Example usage for org.apache.commons.math3.distribution NormalDistribution NormalDistribution

List of usage examples for org.apache.commons.math3.distribution NormalDistribution NormalDistribution

Introduction

In this page you can find the example usage for org.apache.commons.math3.distribution NormalDistribution NormalDistribution.

Prototype

public NormalDistribution(double mean, double sd) throws NotStrictlyPositiveException 

Source Link

Document

Create a normal distribution using the given mean and standard deviation.

Usage

From source file:org.jpmml.evaluator.NormalDistributionUtil.java

static public double probability(double mean, double stdev, double x) {
    NormalDistribution normalDistribution = new NormalDistribution(mean, stdev);

    return normalDistribution.density(x);
}

From source file:org.jreserve.jrlib.util.random.RndNormalTest.java

@Before
public void setUp() {
    rnd = new RndNormal(new JavaRandom(SEED));
    nd = new NormalDistribution(MEAN, SIGMA);
}

From source file:org.lightjason.trafficsimulation.math.EDistributionFactory.java

/**
 * generate the distribution/*from w w w  .ja va 2 s.c  om*/
 *
 * @param p_args distribution arguments
 * @return the distribution
 */
public final AbstractRealDistribution generate(final double... p_args) {
    switch (this) {
    case BETA:
        return new BetaDistribution(p_args[0], p_args[1]);
    case CAUCHY:
        return new CauchyDistribution(p_args[0], p_args[1]);
    case CHI_SQUARED:
        return new ChiSquaredDistribution(p_args[0]);
    case EXPONENTIAL:
        return new ExponentialDistribution(p_args[0]);
    case F:
        return new FDistribution(p_args[0], p_args[1]);
    case GAMMA:
        return new GammaDistribution(p_args[0], p_args[1]);
    case GUMBEL:
        return new GumbelDistribution(p_args[0], p_args[1]);
    case LAPLACE:
        return new LaplaceDistribution(p_args[0], p_args[1]);
    case LEVY:
        return new LevyDistribution(p_args[0], p_args[1]);
    case LOGISTIC:
        return new LogisticDistribution(p_args[0], p_args[1]);
    case LOG_NORMAL:
        return new LogNormalDistribution(p_args[0], p_args[1]);
    case NAKAGAMI:
        return new NakagamiDistribution(p_args[0], p_args[1]);
    case NORMAL:
        return new NormalDistribution(p_args[0], p_args[1]);
    case PARETO:
        return new ParetoDistribution(p_args[0], p_args[1]);
    case T:
        return new TDistribution(p_args[0]);
    case TRIANGULAR:
        return new TriangularDistribution(p_args[0], p_args[1], p_args[2]);
    case UNIFORM:
        return new UniformRealDistribution(p_args[0], p_args[1]);
    case WEIBULL:
        return new WeibullDistribution(p_args[0], p_args[1]);

    default:
        throw new RuntimeException(MessageFormat.format("not set {0}", this));
    }
}

From source file:org.powertac.customer.coldstorage.ColdStorage.java

private void ensureSeeds() {
    if (null == opSeed) {
        opSeed = randomSeedRepo.getRandomSeed(ColdStorage.class.getName() + "-" + name, 0, "model");
        evalSeed = randomSeedRepo.getRandomSeed(ColdStorage.class.getName() + "-" + name, 0, "eval");
        normal01 = new NormalDistribution(0.0, 1.0);
        normal01.reseedRandomGenerator(opSeed.nextLong());
    }//from w  ww .  j  a  va2 s  .c  o  m
}

From source file:org.powertac.customer.model.LiftTruck.java

private void ensureSeeds() {
    if (null == opSeed) {
        RandomSeedRepo repo = service.getRandomSeedRepo();
        opSeed = repo.getRandomSeed(LiftTruck.class.getName() + "-" + name, 0, "model");
        evalSeed = repo.getRandomSeed(LiftTruck.class.getName() + "-" + name, 0, "eval");
        normal = new NormalDistribution(0.0, 1.0);
        normal.reseedRandomGenerator(opSeed.nextLong());
    }//from  w ww . j a  va 2s. c  om
}

From source file:org.powertac.genco.CpGenco.java

public void init(BrokerProxy proxy, int seedId, RandomSeedRepo randomSeedRepo, TimeslotRepo timeslotRepo) {
    log.info("init(" + seedId + ") " + getUsername());
    this.brokerProxyService = proxy;
    this.timeslotRepo = timeslotRepo;
    // set up the random generator
    this.seed = randomSeedRepo.getRandomSeed(CpGenco.class.getName(), seedId, "bid");
    normal01 = new NormalDistribution(0.0, 1.0);
    normal01.reseedRandomGenerator(seed.nextLong());
    // set up the supply-curve generating function
    if (!function.validateCoefficients(coefficients))
        log.error("wrong number of coefficients for quadratic");
    int to = Competition.currentCompetition().getTimeslotsOpen();
    timeslotCoefficients = new double[to][getCoefficients().size()];
}

From source file:org.ranksys.novdiv.reranking.DitheringReranker.java

@Override
public int[] rerankPermutation(Recommendation<U, I> recommendation, int maxLength) {
    List<Tuple2od<I>> items = recommendation.getItems();
    int M = items.size();
    int N = min(maxLength, M);

    if (variance == 0.0) {
        return getBasePerm(N);
    }/*from   ww w. j  av a  2 s.c o m*/

    NormalDistribution dist = new NormalDistribution(0.0, sqrt(variance));

    IntDoubleTopN topN = new IntDoubleTopN(N);
    for (int i = 0; i < M; i++) {
        topN.add(M - i, log(i + 1) + dist.sample());
    }
    topN.sort();

    return topN.stream().mapToInt(e -> M - e.v1).toArray();

}

From source file:org.rhwlab.segmentation.GaussianMixtureEM.java

License:asdf

private void M_Step() {
    for (int k = 0; k < K; ++k) {
        N[k] = 0.0;//from  w  w w. j  a  v a  2 s .com
        for (int n = 0; n < source.getN(); ++n) {
            N[k] = N[k] + r[n][k];
        }
        // compute the mean 
        double sum = 0;
        for (int n = 0; n < source.getN(); ++n) {
            sum = sum + r[n][k] * source.get(n).getIntensity();
        }
        mu[k] = sum / N[k];

        // compute the SD;
        double var = 0.0;
        double mean = mu[k];
        for (int n = 0; n < source.getN(); ++n) {
            double del = source.get(n).getIntensity() - mean;
            var = var + r[n][k] * del * del;
        }
        sigma[k] = Math.sqrt(var / N[k]);

        lnpi[k] = Math.log(N[k] / source.getN());
        try {
            normal[k] = new NormalDistribution(mu[k], sigma[k]);
        } catch (Exception exc) {
            int ashdf = 0;
        }
    }
}

From source file:org.workflowsim.failure.FailureGenerator.java

/**
 *
 *//*from   w w  w .j a va 2  s.  c o  m*/
protected static RealDistribution getDistribution(double alpha, double beta) {
    RealDistribution distribution = null;
    switch (FailureParameters.getFailureDistribution()) {
    case LOGNORMAL:
        distribution = new LogNormalDistribution(1.0 / alpha, beta);
        break;
    case WEIBULL:
        distribution = new WeibullDistribution(beta, 1.0 / alpha);
        break;
    case GAMMA:
        distribution = new GammaDistribution(beta, 1.0 / alpha);
        break;
    case NORMAL:
        //beta is the std, 1.0/alpha is the mean
        distribution = new NormalDistribution(1.0 / alpha, beta);
        break;
    default:
        break;
    }
    return distribution;
}

From source file:org.workflowsim.utils.DistributionGenerator.java

/**
 * Gets the RealDistribution with two parameters
 *
 * @param scale the first param scale//  w w  w .j a v  a 2  s  .c o m
 * @param shape the second param shape
 * @return the RealDistribution Object
 */
public RealDistribution getDistribution(double scale, double shape) {
    RealDistribution distribution = null;
    switch (this.dist) {
    case LOGNORMAL:
        distribution = new LogNormalDistribution(scale, shape);
        break;
    case WEIBULL:
        distribution = new WeibullDistribution(shape, scale);
        break;
    case GAMMA:
        distribution = new GammaDistribution(shape, scale);
        break;
    case NORMAL:
        //shape is the std, scale is the mean
        distribution = new NormalDistribution(scale, shape);
        break;
    default:
        break;
    }
    return distribution;
}