List of usage examples for org.apache.commons.math.stat.descriptive DescriptiveStatistics addValue
public void addValue(double v)
From source file:guineu.modules.dataanalysis.variationCoefficientRow.variationCoefficientRowFilterTask.java
public double CoefficientOfVariation(PeakListRow row) { DescriptiveStatistics stats = new DescriptiveStatistics(); for (Object peak : row.getPeaks(null)) { if (peak != null) { stats.addValue((Double) peak); }/*www . j av a 2 s.com*/ } return stats.getStandardDeviation() / stats.getMean(); }
From source file:cs.cirg.cida.analysis.ColumnBasedDescriptiveStatistics.java
@Override public DataTable operate(DataTable dataTable) throws CIlibIOException { iterationsDescriptiveStatistics = new ArrayList<DescriptiveStatistics>(); List<Integer> selectedColumns = this.getSelectedItems(); int size = dataTable.getNumRows(); for (int rowIndex = 0; rowIndex < size; rowIndex++) { DescriptiveStatistics stats = new DescriptiveStatistics(); List<Numeric> row = (List<Numeric>) dataTable.getRow(rowIndex); for (Integer i : selectedColumns) { stats.addValue(row.get(i).getReal()); }/* ww w . j a va 2 s . c om*/ iterationsDescriptiveStatistics.add(stats); } return dataTable; }
From source file:net.sourceforge.jags.model.ModelTest.java
@Test public void testUnobservedStochasticNode() throws MathException { Node mu = model.addConstantNode(new int[] { 1 }, new double[] { 0 }); Node tau = model.addConstantNode(new int[] { 1 }, new double[] { 1 }); int N = 1000; Node n = model.addStochasticNode("dnorm", new Node[] { mu, tau }, null, null, null); model.initialize(true);//w w w. j a v a 2 s .c o m model.stopAdapting(); Monitor m = model.addTraceMonitor(n); model.update(N); assertEquals(N, model.getCurrentIteration()); assertEquals(N, m.dim()[1]); // Iterations dimension DescriptiveStatistics stats = new DescriptiveStatistics(); for (double v : m.value(0)) { stats.addValue(v); } TTest test = new TTestImpl(); assertFalse(test.tTest(0, m.value(0), 0.05)); }
From source file:net.sourceforge.jags.model.ModelTest.java
@Test public void testObservedStochasticNode() throws MathException { double[] data = normalSample(); Node mu = model.addConstantNode(new int[] { 1 }, new double[] { 1 }); Node tau = model.addConstantNode(new int[] { 1 }, new double[] { .001 }); Node n = model.addStochasticNode("dnorm", new Node[] { mu, tau }, null, null, new double[] { 0 }); model.initialize(true);//from w w w . ja v a 2 s . c o m model.update(1000); int N = 1000; model.stopAdapting(); Monitor m = model.addTraceMonitor(n); model.update(N); assertEquals(N, m.dim()[1]); // Iterations dimension DescriptiveStatistics stats = new DescriptiveStatistics(); for (double v : m.value(0)) { stats.addValue(v); } TTest test = new TTestImpl(); assertFalse(test.tTest(0, m.value(0), 0.05)); }
From source file:de.unidue.langtech.teaching.rp.uimatools.Stopwatch.java
@Override public void collectionProcessComplete() throws AnalysisEngineProcessException { super.collectionProcessComplete(); if (isDownstreamTimer()) { getLogger().info("Results from Timer '" + timerName + "' after processing all documents."); DescriptiveStatistics statTimes = new DescriptiveStatistics(); for (Long timeValue : times) { statTimes.addValue((double) timeValue / 1000); }//from ww w. ja va2 s . c o m double sum = statTimes.getSum(); double mean = statTimes.getMean(); double stddev = statTimes.getStandardDeviation(); StringBuilder sb = new StringBuilder(); sb.append("Estimate after processing " + times.size() + " documents."); sb.append("\n"); Formatter formatter = new Formatter(sb, Locale.US); formatter.format("Aggregated time: %,.1fs\n", sum); formatter.format("Time / Document: %,.3fs (%,.3fs)\n", mean, stddev); formatter.close(); getLogger().info(sb.toString()); if (outputFile != null) { try { Properties props = new Properties(); props.setProperty(KEY_SUM, "" + sum); props.setProperty(KEY_MEAN, "" + mean); props.setProperty(KEY_STDDEV, "" + stddev); OutputStream out = new FileOutputStream(outputFile); props.store(out, "timer " + timerName + " result file"); } catch (FileNotFoundException e) { throw new AnalysisEngineProcessException(e); } catch (IOException e) { throw new AnalysisEngineProcessException(e); } } } }
From source file:gov.nih.nci.caintegrator.analysis.messaging.DataPointVector.java
/** * Compute the mean of the values in the list * @param values//www . ja v a 2 s.com * @return */ private Double computeMean(List<Double> values) { DescriptiveStatistics stats = DescriptiveStatistics.newInstance(); // Add the data from the array for (Double value : values) { stats.addValue(value); } double mean = stats.getMean(); return new Double(mean); }
From source file:gov.nih.nci.caintegrator.analysis.messaging.DataPointVector.java
private Double computeStdDeviation(List<Double> values) { DescriptiveStatistics stats = DescriptiveStatistics.newInstance(); // Add the data from the array for (Double value : values) { stats.addValue(value); }//from www .j a v a2s .co m // Compute some statistics //double mean = stats.getMean(); // double median = stats.getMedian(); double std = stats.getStandardDeviation(); return new Double(std); }
From source file:info.raack.appliancelabeler.machinelearning.appliancedetection.algorithms.HighConfidenceFSMPowerSpikeDetectionAlgorithm.java
private Map<Integer, Integer[]> computeTrainingInstanceSpikeLimits( List<double[]> trainingInstancesWithClassLabels) { Map<Integer, List<Double>> trainingSpikes = new HashMap<Integer, List<Double>>(); // collect all spikes for each class for (double[] instance : trainingInstancesWithClassLabels) { double clazz = instance[instance.length - 1]; if (clazz != missingValue) { double trainingSpike = instance[0]; if (!trainingSpikes.containsKey((int) clazz)) { trainingSpikes.put((int) clazz, new ArrayList<Double>()); }//from ww w.j a v a 2s .co m trainingSpikes.get((int) clazz).add(trainingSpike); } } Map<Integer, Integer[]> trainingInstanceLimits = new HashMap<Integer, Integer[]>(); // calculate interval one standard deviation away from mean of labeled power spikes for each class for (Integer clazz : trainingSpikes.keySet()) { DescriptiveStatistics stats = new DescriptiveStatistics(); for (Double spikeValue : trainingSpikes.get(clazz)) { stats.addValue(spikeValue); } trainingInstanceLimits.put(clazz, new Integer[] { (int) (stats.getMean() - stats.getStandardDeviation()), (int) (stats.getMean() + stats.getStandardDeviation()) }); } return trainingInstanceLimits; }
From source file:de.mpicbg.knime.hcs.base.utils.MutualInformation.java
private Double[] minmax(Double[] vect) { DescriptiveStatistics stats = new DescriptiveStatistics(); for (Double value : vect) { stats.addValue(value); }//from w w w .j ava 2 s . c om return new Double[] { stats.getMin(), stats.getMax() }; }
From source file:de.mpicbg.knime.hcs.base.utils.MutualInformation.java
private Double[] minmax(Double[] vect1, Double[] vect2) { DescriptiveStatistics stats = new DescriptiveStatistics(); for (Double value : vect1) { stats.addValue(value); }// w w w. j a v a2s . c o m for (Double value : vect2) { stats.addValue(value); } return new Double[] { stats.getMin(), stats.getMax() }; }