Example usage for org.apache.commons.math3.complex ComplexUtils polar2Complex

List of usage examples for org.apache.commons.math3.complex ComplexUtils polar2Complex

Introduction

In this page you can find the example usage for org.apache.commons.math3.complex ComplexUtils polar2Complex.

Prototype

public static Complex polar2Complex(double r, double theta) throws MathIllegalArgumentException 

Source Link

Document

Creates a complex number from the given polar representation.

Usage

From source file:eu.itesla_project.iidm.ddb.eurostag.model.TransformerModel.java

public StateVariable toSv2(StateVariable sv1) {
    Complex s1 = new Complex(-sv1.p, -sv1.q); // s1=p1+jq1
    Complex u1 = ComplexUtils.polar2Complex(sv1.u, Math.toRadians(sv1.theta));
    Complex v1 = u1.divide(SQUARE_3); // v1=u1/sqrt(3)
    Complex v1p = v1.multiply(ratio); // v1p=v1*rho
    Complex i1 = s1.divide(v1.multiply(3)).conjugate(); // i1=conj(s1/(3*v1))
    Complex i1p = i1.divide(ratio); // i1p=i1/rho
    Complex i2 = i1p.subtract(y.multiply(v1p)).negate(); // i2=-(i1p-y*v1p)
    Complex v2 = v1p.subtract(z.multiply(i2)); // v2=v1p-z*i2
    Complex s2 = v2.multiply(3).multiply(i2.conjugate()); // s2=3*v2*conj(i2)
    Complex u2 = v2.multiply(SQUARE_3);/*from ww  w .jav  a2 s  .c  o  m*/
    return new StateVariable(-s2.getReal(), -s2.getImaginary(), u2.abs(), Math.toDegrees(u2.getArgument()));
}

From source file:eu.itesla_project.iidm.ddb.eurostag.model.TransformerModel.java

public StateVariable toSv1(StateVariable sv2) {
    Complex s2 = new Complex(-sv2.p, -sv2.q); // s2=p2+jq2
    Complex u2 = ComplexUtils.polar2Complex(sv2.u, Math.toRadians(sv2.theta));
    Complex v2 = u2.divide(SQUARE_3); // v2=u2/sqrt(3)
    Complex i2 = s2.divide(v2.multiply(3)).conjugate(); // i2=conj(s2/(3*v2))
    Complex v1p = v2.add(z.multiply(i2)); // v1'=v2+z*i2
    Complex i1p = i2.negate().add(y.multiply(v1p)); // i1'=-i2+v1'*y
    Complex i1 = i1p.multiply(ratio); // i1=i1p*ration
    Complex v1 = v1p.divide(ratio); // v1=v1p/ration
    Complex s1 = v1.multiply(3).multiply(i1.conjugate()); // s1=3*v1*conj(i1)
    Complex u1 = v1.multiply(SQUARE_3);//from w w w .  j a va 2s . com
    return new StateVariable(-s1.getReal(), -s1.getImaginary(), u1.abs(), Math.toDegrees(u1.getArgument()));
}

From source file:net.sf.dsp4j.octave.packages.signal_1_0_11.Butter.java

private Butter(int n, double[] w, boolean digital, boolean stop) {
    super(w, digital, stop);
    // Generate splane poles for the prototype butterworth filter
    // source: Kuc
    pole = new Complex[n];
    for (int i = 1; i <= pole.length; i++) {
        pole[i - 1] = ComplexUtils.polar2Complex(1, Math.PI * (2 * i + n - 1) / (2 * n));
    }// w ww .j  a  v a 2 s  .c  o  m
    if (n % 2 == 1) {
        pole[n / 2] = new Complex(-1, 0); // pure real value at exp(i*pi)
    }
    zero = new Complex[0];
    gain = 1;
}

From source file:ch.epfl.leb.sass.models.illuminations.internal.SquareUniformElectricFieldTest.java

/**
 * Test of getEx method, of class SquareUniformElectricField.
 *//*w  ww .  j  a va  2 s .  c  o  m*/
@Test
public void testGetEx() {
    System.out.println("testGetEx");
    SquareUniformElectricField instance = builder.build();

    // Inside the illumination area
    when(dummyRefractiveIndex.getN(10, 20, 0)).thenReturn(new Complex(1.0));
    Complex result = instance.getEx(10, 20, 0);
    assertEquals(1, result.getReal(), 0.0);
    assertEquals(0, result.getImaginary(), 0.0);

    // Inside the illumination area, different z-position
    Complex expResult = ComplexUtils.polar2Complex(orientation.getX(), MathUtils.TWO_PI / wavelength * 1.0);

    when(dummyRefractiveIndex.getN(10, 20, 1)).thenReturn(new Complex(1.0));
    result = instance.getEx(10, 20, 1);
    assertEquals(expResult.getReal(), result.getReal(), 0.0);
    assertEquals(expResult.getImaginary(), result.getImaginary(), 0.0);

    // Outside the illumination area
    when(dummyRefractiveIndex.getN(-10, 20, 10)).thenReturn(new Complex(1.0));
    result = instance.getEx(-10, 20, 10);
    assertEquals(0, result.getReal(), 0.0);
    assertEquals(0, result.getImaginary(), 0.0);

    // Outside the illumination area
    when(dummyRefractiveIndex.getN(30, 20, -10)).thenReturn(new Complex(1.0));
    result = instance.getEx(30, 20, -10);
    assertEquals(0, result.getReal(), 0.0);
    assertEquals(0, result.getImaginary(), 0.0);

    // Outside the illumination area
    when(dummyRefractiveIndex.getN(10, -10, 100)).thenReturn(new Complex(1.0));
    result = instance.getEx(10, -10, 100);
    assertEquals(0, result.getReal(), 0.0);
    assertEquals(0, result.getImaginary(), 0.0);

    // Outside the illumination area
    when(dummyRefractiveIndex.getN(10, 50, -100)).thenReturn(new Complex(1.0));
    result = instance.getEx(10, 50, -100);
    assertEquals(0, result.getReal(), 0.0);
    assertEquals(0, result.getImaginary(), 0.0);
}

From source file:ch.epfl.leb.sass.models.illuminations.commands.internal.GenerateSquareUniformElectricFieldIT.java

/**
 * Test of generateElectricField method, of class GenerateSquareUniformElectricField.
 *///from  w  ww.j  a  va2 s .co  m
@Test
public void testGenerateElectricField() {
    ElectricFieldCommand cmd = builder.build();
    ElectricField instance = cmd.generateElectricField();

    // Inside the illumination area
    Complex result = instance.getEx(10, 20, 0);
    assertEquals(1, result.getReal(), 0.0);
    assertEquals(0, result.getImaginary(), 0.0);

    // Inside the illumination area, different z-position
    Complex expResult = ComplexUtils.polar2Complex(orientation.getX(), MathUtils.TWO_PI / wavelength * 1.0);

    result = instance.getEx(10, 20, 1);
    assertEquals(expResult.getReal(), result.getReal(), 0.0);
    assertEquals(expResult.getImaginary(), result.getImaginary(), 0.0);

    // Outside the illumination area
    result = instance.getEx(-10, 20, 10);
    assertEquals(0, result.getReal(), 0.0);
    assertEquals(0, result.getImaginary(), 0.0);

    // Outside the illumination area
    result = instance.getEx(30, 20, -10);
    assertEquals(0, result.getReal(), 0.0);
    assertEquals(0, result.getImaginary(), 0.0);

    // Outside the illumination area
    result = instance.getEx(10, -10, 100);
    assertEquals(0, result.getReal(), 0.0);
    assertEquals(0, result.getImaginary(), 0.0);

    // Outside the illumination area
    result = instance.getEx(10, 50, -100);
    assertEquals(0, result.getReal(), 0.0);
    assertEquals(0, result.getImaginary(), 0.0);
}

From source file:eu.itesla_project.iidm.network.util.SV.java

public SV otherSide(float r, float x, float g, float b, float ratio) {
    Complex z = new Complex(r, x); // z=r+jx
    Complex y = new Complex(g, b); // y=g+jb
    Complex s1 = new Complex(p, q); // s1=p1+jq1
    Complex u1 = ComplexUtils.polar2Complex(u, Math.toRadians(a));
    Complex v1 = u1.divide(Math.sqrt(3f)); // v1=u1/sqrt(3)

    Complex v1p = v1.multiply(ratio); // v1p=v1*rho
    Complex i1 = s1.divide(v1.multiply(3)).conjugate(); // i1=conj(s1/(3*v1))
    Complex i1p = i1.divide(ratio); // i1p=i1/rho
    Complex i2 = i1p.subtract(y.multiply(v1p)); // i2=i1p-y*v1p
    Complex v2 = v1p.subtract(z.multiply(i2)); // v2=v1p-z*i2
    Complex s2 = v2.multiply(3).multiply(i2.conjugate()); // s2=3*v2*conj(i2)

    Complex u2 = v2.multiply(Math.sqrt(3f));
    return new SV((float) -s2.getReal(), (float) -s2.getImaginary(), (float) u2.abs(),
            (float) Math.toDegrees(u2.getArgument()));
}

From source file:ch.epfl.leb.sass.models.illuminations.internal.SquareUniformElectricField.java

/**
* Returns the x-component of the time-independent electric field at the position (x, y, z).
* 
* @param x The x-position within the sample.
* @param y The y-position within the sample.
* @param z The z-position within the sample.
* @return The x-component of the electric field at the position (x, y, z).
*//*from  www .  j  a v  a2  s.c  o m*/
@Override
public Complex getEx(double x, double y, double z) {
    if (x < 0 || x > width)
        return new Complex(0);
    if (y < 0 || y > height)
        return new Complex(0);

    Complex arg = getArgument(x, y, z);
    double magnitude = orientation.getX() * Math.exp(-arg.getImaginary());
    return ComplexUtils.polar2Complex(magnitude, arg.getReal());
}

From source file:ch.epfl.leb.sass.models.illuminations.internal.SquareUniformElectricField.java

/**
* Returns the y-component of the time-independent electric field at the position (x, y, z).
* 
* @param x The x-position within the sample.
* @param y The y-position within the sample.
* @param z The z-position within the sample.
* @return The y-component of the electric field at the position (x, y, z).
*///from ww w .  j av  a  2s . com
@Override
public Complex getEy(double x, double y, double z) {
    if (x < 0 || x > width)
        return new Complex(0);
    if (y < 0 || y > height)
        return new Complex(0);

    Complex arg = getArgument(x, y, z);
    double magnitude = orientation.getY() * Math.exp(-arg.getImaginary());
    return ComplexUtils.polar2Complex(magnitude, arg.getReal());
}

From source file:ch.epfl.leb.sass.models.illuminations.internal.SquareUniformElectricFieldTest.java

/**
 * Test of getEx method, of class SquareUniformElectricField.
 *///from   w  ww . j  a v  a2 s.c o m
@Test
public void testGetExAbsorption() {
    System.out.println("testGetExAbsorption");
    SquareUniformElectricField instance = builder.build();

    // The imaginary part of the refractive index determines the absorption.
    Complex absRefractiveIndex = new Complex(1.0, 1.0);
    double z = 1.0;
    double arg = MathUtils.TWO_PI * z / wavelength;
    double mag = orientation.getX() * Math.exp(-arg * absRefractiveIndex.getImaginary());

    // Inside the illumination area, different z-position
    Complex expResult = ComplexUtils.polar2Complex(mag, arg * absRefractiveIndex.getReal());

    when(dummyRefractiveIndex.getN(10, 20, z)).thenReturn(absRefractiveIndex);
    Complex result = instance.getEx(10, 20, z);
    assertEquals(expResult.getReal(), result.getReal(), 0.0);
    assertEquals(expResult.getImaginary(), result.getImaginary(), 0.0);

}

From source file:com.udojava.evalex.Expression.java

/**
 * Creates a new expression instance from an expression string with a given
 * default match context./* w  ww .j  a v  a2  s . com*/
 *
 * @param expression The expression. E.g. <code>"2.4*sin(3)/(2-4)"</code> or
 *                   <code>"sin(y)>0 & max(z, 3)>3"</code>
 */
public Expression(String expression, LinkedList<String> hist, Variables vars) {
    this.history = hist;
    this.expression = expression;

    mainVars = vars;

    addOperator(new Operator("+", 20, true, "Addition") {
        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            if (v1.type == ValueType.ARRAY) {
                MyComplex vo = new MyComplex(v1.list);
                vo.list.add(v2);
                return vo;
            }
            return v1.add(v2);
        }
    });

    addOperator(new Operator("-", 20, true, "Subtraction") {
        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            if (v1.type == ValueType.ARRAY) {
                MyComplex vo = new MyComplex(v1.list);
                vo.list.removeIf(o -> o.equals(v2));
                return vo;
            }
            return v1.subtract(v2);
        }
    });
    addOperator(new Operator("*", 30, true, "Real number multiplication") {
        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            return v1.multiply(v2);
        }
    });
    addOperator(new Operator("/", 30, true, "Real number division") {
        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            return v1.divide(v2);
        }
    });
    addOperator(new Operator("%", 30, true, "Remainder of integer division") {
        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            double r = v1.real % v2.real;
            return new MyComplex(r);
        }
    });
    addOperator(
            new Operator("^", 40, false, "Exponentation. See: https://en.wikipedia.org/wiki/Exponentiation") {
                @Override
                public MyComplex eval(MyComplex v1, MyComplex v2) {
                    return v1.pow(v2);
                }
            });
    addOperator(new Operator("&&", 4, false, "Logical AND. Evaluates to 1 if both operands are not 0") {
        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            boolean b1 = (v1.real == 0.0 && v2.real == 0.0);
            return new MyComplex(b1 ? 1 : 0);
        }
    });

    addOperator(new Operator("||", 2, false, "Logical OR. Evaluates to 0 if both operands are 0") {
        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            boolean b1 = (v1.real == 0.0 && v2.real == 0.0);
            return new MyComplex(b1 ? 0 : 1);
        }
    });

    addOperator(new Operator(">", 10, false,
            "Greater than. See: See: https://en.wikipedia.org/wiki/Inequality_(mathematics)") {
        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            if (v1.type == ValueType.REAL && v2.type == ValueType.REAL) {
                return new MyComplex(v1.real > v2.real ? 1 : 0);
            } else {
                return new MyComplex(v1.abs() > v2.abs() ? 1 : 0);
            }
        }
    });

    addOperator(new Operator(">=", 10, false, "Greater or equal") {
        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            if (v1.type == ValueType.REAL && v2.type == ValueType.REAL) {
                return new MyComplex(v1.real >= v2.real ? 1 : 0);
            } else {
                return new MyComplex(v1.abs() >= v2.abs() ? 1 : 0);
            }
        }
    });

    addOperator(new Operator("<", 10, false,
            "Less than. See: https://en.wikipedia.org/wiki/Inequality_(mathematics)") {
        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            if (v1.type == ValueType.REAL && v2.type == ValueType.REAL) {
                return new MyComplex(v1.real < v2.real ? 1 : 0);
            } else {
                return new MyComplex(v1.abs() < v2.abs() ? 1 : 0);
            }
        }
    });

    addOperator(new Operator("<=", 10, false, "less or equal") {
        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            if (v1.type == ValueType.REAL && v2.type == ValueType.REAL) {
                return new MyComplex(v1.real <= v2.real ? 1 : 0);
            } else {
                return new MyComplex(v1.abs() <= v2.abs() ? 1 : 0);
            }
        }
    });

    addOperator(new Operator("->", 7, false, "Set variable v to new value ") {
        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            if (v1 instanceof PitDecimal) {
                PitDecimal target = (PitDecimal) v1;
                String s = target.getVarToken();
                setVariable(s, v2);
                return v2;
            }
            throw new ExpressionException("LHS not variable");
        }
    });

    addOperator(new Operator("=", 7, false, "Equality") {
        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            if (v1.type == ValueType.REAL && v2.type == ValueType.REAL) {
                return new MyComplex(v1.real == v2.real ? 1 : 0);
            } else {
                return new MyComplex(v1.abs() == v2.abs() ? 1 : 0);
            }
        }
    });

    addOperator(new Operator("!=", 7, false,
            "Inequality. See: https://en.wikipedia.org/wiki/Inequality_(mathematics)") {
        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            if (v1.type == ValueType.REAL && v2.type == ValueType.REAL) {
                return new MyComplex(v1.real != v2.real ? 1 : 0);
            } else {
                return new MyComplex(v1.abs() != v2.abs() ? 1 : 0);
            }
        }
    });
    addOperator(
            new Operator("or", 7, false, "Bitwise OR. See: https://en.wikipedia.org/wiki/Logical_disjunction") {
                @Override
                public MyComplex eval(MyComplex v1, MyComplex v2) {
                    return new MyComplex((long) v1.real | (long) v2.real);
                }
            });
    addOperator(new Operator("and", 7, false,
            "Bitwise AND. See: https://en.wikipedia.org/wiki/Logical_conjunction") {
        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            return new MyComplex((long) v1.real & (long) v2.real);
        }
    });
    addOperator(new Operator("xor", 7, false, "Bitwise XOR, See: https://en.wikipedia.org/wiki/Exclusive_or") {
        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            return new MyComplex((long) v1.real ^ (long) v2.real);
        }
    });

    addOperator(new Operator("!", 50, true, "Factorial. See https://en.wikipedia.org/wiki/Factorial") {
        public BigInteger factorial(long n) {
            BigInteger factorial = BigInteger.ONE;
            for (long i = 1; i <= n; i++) {
                factorial = factorial.multiply(BigInteger.valueOf(i));
            }
            return factorial;
        }

        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            BigInteger fact = factorial((long) v1.real);
            return new MyComplex(fact, BigInteger.ZERO);
        }
    });

    addOperator(new Operator("~", 8, false, "Bitwise negation") {
        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            BigInteger bi = v2.toBigIntegerReal();
            int c = bi.bitLength();
            if (c == 0) {
                return new MyComplex(1);
            }
            for (int s = 0; s < c; s++) {
                bi = bi.flipBit(s);
            }
            return new MyComplex(bi);
        }
    });

    addOperator(new Operator("shl", 8, false, "Left Bit shift") {
        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            return new MyComplex((long) v1.real << (long) v2.real);
        }
    });

    addOperator(new Operator("shr", 8, false, "Right bit shift") {
        @Override
        public MyComplex eval(MyComplex v1, MyComplex v2) {
            return new MyComplex((long) v1.real >>> (long) v2.real);
        }
    });

    addFunction(new Function("NOT", 1, "evaluates to 0 if argument != 0") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            boolean zero = parameters.get(0).abs() == 0;
            return new MyComplex(zero ? 1 : 0);
        }
    });

    addFunction(new Function("RND", 2, "Give random number in the range between first and second argument") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            double low = parameters.get(0).real;
            double high = parameters.get(1).real;
            return new MyComplex(low + Math.random() * (high - low));
        }
    });

    MersenneTwister mers = new MersenneTwister(System.nanoTime());

    addFunction(new Function("MRS", 0, "Mersenne twister random generator") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            return new MyComplex(mers.nextDouble());
        }
    });

    addFunction(new Function("BIN", 2, "Binomial Coefficient 'n choose k'") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            int n = (int) parameters.get(0).real;
            int k = (int) parameters.get(1).real;
            double d = CombinatoricsUtils.binomialCoefficientDouble(n, k);
            return new MyComplex(d);
        }
    });
    addFunction(new Function("STIR", 2,
            "Stirling number of 2nd kind: http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            int n = (int) parameters.get(0).real;
            int k = (int) parameters.get(1).real;
            double d = CombinatoricsUtils.stirlingS2(n, k);
            return new MyComplex(d);
        }
    });

    addFunction(new Function("SIN", 1, "Sine function") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            return parameters.get(0).sin();
        }
    });
    addFunction(new Function("COS", 1, "Cosine function") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            return parameters.get(0).cos();
        }
    });
    addFunction(new Function("TAN", 1, "Tangent") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            return parameters.get(0).tan();
        }
    });
    addFunction(new Function("ASIN", 1, "Reverse Sine") { // added by av
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            return parameters.get(0).asin();
        }
    });
    addFunction(new Function("ACOS", 1, "Reverse Cosine") { // added by av
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            return parameters.get(0).acos();
        }
    });
    addFunction(new Function("ATAN", 1, "Reverse Tangent") { // added by av
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            return parameters.get(0).atan();
        }
    });
    addFunction(new Function("SINH", 1, "Hyperbolic Sine") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            return parameters.get(0).sinh();
        }
    });
    addFunction(new Function("COSH", 1, "Hyperbolic Cosine") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            return parameters.get(0).cosh();
        }
    });
    addFunction(new Function("TANH", 1, "Hyperbolic Tangent") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            return parameters.get(0).tanh();
        }
    });
    addFunction(new Function("RAD", 1, "Transform degree to radian") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            double d = Math.toRadians(parameters.get(0).real);
            return new MyComplex(d);
        }
    });
    addFunction(new Function("DEG", 1, "Transform radian to degree") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            double d = Math.toDegrees(parameters.get(0).real);
            return new MyComplex(d);
        }
    });
    addFunction(new Function("MAX", -1, "Find the biggest value in a list") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            MyComplex save = new MyComplex(Double.MIN_VALUE);
            if (parameters.size() == 0) {
                throw new ExpressionException("MAX requires at least one parameter");
            }
            //                if (parameters.get(0).type == ValueType.ARRAY)
            //                    parameters = parameters.get(0).list;
            if (parameters.get(0).type == ValueType.COMPLEX) {
                for (MyComplex parameter : parameters) {
                    if (parameter.abs() > save.abs()) {
                        save = parameter;
                    }
                }
                save.type = ValueType.COMPLEX;
            } else {
                for (MyComplex parameter : parameters) {
                    if (parameter.real > save.real) {
                        save = parameter;
                    }
                }
                save.type = ValueType.REAL;
            }
            return save;
        }
    });
    ///////////////////////////////////////////////////////
    addFunction(new Function("IF", 3, "Conditional: give param3 if param1 is 0, otherwise param2") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            if (parameters.get(0).real == 0.0) {
                return parameters.get(2);
            }
            return parameters.get(1);
        }
    });

    addFunction(new Function("PERC", 2, "Get param1 percent of param2") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            return parameters.get(0).divide(new MyComplex(100)).multiply(parameters.get(1));
        }
    });

    addFunction(new Function("PER", 2, "How many percent is param1 of param2") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            return parameters.get(0).multiply(new MyComplex(100)).divide(parameters.get(1));
        }
    });

    addFunction(new Function("H", 1, "Evaluate _history element") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            int i = (int) parameters.get(0).real;
            Expression ex = new Expression(history.get(i), history, mainVars);
            return ex.eval();
        }
    });

    addFunction(new Function("MERS", 1, "Calculate Mersenne Number") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            MyComplex p = parameters.get(0);
            return new MyComplex(2).pow(p).subtract(new MyComplex(1));
        }
    });

    addFunction(new Function("GCD", 2, "Find greatest common divisor of 2 values") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            double a = parameters.get(0).real;
            double b = parameters.get(1).real;
            long r = ArithmeticUtils.gcd((long) a, (long) b);
            return new MyComplex(r);
        }
    });
    addFunction(new Function("LCM", 2, "Find least common multiple of 2 values") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            double a = parameters.get(0).real;
            double b = parameters.get(1).real;
            long r = ArithmeticUtils.lcm((long) a, (long) b);
            return new MyComplex(r);
        }
    });
    addFunction(new Function("AMEAN", -1, "Arithmetic mean of a set of values") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            if (parameters.size() == 0) {
                throw new ExpressionException("MEAN requires at least one parameter");
            }
            Mean m = new Mean();
            double[] d = MyComplex.getRealArray(parameters);
            double d2 = m.evaluate(d);
            return new MyComplex(d2);
        }
    });
    //        addFunction(new Function("BYT", -1,
    //                "Value from sequence of bytes")
    //        {
    //            @Override
    //            public MyComplex eval (List<MyComplex> parameters)
    //            {
    //                if (parameters.size() == 0)
    //                {
    //                    return MyComplex.ZERO;
    //                }
    //                BigInteger res = BigInteger.ZERO;
    //                for (MyComplex parameter : parameters)
    //                {
    //                    if (parameter.intValue() < 0 || parameter.intValue() > 255)
    //                    {
    //                        throw new ExpressionException("not a byte value");
    //                    }
    //                    res = res.shiftLeft(8);
    //                    res = res.or(parameter.toBigInteger());
    //                }
    //                return new MyComplex(res, BigInteger.ZERO);
    //            }
    //        });
    addFunction(new Function("SEQ", 3, "Generate Sequence p1=start, p2=step, p3=count") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            double start = parameters.get(0).real;
            ArrayList<MyComplex> arr = new ArrayList<>();
            for (int s = 0; s < (int) (parameters.get(2).real); s++) {
                arr.add(new MyComplex(start));
                start += parameters.get(1).real;
            }
            return new MyComplex(arr);
        }
    });

    addFunction(new Function("PROD", -1, "Product of real values") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            Product p = new Product();
            double[] d = MyComplex.getRealArray(parameters);
            return new MyComplex(p.evaluate(d));
        }
    });

    addFunction(new Function("SUM", -1, "Sum of values") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            Sum p = new Sum();
            double[] d = MyComplex.getRealArray(parameters);
            return new MyComplex(p.evaluate(d));
        }
    });

    addFunction(new Function("ANG", 1, "Angle phi of complex number in radians") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            double b = parameters.get(0).angle();
            return new MyComplex(b);
        }
    });

    addFunction(new Function("IM", 1, "Get imaginary part") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            return new MyComplex(parameters.get(0).imaginary);
        }
    });

    addFunction(new Function("RE", 1, "Get real part") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            return new MyComplex(parameters.get(0).real);
        }
    });

    addFunction(new Function("POL", 2, "Make complex number from polar coords. angle is first arg") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            double angle = parameters.get(0).real;
            double len = parameters.get(1).real;
            Complex c = ComplexUtils.polar2Complex(len, angle);
            return new MyComplex(c);
        }
    });

    addFunction(new Function("GMEAN", -1, "Geometric mean of a set of values") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            if (parameters.size() == 0) {
                throw new ExpressionException("MEAN requires at least one parameter");
            }
            GeometricMean m = new GeometricMean();
            double[] d = MyComplex.getRealArray(parameters);
            double d2 = m.evaluate(d);
            return new MyComplex(d2);
        }
    });

    addFunction(new Function("HMEAN", -1, "Harmonic mean of a set of values") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            if (parameters.size() == 0) {
                throw new ExpressionException("MEAN requires at least one parameter");
            }
            MyComplex res = new MyComplex(0);
            int num = 0;
            for (MyComplex parameter : parameters) {
                res = res.add(new MyComplex(1).divide(parameter));
                num++;
            }
            res = new MyComplex(res.abs());
            return new MyComplex(num).divide(res);
        }
    });

    addFunction(new Function("VAR", -1, "Variance of a set of values") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            if (parameters.size() == 0) {
                throw new ExpressionException("MEAN requires at least one parameter");
            }
            double[] arr = new double[parameters.size()];
            for (int s = 0; s < parameters.size(); s++) {
                arr[s] = parameters.get(s).real;
            }
            return new MyComplex(variance(arr));
        }
    });

    addFunction(new Function("NPR", 1, "Next prime number greater or equal the argument") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            return new MyComplex(nextPrime((int) parameters.get(0).real));
        }
    });

    addFunction(new Function("NSWP", 1, "Swap nibbles") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            BigInteger bi = parameters.get(0).toBigIntegerReal();
            String s = bi.toString(16);
            s = new StringBuilder(s).reverse().toString();
            return new MyComplex(new BigInteger(s, 16), BigInteger.ZERO);
        }
    });

    addFunction(new Function("BSWP", 1, "Swap bytes") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            BigInteger bi = parameters.get(0).toBigIntegerReal();
            String s = bi.toString(16);
            while (s.length() % 4 != 0) {
                s = s + "0";
            }
            if (bi.intValue() < 256) {
                s = "00" + s;
            }
            s = Misc.reverseHex(s);
            return new MyComplex(new BigInteger(s, 16), BigInteger.ZERO);
        }
    });

    addFunction(new Function("PYT", 2,
            "Pythagoras's result = sqrt(param1^2+param2^2) https://en.wikipedia.org/wiki/Pythagorean_theorem") {
        @Override
        public MyComplex eval(List<MyComplex> par) {
            double a = par.get(0).real;
            double b = par.get(1).real;
            return new MyComplex(Math.sqrt(a * a + b * b));
        }
    });

    addFunction(new Function("FIB", 1, "Fibonacci number") {
        // --Commented out by Inspection (2/19/2017 7:46 PM):private final Operator exp = operators.get("^");

        @Override
        public MyComplex eval(List<MyComplex> par) {
            return Misc.iterativeFibonacci((int) par.get(0).real);
        }
    });

    ///////////////////////////////////////////////

    addFunction(new Function("MIN", -1, "Find the smallest in a list of values") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            MyComplex save = new MyComplex(Double.MAX_VALUE);
            if (parameters.size() == 0) {
                throw new ExpressionException("MAX requires at least one parameter");
            }
            if (parameters.get(0).type == ValueType.COMPLEX) {
                for (MyComplex parameter : parameters) {
                    if (parameter.abs() < save.abs()) {
                        save = parameter;
                    }
                }
                save.type = ValueType.COMPLEX;
            } else {
                for (MyComplex parameter : parameters) {
                    if (parameter.real < save.real) {
                        save = parameter;
                    }
                }
                save.type = ValueType.REAL;
            }
            return save;
        }
    });
    addFunction(new Function("ABS", 1, "Get absolute value of a number") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            return new MyComplex(parameters.get(0).abs());
        }
    });
    addFunction(new Function("LN", 1, "Logarithm base e of the argument") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            double d = Math.log(parameters.get(0).real);
            return new MyComplex(d);
        }
    });
    addFunction(new Function("LOG", 1, "Logarithm base 10 of the argument") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            double d = Math.log10(parameters.get(0).real);
            return new MyComplex(d);
        }
    });
    addFunction(new Function("FLOOR", 1, "Rounds DOWN to nearest Integer") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            double d = Math.floor(parameters.get(0).real);
            return new MyComplex(d);
        }
    });
    addFunction(new Function("CEIL", 1, "Rounds UP to nearest Integer") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            double d = Math.ceil(parameters.get(0).real);
            return new MyComplex(d);
        }
    });
    addFunction(new Function("ROU", 1, "Rounds to nearest Integer") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            int d = (int) (parameters.get(0).real + 0.5);
            return new MyComplex(d);
        }
    });
    addFunction(new Function("SQRT", 1, "Square root") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            MyComplex p = parameters.get(0);
            if (p.type == ValueType.REAL) {
                return new MyComplex(Math.sqrt(p.real));
            }
            return p.sqrt();
        }
    });
    addFunction(new Function("ARR", -1, "Create array") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            return new MyComplex(parameters);
        }
    });
    addFunction(new Function("POLY", -1, "Treat array as Polynom") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            double[] d = MyComplex.getRealArray(parameters);
            PolynomialFunction p = new PolynomialFunction(d);
            return new MyComplex(p);
        }
    });
    addFunction(new Function("DRVE", -1, "Make derivative of polynomial") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            PolynomialFunction p;
            if (parameters.get(0).isPoly()) {
                p = new PolynomialFunction(parameters.get(0).getRealArray());
            } else {
                double[] d = MyComplex.getRealArray(parameters);
                p = new PolynomialFunction(d);
            }
            return new MyComplex(p.polynomialDerivative());
        }
    });
    addFunction(new Function("ADRVE", -1, "Make antiderivative of polynomial. Constant is always zero") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            PolynomialFunction p;
            if (parameters.get(0).isPoly()) {
                p = new PolynomialFunction(parameters.get(0).getRealArray());
            } else {
                double[] d = MyComplex.getRealArray(parameters);
                p = new PolynomialFunction(d);
            }
            return new MyComplex(Misc.antiDerive(p));
        }
    });

    addFunction(new Function("PVAL", 2, "Compute value of polynom for the given argument.") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            if (parameters.get(0).isPoly()) {
                PolynomialFunction p = new PolynomialFunction(parameters.get(0).getRealArray());
                double v = p.value(parameters.get(1).real);
                return new MyComplex(v);
            }
            throw new ExpressionException("first arg must be polynomial");
        }
    });

    addFunction(new Function("INTGR", 3, "Numerical integration") {
        @Override
        public MyComplex eval(List<MyComplex> parameters) {
            if (parameters.get(0).isPoly()) {
                PolynomialFunction p = new PolynomialFunction(parameters.get(0).getRealArray());
                double start = parameters.get(1).real;
                double end = parameters.get(2).real;
                SimpsonIntegrator si = new SimpsonIntegrator();
                double d = si.integrate(1000, p, start, end);
                return new MyComplex(d);
            }
            throw new ExpressionException("first arg must be polynomial");
        }
    });

}