCa = new ColoringAttributes();
    bgCa.setColor(grey);
    LineAttributes bgLa = new LineAttributes();
    bgApp.setColoringAttributes(bgCa);

    // clear out the clip grid point list
    numClipGridPts = 0;

    // set up the vertical lines
    int numPts = 0;
    for (float x = gridMinX; x <= gridMaxX; x += gridStep) {
        gridPts[numPts].x = x;
        gridPts[numPts].y = gridMinY;
        gridPts[numPts].z = -0.2f;
        gridPts[numPts + 1].x = x;
        gridPts[numPts + 1].y = gridMaxY;
        gridPts[numPts + 1].z = -0.2f;
        numPts += 2;

        // try to add a line to the clipped grid
        // find the intersection of the clipped line with the FOV sides
        // this is a distance relative to the eye
        float clipZ = fovSpreadZ * Math.abs(x - eyePtVW.x);
        if (clipZ < frontClipDist) { // clip to front clip plane
            clipZ = frontClipDist;
        }
        if (clipZ < backClipDist) { // clip to back clip plane
            // line is not clipped
            clipGridPtsVW[numClipGridPts].x = x;
            clipGridPtsVW[numClipGridPts].y = clipZ + eyePtVW.z;
            clipGridPtsVW[numClipGridPts].z = -0.1f;
            clipGridPtsVW[numClipGridPts + 1].x = x;
            clipGridPtsVW[numClipGridPts + 1].y = backClipDist + eyePtVW.z;
            clipGridPtsVW[numClipGridPts + 1].z = -0.1f;
            numClipGridPts += 2;
        }
    }
    LineArray vertLa = new LineArray(numPts, LineArray.COORDINATES);
    vertLa.setCoordinates(0, gridPts, 0, numPts);
    Shape3D vertShape = new Shape3D(vertLa, bgApp);
    objTrans.addChild(vertShape);

    // set up the horizontal lines
    numPts = 0;
    for (float y = gridMinY; y <= gridMaxY; y += gridStep) {
        gridPts[numPts].x = gridMinX;
        gridPts[numPts].y = y;
        gridPts[numPts++].z = -0.2f;
        gridPts[numPts].x = gridMaxX;
        gridPts[numPts].y = y;
        gridPts[numPts++].z = -0.2f;

        // try to add a line to the clipped grid
        // find the intersection of the clipped line with the FOV sides
        // this is a distance relative to the eye
        float clipDist = (y - eyePtVW.z);
        if ((clipDist > frontClipDist) && (clipDist < backClipDist)) {

            float clipX = fovSpreadX * clipDist;
            clipGridPtsVW[numClipGridPts].x = -clipX;
            clipGridPtsVW[numClipGridPts].y = y;
            clipGridPtsVW[numClipGridPts].z = -0.1f;
            clipGridPtsVW[numClipGridPts + 1].x = clipX;
            clipGridPtsVW[numClipGridPts + 1].y = y;
            clipGridPtsVW[numClipGridPts + 1].z = -0.1f;
            numClipGridPts += 2;
        }
    }
    LineArray horizLa = new LineArray(numPts, LineArray.COORDINATES);
    horizLa.setCoordinates(0, gridPts, 0, numPts);
    Shape3D horizShape = new Shape3D(horizLa, bgApp);
    objTrans.addChild(horizShape);

    // draw the clipped grid.
    if (numClipGridPts > 0) {
        LineArray clipLa = new LineArray(numClipGridPts, LineArray.COORDINATES);
        clipLa.setCoordinates(0, clipGridPtsVW, 0, numClipGridPts);
        Appearance clipGridApp = new Appearance();
        ColoringAttributes clipCa = new ColoringAttributes(black, ColoringAttributes.SHADE_FLAT);
        clipGridApp.setColoringAttributes(clipCa);
        LineAttributes clipGridLa = new LineAttributes();
        Shape3D clipShape = new Shape3D(clipLa, clipGridApp);
        objTrans.addChild(clipShape);
    }

    // set up the coordinate system
    Appearance coordSysApp = new Appearance();
    LineAttributes coordSysLa = new LineAttributes();
    coordSysLa.setLineWidth(3.0f);
    coordSysApp.setLineAttributes(coordSysLa);
    ColoringAttributes coordSysCa = new ColoringAttributes(grey, ColoringAttributes.SHADE_FLAT);
    coordSysApp.setColoringAttributes(coordSysCa);
    Point3f[] coordSysPts = new Point3f[4];
    coordSysPts[0] = new Point3f(gridMinX, 0, -0.5f);
    coordSysPts[1] = new Point3f(gridMaxX, 0, -0.5f);
    coordSysPts[2] = new Point3f(0, gridMinY, -0.5f);
    coordSysPts[3] = new Point3f(0, gridMaxY, -0.5f);
    LineArray coordSysLines = new LineArray(4, LineArray.COORDINATES);
    coordSysLines.setCoordinates(0, coordSysPts);
    Shape3D coordSysShape = new Shape3D(coordSysLines, coordSysApp);
    objTrans.addChild(coordSysShape);

    // set up the circle
    Appearance circleApp = new Appearance();
    ColoringAttributes circleCa = new ColoringAttributes();
    circleCa.setColor(red);
    circleApp.setColoringAttributes(circleCa);
    PolygonAttributes pa = new PolygonAttributes();
    pa.setCullFace(PolygonAttributes.CULL_NONE);
    circleApp.setPolygonAttributes(pa);
    int step = 360 / (numCirclePts - 1);
    for (int deg = 0; deg < 360; deg += step) {
        double angle = Math.toRadians(deg);
        circlePtsVW[deg / 10].x = sphereRadius * (float) Math.sin(angle);
        circlePtsVW[deg / 10].y = sphereRadius * (float) Math.cos(angle);
        circlePtsVW[deg / 10].z = -0.3f;
    }
    circlePtsVW[numCirclePts - 1].set(circlePtsVW[0]);
    int[] lineStripLength = new int[1];
    lineStripLength[0] = numCirclePts;
    //LineStripArray circleLineStrip = new LineStripArray(numCirclePts,
    //        LineArray.COORDINATES, lineStripLength);
    TriangleFanArray circleLineStrip = new TriangleFanArray(numCirclePts, LineArray.COORDINATES,
            lineStripLength);
    circleLineStrip.setCoordinates(0, circlePtsVW);
    Shape3D circleShape = new Shape3D(circleLineStrip, circleApp);
    objTrans.addChild(circleShape);

    return objRoot;
}