List of usage examples for org.apache.commons.math.stat.descriptive DescriptiveStatistics getMin
public double getMin()
From source file:playground.johannes.gsv.matrices.analysis.MatrixCompare.java
/** * @param args/*from ww w. j ava2s . co m*/ * @throws IOException */ public static void main(String[] args) throws IOException { Matrix m1 = new Matrix("1", null); VisumMatrixReader reader = new VisumMatrixReader(m1); // reader.readFile("/home/johannes/gsv/matrices/netz2030.fma"); reader.readFile("/home/johannes/gsv/matrices/itp.fma"); Matrix m2 = new Matrix("2", null); reader = new VisumMatrixReader(m2); reader.readFile("/home/johannes/gsv/matrices/miv.489.fma"); // reader.readFile("/home/johannes/gsv/matrices/netz2030.fma"); MatrixOperations.applyFactor(m1, 1 / 365.0); // MatrixOperations.applyFactor(m2, 11); // MatrixOperations.applyIntracellFactor(m2, 1.3); System.out.println(String.format("PSMobility - matrix sum: %s", MatrixOperations.sum(m1, false))); System.out.println(String.format("Matsim - matrix sum: %s", MatrixOperations.sum(m2, false))); System.out.println( String.format("PSMobility: %s cells with zero value.", MatrixOperations.countEmptyCells(m1))); System.out .println(String.format("Matsim: %s cells with zero value.", MatrixOperations.countEmptyCells(m2))); boolean ignoreZeros = false; DescriptiveStatistics stats = relErrorAll(m1, m2, false, ignoreZeros); System.out.println(String.format("Relative error all cells: mean=%s, med=%s, min=%s, max=%s", stats.getMean(), stats.getPercentile(0.5), stats.getMin(), stats.getMax())); stats = relErrorAll(m1, m2, true, ignoreZeros); System.out.println(String.format("Relative error all cells (abs): mean=%s, med=%s, min=%s, max=%s", stats.getMean(), stats.getPercentile(0.5), stats.getMin(), stats.getMax())); stats = errorStats(relErrorDestinations(m1, m2, false, ignoreZeros)); System.out.println(String.format("Destination Error: mean=%s, med=%s, min=%s, max=%s", stats.getMean(), stats.getPercentile(0.5), stats.getMin(), stats.getMax())); stats = errorStats(relErrorDestinations(m1, m2, true, ignoreZeros)); System.out.println(String.format("Destination Error (abs): mean=%s, med=%s, min=%s, max=%s", stats.getMean(), stats.getPercentile(0.5), stats.getMin(), stats.getMax())); stats = errorStats(relErrorOrigins(m1, m2, false, ignoreZeros)); System.out.println(String.format("Origin Error: mean=%s, med=%s, min=%s, max=%s", stats.getMean(), stats.getPercentile(0.5), stats.getMin(), stats.getMax())); stats = errorStats(relErrorOrigins(m1, m2, true, ignoreZeros)); System.out.println(String.format("Origin Error (abs): mean=%s, med=%s, min=%s, max=%s", stats.getMean(), stats.getPercentile(0.5), stats.getMin(), stats.getMax())); ZoneLayer<Map<String, Object>> zones = ZoneLayerSHP.read("/home/johannes/gsv/matrices/zones_zone.SHP"); TDoubleDoubleHashMap distErrCorrelation = distErrCorrelation(m1, m2, zones, false, ignoreZeros); TXTWriter.writeMap(distErrCorrelation, "distance", "rel. error", "/home/johannes/gsv/matrices/distErr.txt"); Map<String, String> ids = new HashMap<>(); ids.put("6412", "FRA"); ids.put("11000", "BER"); ids.put("2000", "HAM"); ids.put("3241", "HAN"); ids.put("5315", "KLN"); ids.put("9162", "MUN"); ids.put("8111", "STG"); zones = ZoneLayerSHP.read("/home/johannes/gsv/matrices/zones_zone.SHP"); // distErrCorrelation = distErrCorrelation(m1, m2, zones, ids.keySet(), false, ignoreZeros); // TXTWriter.writeMap(distErrCorrelation, "distance", "rel. error", "/home/johannes/gsv/matrices/distErr.sel.txt"); Map<String, double[]> relErrs = relError(m1, m2, ids, false); for (java.util.Map.Entry<String, double[]> entry : relErrs.entrySet()) { System.out.println(String.format("%s: %.4f; old: %.4f, new; %.4f", entry.getKey(), entry.getValue()[0], entry.getValue()[1], entry.getValue()[2])); } System.out.println("\nDestination errors:"); TObjectDoubleHashMap<String> destErrors = relErrorDestinations(m1, m2, false, ignoreZeros); for (java.util.Map.Entry<String, String> entry : ids.entrySet()) { System.out.println(String.format("%s: %.4f", entry.getValue(), destErrors.get(entry.getKey()))); } System.out.println("\nOrigin errors:"); TObjectDoubleHashMap<String> origErrors = relErrorOrigins(m1, m2, false, ignoreZeros); for (java.util.Map.Entry<String, String> entry : ids.entrySet()) { System.out.println(String.format("%s: %.4f", entry.getValue(), origErrors.get(entry.getKey()))); } }
From source file:playground.johannes.gsv.matrices.analysis.NUTSCompare.java
private static void printStats(DescriptiveStatistics stats, String name) { logger.info(String.format("%s : mean = %.2f, median = %.2f, var = %.2f, min = %.2f, max = %.2f", name, stats.getMean(), stats.getPercentile(50), stats.getVariance(), stats.getMin(), stats.getMax())); }
From source file:playground.johannes.gsv.misc.MatrixCompareNorm.java
/** * @param args/* w w w . ja v a2s.c om*/ */ public static void main(String[] args) { Matrix m1 = new Matrix("1", null); VisumMatrixReader reader = new VisumMatrixReader(m1); reader.readFile("/home/johannes/gsv/matrices/IV_gesamt.O.fma"); normMatrix(m1); Matrix m2 = new Matrix("2", null); reader = new VisumMatrixReader(m2); reader.readFile("/home/johannes/gsv/matrices/miv.277.fma"); normMatrix(m2); int notfound = 0; DescriptiveStatistics oRelErrs = new DescriptiveStatistics(); Set<String> origs = m1.getFromLocations().keySet(); for (String origId : origs) { List<Entry> entries1 = m1.getFromLocEntries(origId); List<Entry> entries2 = m2.getFromLocEntries(origId); double sum1 = 0; for (Entry entry : entries1) { sum1 += entry.getValue(); } if (entries2 == null) { oRelErrs.addValue(-1); } else if (entries2 != null && sum1 > 0) { double sum2 = 0; for (Entry entry : entries2) { sum2 += entry.getValue(); } oRelErrs.addValue((sum2 - sum1) / sum1); } else { notfound++; } } System.err.println(String.format("%s entries out of %s not found or with zero value.", notfound, notfound + oRelErrs.getN())); System.out.println(String.format("Rel err of origins: mean=%s, med=%s, min=%s, max=%s", oRelErrs.getMean(), oRelErrs.getPercentile(0.5), oRelErrs.getMin(), oRelErrs.getMax())); DescriptiveStatistics dRelErrs = new DescriptiveStatistics(); Set<String> dests = m1.getToLocations().keySet(); for (String destId : dests) { List<Entry> entries1 = m1.getToLocEntries(destId); List<Entry> entries2 = m2.getToLocEntries(destId); double sum1 = 0; for (Entry entry : entries1) { sum1 += entry.getValue(); } if (entries2 != null && sum1 > 0) { double sum2 = 0; for (Entry entry : entries2) { sum2 += entry.getValue(); } dRelErrs.addValue((sum2 - sum1) / sum1); } } System.out.println(String.format("Rel err of destinations: mean=%s, med=%s, min=%s, max=%s", dRelErrs.getMean(), dRelErrs.getPercentile(0.5), dRelErrs.getMin(), dRelErrs.getMax())); Map<String, String> ids = new HashMap<>(); ids.put("6412", "FRA"); ids.put("11000", "BER"); ids.put("2000", "HAM"); ids.put("3241", "HAN"); ids.put("5315", "KLN"); ids.put("9162", "MUN"); ids.put("8111", "STG"); Map<String, Double> errors = new HashMap<>(); for (String id1 : ids.keySet()) { for (String id2 : ids.keySet()) { if (!id1.equalsIgnoreCase(id2)) { Entry e1 = m1.getEntry(id1, id2); double val1 = e1.getValue(); Entry e2 = m2.getEntry(id1, id2); double val2 = e2.getValue(); double err = (val2 - val1) / val1; System.out.print(ids.get(id1)); System.out.print(" -> "); System.out.print(ids.get(id2)); System.out.print(": "); System.out.println(String.valueOf(err)); } } } }
From source file:playground.johannes.gsv.sim.cadyts.ODCountsAnalyzer.java
@Override public void notifyAfterMobsim(AfterMobsimEvent event) { Network network = event.getControler().getScenario().getNetwork(); DescriptiveStatistics diff = new DescriptiveStatistics(); DescriptiveStatistics absDiff = new DescriptiveStatistics(); DescriptiveStatistics error = new DescriptiveStatistics(); DescriptiveStatistics absError = new DescriptiveStatistics(); try {/*from ww w. j av a 2 s. c o m*/ String file = event.getControler().getControlerIO().getIterationFilename(event.getIteration(), "odCounts.txt"); BufferedWriter writer = new BufferedWriter(new FileWriter(file)); writer.write("id\tobs\tsim"); writer.newLine(); for (Count count : counts.getCounts().values()) { if (count.getLocId().toString().startsWith(ODCalibrator.VIRTUAL_ID_PREFIX)) { Link link = network.getLinks().get(count.getLocId()); double refVal = count.getMaxVolume().getValue() * 24; double simVal = simResults.getSimValue(link, 0, 86400, TYPE.COUNT_VEH); double err = (simVal - refVal) / refVal; error.addValue(err); absError.addValue(Math.abs(err)); double delta = simVal - refVal; diff.addValue(delta); absDiff.addValue(Math.abs(delta)); writer.write(link.getId().toString()); writer.write("\t"); writer.write(String.valueOf(refVal)); writer.write("\t"); writer.write(String.valueOf(simVal)); writer.newLine(); } } writer.close(); logger.info(String.format("OD-relations diff: avr = %s, median = %s, var = %s, min = %s, max = %s", diff.getMean(), diff.getPercentile(50), diff.getVariance(), diff.getMin(), diff.getMax())); logger.info( String.format("OD-relations absolute diff: avr = %s, median = %s, var = %s, min = %s, max = %s", absDiff.getMean(), absDiff.getPercentile(50), absDiff.getVariance(), absDiff.getMin(), absDiff.getMax())); logger.info(String.format( "Relative OD-relations error: avr = %s, median = %s, var = %s, min = %s, max = %s", error.getMean(), error.getPercentile(50), error.getVariance(), error.getMin(), error.getMax())); logger.info(String.format( "Absolute relative OD-relations error: avr = %s, median = %s, var = %s, min = %s, max = %s", absError.getMean(), absError.getPercentile(50), absError.getVariance(), absError.getMin(), absError.getMax())); file = event.getControler().getControlerIO().getOutputFilename("odCountsDiff.txt"); writeStats(file, diff, event.getIteration()); file = event.getControler().getControlerIO().getOutputFilename("odCountsAbsDiff.txt"); writeStats(file, absDiff, event.getIteration()); file = event.getControler().getControlerIO().getOutputFilename("odCountsError.txt"); writeStats(file, error, event.getIteration()); file = event.getControler().getControlerIO().getOutputFilename("odCountsAbsError.txt"); writeStats(file, absError, event.getIteration()); } catch (IOException e) { e.printStackTrace(); } }
From source file:playground.johannes.gsv.sim.cadyts.ODCountsAnalyzer.java
private void writeStats(String file, DescriptiveStatistics stats, int iteration) throws IOException { boolean append = true; if (iteration == 0) append = false;/*ww w .j a v a 2 s. c o m*/ BufferedWriter writer = new BufferedWriter(new FileWriter(file, append)); if (!append) { writer.write("avr\tmedian\tvar\tmin\tmax"); writer.newLine(); } writer.write(String.valueOf(stats.getMean())); writer.write("\t"); writer.write(String.valueOf(stats.getPercentile(50))); writer.write("\t"); writer.write(String.valueOf(stats.getVariance())); writer.write("\t"); writer.write(String.valueOf(stats.getMin())); writer.write("\t"); writer.write(String.valueOf(stats.getMax())); writer.newLine(); writer.close(); }
From source file:playground.johannes.gsv.synPop.sim3.HamiltonianLogger.java
@Override public void afterStep(Collection<ProxyPerson> population, Collection<ProxyPerson> mutations, boolean accepted) { if (iter.get() % logInterval == 0) { long iterNow = iter.get(); double[] values = new double[population.size()]; int i = 0; for (ProxyPerson person : population) { values[i] = h.evaluate(person); i++;//from w ww .j av a 2 s . co m } DescriptiveStatistics stats = new DescriptiveStatistics(values); double sum = stats.getSum(); double avr = stats.getMean(); // double med = stats.getPercentile(50); double max = stats.getMax(); double min = stats.getMin(); StringBuilder builder = new StringBuilder(); builder.append("Statistics for "); builder.append(h.getClass().getSimpleName()); builder.append(String.format(Locale.US, ": Sum = %.4f, ", sum)); builder.append(String.format(Locale.US, ": Avr = %.4f, ", avr)); // builder.append(String.format(Locale.US, ": Med = %.4f, ", med)); builder.append(String.format(Locale.US, ": Max = %.4f, ", max)); builder.append(String.format(Locale.US, ": Min = %.4f", min)); logger.info(builder.toString()); if (writer != null) { try { writer.write(String.valueOf(iterNow)); writer.write(TAB); writer.write(String.valueOf(sum)); writer.write(TAB); writer.write(String.valueOf(avr)); writer.write(TAB); // writer.write(String.valueOf(med)); // writer.write(TAB); writer.write(String.valueOf(min)); writer.write(TAB); writer.write(String.valueOf(max)); writer.newLine(); writer.flush(); } catch (IOException e) { e.printStackTrace(); } } TDoubleDoubleHashMap hist = Histogram.createHistogram(stats, FixedSampleSizeDiscretizer.create(stats.getValues(), 1, 100), true); Histogram.normalize(hist); // String file = String.format("%s/%s.%s.txt", outdir, h.getClass().getSimpleName(), iterNow); String file = String.format("%s/%s", outdir, h.getClass().getSimpleName()); File afile = new File(file); afile.mkdirs(); try { TXTWriter.writeMap(hist, "value", "frequency", String.format("%s/%s.txt", file, iterNow)); } catch (IOException e) { e.printStackTrace(); } } iter.incrementAndGet(); }
From source file:playground.johannes.sna.util.TXTWriter.java
public static void writeStatistics(TDoubleObjectHashMap<DescriptiveStatistics> statsMap, String xLab, String file) throws IOException { double[] keys = statsMap.keys(); Arrays.sort(keys);// w ww. jav a2 s . c o m BufferedWriter writer = new BufferedWriter(new FileWriter(file)); writer.write(xLab); writer.write(TAB); writer.write("mean"); writer.write(TAB); writer.write("median"); writer.write(TAB); writer.write("min"); writer.write(TAB); writer.write("max"); writer.write(TAB); writer.write("n"); writer.newLine(); for (double key : keys) { DescriptiveStatistics stats = statsMap.get(key); writer.write(String.valueOf(key)); writer.write(TAB); writer.write(String.valueOf(stats.getMean())); writer.write(TAB); writer.write(String.valueOf(stats.getPercentile(50))); writer.write(TAB); writer.write(String.valueOf(stats.getMin())); writer.write(TAB); writer.write(String.valueOf(stats.getMax())); writer.write(TAB); writer.write(String.valueOf(stats.getN())); writer.newLine(); } writer.close(); }
From source file:playground.johannes.snowball2.Betweenness.java
@Override public DescriptiveStatistics calculate(Graph g, int iteration, DescriptiveStatistics reference) { centrality.run(g, iteration);//from ww w . j a v a 2 s. co m gamma = calcGammaExponent(centrality.betweennessValues.getValues(), 1, 1.0); wMean = centrality.getBetweennessWeighted(); double norm = (g.numVertices() - 1) * (g.numVertices() - 2); normMean = centrality.getGraphBetweenness() / norm; normWMean = centrality.getBetweennessWeighted() / norm; double[] normValues = getNormalizedValues(centrality.betweennessValues.getValues(), g); gammaNorm = calcGammaExponent(normValues, 0.000001, 0); double[] normWValues = getNormalizedValues(centrality.betweennessWValues.toNativeArray(), g); gammaWNorm = calcGammaExponent(normWValues, centrality.betweennessWeights.toNativeArray(), 0.000001, 0); dumpStatistics(getStatisticsMap(centrality.betweennessValues), iteration); if (reference != null) { try { Histogram hist = centrality.getBetweennessHistogram(reference.getMin(), reference.getMax()); hist.plot(String.format("%1$s/%2$s.histogram.png", outputDir, iteration), "Histogram"); hist.dumpRawData(String.format("%1$s/%2$s.histogram.txt", outputDir, iteration)); } catch (IOException e) { e.printStackTrace(); } } else { try { Histogram hist = centrality.getBetweennessHistogram(); hist.plot(String.format("%1$s/%2$s.histogram.png", outputDir, iteration), "Histogram"); hist.dumpRawData(String.format("%1$s/%2$s.histogram.txt", outputDir, iteration)); } catch (IOException e) { e.printStackTrace(); } } dumpValues(centrality.betweennessValues.getSortedValues(), iteration, "plain"); double[] wvalues = centrality.betweennessWValues.toNativeArray(); Arrays.sort(wvalues); dumpValues(wvalues, iteration, "weighted"); Arrays.sort(normValues); dumpValues(normValues, iteration, "norm"); Arrays.sort(normWValues); dumpValues(normWValues, iteration, "normW"); centrality.dumpDegreeCorrelation(String.format("%1$s/%2$s.degreeBetweenness.txt", outputDir, iteration), "betweenness"); return centrality.betweennessValues; }
From source file:playground.johannes.snowball2.Closeness.java
@Override public DescriptiveStatistics calculate(Graph g, int iteration, DescriptiveStatistics reference) { centrality.run(g, iteration);/*w ww. ja va 2 s .c o m*/ dumpStatistics(getStatisticsMap(centrality.closenessValues), iteration); if (reference != null) { try { Histogram hist = centrality.getClosenessHistogram(reference.getMin(), reference.getMax()); hist.plot(String.format("%1$s/%2$s.histogram.png", outputDir, iteration), "Histogram"); hist.dumpRawData(String.format("%1$s/%2$s.histogram.txt", outputDir, iteration)); } catch (IOException e) { e.printStackTrace(); } } else { try { Histogram hist = centrality.getClosenessHistogram(); hist.plot(String.format("%1$s/%2$s.histogram.png", outputDir, iteration), "Histogram"); hist.dumpRawData(String.format("%1$s/%2$s.histogram.txt", outputDir, iteration)); } catch (IOException e) { e.printStackTrace(); } } centrality.dumpDegreeCorrelation(String.format("%1$s/%2$s.degreeCloseness.txt", outputDir, iteration), "closeness"); return centrality.closenessValues; }
From source file:playground.johannes.snowball2.Clustering.java
@SuppressWarnings("unchecked") @Override//from ww w . j av a2 s.c o m public DescriptiveStatistics calculate(Graph g, int iteration, DescriptiveStatistics reference) { Map<Vertex, Double> values = GraphStatistics.clusteringCoefficients(g); DescriptiveStatistics stats = new DescriptiveStatistics(); TIntDoubleHashMap degreeClustering = new TIntDoubleHashMap(); TIntIntHashMap numDegree = new TIntIntHashMap(); double sum = 0; double wsum = 0; if (g instanceof SampledGraph) { for (Vertex v : values.keySet()) { int k = v.degree(); if (!((SampledVertex) v).isAnonymous()) { double cc = degreeClustering.get(k); if (v.degree() == 1) { stats.addValue(0.0); // sum += (cc / ((SampledVertex)v).getSampleProbability()); } else { double C = values.get(v); stats.addValue(C); cc += C; sum += (C / ((SampledVertex) v).getSampleProbability()); } degreeClustering.put(k, cc); numDegree.put(k, numDegree.get(k) + 1); wsum += (1 / ((SampledVertex) v).getSampleProbability()); } } } else { for (Vertex v : values.keySet()) { int k = v.degree(); double cc = degreeClustering.get(k); wsum++; if (v.degree() == 1) stats.addValue(0.0); else { double C = values.get(v); stats.addValue(C); cc += C; sum += C; } degreeClustering.put(k, cc); numDegree.put(k, numDegree.get(k) + 1); } } wMean = sum / wsum; try { BufferedWriter writer = IOUtils .getBufferedWriter(String.format("%1$s/%2$s.degreeDependency.txt", outputDir, iteration)); int[] keys = numDegree.keys(); Arrays.sort(keys); for (int k : keys) { double bc = degreeClustering.get(k); int numV = numDegree.get(k); writer.write(String.valueOf(k)); writer.write("\t"); writer.write(String.valueOf(bc / (double) numV)); writer.newLine(); } writer.close(); } catch (Exception e) { e.printStackTrace(); } dumpStatistics(getStatisticsMap(stats), iteration); if (reference != null) { Histogram hist = new Histogram(100, reference.getMin(), reference.getMax()); plotHistogram(stats.getValues(), hist, iteration); } else { plotHistogram(stats.getValues(), new Histogram(100), iteration); } return stats; }