Example usage for org.apache.commons.math3.exception.util LocalizedFormats TRUST_REGION_STEP_FAILED

List of usage examples for org.apache.commons.math3.exception.util LocalizedFormats TRUST_REGION_STEP_FAILED

Introduction

In this page you can find the example usage for org.apache.commons.math3.exception.util LocalizedFormats TRUST_REGION_STEP_FAILED.

Prototype

LocalizedFormats TRUST_REGION_STEP_FAILED

To view the source code for org.apache.commons.math3.exception.util LocalizedFormats TRUST_REGION_STEP_FAILED.

Click Source Link

Usage

From source file:com.itemanalysis.psychometrics.optimization.BOBYQAOptimizer.java

/**
 *     The arguments N, NPT, X, XL, XU, RHOBEG, RHOEND, IPRINT and MAXFUN
 *       are identical to the corresponding arguments in SUBROUTINE BOBYQA.
 *     XBASE holds a shift of origin that should reduce the contributions
 *       from rounding errors to values of the model and Lagrange functions.
 *     XPT is a two-dimensional array that holds the coordinates of the
 *       interpolation points relative to XBASE.
 *     FVAL holds the values of F at the interpolation points.
 *     XOPT is set to the displacement from XBASE of the trust region centre.
 *     GOPT holds the gradientAt of the quadratic model at XBASE+XOPT.
 *     HQ holds the explicit second derivatives of the quadratic model.
 *     PQ contains the parameters of the implicit second derivatives of the
 *       quadratic model./*from   ww  w .ja  v a  2 s.  com*/
 *     BMAT holds the last N columns of H.
 *     ZMAT holds the factorization of the leading NPT by NPT submatrix of H,
 *       this factorization being ZMAT times ZMAT^T, which provides both the
 *       correct rank and positive semi-definiteness.
 *     NDIM is the first dimension of BMAT and has the value NPT+N.
 *     SL and SU hold the differences XL-XBASE and XU-XBASE, respectively.
 *       All the components of every XOPT are going to satisfy the bounds
 *       SL(I) .LEQ. XOPT(I) .LEQ. SU(I), with appropriate equalities when
 *       XOPT is on a constraint boundary.
 *     XNEW is chosen by SUBROUTINE TRSBOX or ALTMOV. Usually XBASE+XNEW is the
 *       vector of variables for the next call of CALFUN. XNEW also satisfies
 *       the SL and SU constraints in the way that has just been mentioned.
 *     XALT is an alternative to XNEW, chosen by ALTMOV, that may replace XNEW
 *       in order to increase the denominator in the updating of UPDATE.
 *     D is reserved for a trial step from XOPT, which is usually XNEW-XOPT.
 *     VLAG contains the values of the Lagrange functions at a new point X.
 *       They are part of a product that requires VLAG to be of length NDIM.
 *     W is a one-dimensional array that is used for working space. Its length
 *       must be at least 3*NDIM = 3*(NPT+N).
 *
 * @param lowerBound Lower bounds.
 * @param upperBound Upper bounds.
 * @return the value of the objective at the optimum.
 */
private double bobyqb(double[] lowerBound, double[] upperBound) {
    printMethod(); // XXX

    final int n = currentBest.getDimension();
    final int npt = numberOfInterpolationPoints;
    final int np = n + 1;
    final int nptm = npt - np;
    final int nh = n * np / 2;

    final ArrayRealVector work1 = new ArrayRealVector(n);
    final ArrayRealVector work2 = new ArrayRealVector(npt);
    final ArrayRealVector work3 = new ArrayRealVector(npt);

    double cauchy = Double.NaN;
    double alpha = Double.NaN;
    double dsq = Double.NaN;
    double crvmin = Double.NaN;

    // Set some constants.
    // Parameter adjustments

    // Function Body

    // The call of PRELIM sets the elements of XBASE, XPT, FVAL, GOPT, HQ, PQ,
    // BMAT and ZMAT for the first iteration, with the corresponding values of
    // of NF and KOPT, which are the number of calls of CALFUN so far and the
    // index of the interpolation point at the trust region centre. Then the
    // initial XOPT is set too. The branch to label 720 occurs if MAXFUN is
    // less than NPT. GOPT will be updated if KOPT is different from KBASE.

    trustRegionCenterInterpolationPointIndex = 0;

    prelim(lowerBound, upperBound);
    double xoptsq = ZERO;
    for (int i = 0; i < n; i++) {
        trustRegionCenterOffset.setEntry(i,
                interpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex, i));
        // Computing 2nd power
        final double deltaOne = trustRegionCenterOffset.getEntry(i);
        xoptsq += deltaOne * deltaOne;
    }
    double fsave = fAtInterpolationPoints.getEntry(0);
    final int kbase = 0;

    // Complete the settings that are required for the iterative procedure.

    int ntrits = 0;
    int itest = 0;
    int knew = 0;
    int nfsav = getEvaluations();
    double rho = initialTrustRegionRadius;
    double delta = rho;
    double diffa = ZERO;
    double diffb = ZERO;
    double diffc = ZERO;
    double f = ZERO;
    double beta = ZERO;
    double adelt = ZERO;
    double denom = ZERO;
    double ratio = ZERO;
    double dnorm = ZERO;
    double scaden = ZERO;
    double biglsq = ZERO;
    double distsq = ZERO;

    // Update GOPT if necessary before the first iteration and after each
    // call of RESCUE that makes a call of CALFUN.

    int state = 20;
    for (;;)
        switch (state) {
        case 20: {
            printState(20); // XXX
            if (trustRegionCenterInterpolationPointIndex != kbase) {
                int ih = 0;
                for (int j = 0; j < n; j++) {
                    for (int i = 0; i <= j; i++) {
                        if (i < j) {
                            gradientAtTrustRegionCenter.setEntry(j,
                                    gradientAtTrustRegionCenter.getEntry(j)
                                            + modelSecondDerivativesValues.getEntry(ih)
                                                    * trustRegionCenterOffset.getEntry(i));
                        }
                        gradientAtTrustRegionCenter.setEntry(i,
                                gradientAtTrustRegionCenter.getEntry(i)
                                        + modelSecondDerivativesValues.getEntry(ih)
                                                * trustRegionCenterOffset.getEntry(j));
                        ih++;
                    }
                }
                if (getEvaluations() > npt) {
                    for (int k = 0; k < npt; k++) {
                        double temp = ZERO;
                        for (int j = 0; j < n; j++) {
                            temp += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
                        }
                        temp *= modelSecondDerivativesParameters.getEntry(k);
                        for (int i = 0; i < n; i++) {
                            gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i)
                                    + temp * interpolationPoints.getEntry(k, i));
                        }
                    }
                    // throw new PathIsExploredException(); // XXX
                }
            }

            // Generate the next point in the trust region that provides a small value
            // of the quadratic model subject to the constraints on the variables.
            // The int NTRITS is set to the number "trust region" iterations that
            // have occurred since the last "alternative" iteration. If the length
            // of XNEW-XOPT is less than HALF*RHO, however, then there is a branch to
            // label 650 or 680 with NTRITS=-1, instead of calculating F at XNEW.

        }
        case 60: {
            printState(60); // XXX
            final ArrayRealVector gnew = new ArrayRealVector(n);
            final ArrayRealVector xbdi = new ArrayRealVector(n);
            final ArrayRealVector s = new ArrayRealVector(n);
            final ArrayRealVector hs = new ArrayRealVector(n);
            final ArrayRealVector hred = new ArrayRealVector(n);

            final double[] dsqCrvmin = trsbox(delta, gnew, xbdi, s, hs, hred);
            dsq = dsqCrvmin[0];
            crvmin = dsqCrvmin[1];

            // Computing MIN
            double deltaOne = delta;
            double deltaTwo = Math.sqrt(dsq);
            dnorm = Math.min(deltaOne, deltaTwo);
            if (dnorm < HALF * rho) {
                ntrits = -1;
                // Computing 2nd power
                deltaOne = TEN * rho;
                distsq = deltaOne * deltaOne;
                if (getEvaluations() <= nfsav + 2) {
                    state = 650;
                    break;
                }

                // The following choice between labels 650 and 680 depends on whether or
                // not our work with the current RHO seems to be complete. Either RHO is
                // decreased or termination occurs if the errors in the quadratic model at
                // the last three interpolation points compare favourably with predictions
                // of likely improvements to the model within distance HALF*RHO of XOPT.

                // Computing MAX
                deltaOne = Math.max(diffa, diffb);
                final double errbig = Math.max(deltaOne, diffc);
                final double frhosq = rho * ONE_OVER_EIGHT * rho;
                if (crvmin > ZERO && errbig > frhosq * crvmin) {
                    state = 650;
                    break;
                }
                final double bdtol = errbig / rho;
                for (int j = 0; j < n; j++) {
                    double bdtest = bdtol;
                    if (newPoint.getEntry(j) == lowerDifference.getEntry(j)) {
                        bdtest = work1.getEntry(j);
                    }
                    if (newPoint.getEntry(j) == upperDifference.getEntry(j)) {
                        bdtest = -work1.getEntry(j);
                    }
                    if (bdtest < bdtol) {
                        double curv = modelSecondDerivativesValues.getEntry((j + j * j) / 2);
                        for (int k = 0; k < npt; k++) {
                            // Computing 2nd power
                            final double d1 = interpolationPoints.getEntry(k, j);
                            curv += modelSecondDerivativesParameters.getEntry(k) * (d1 * d1);
                        }
                        bdtest += HALF * curv * rho;
                        if (bdtest < bdtol) {
                            state = 650;
                            break;
                        }
                        // throw new PathIsExploredException(); // XXX
                    }
                }
                state = 680;
                break;
            }
            ++ntrits;

            // Severe cancellation is likely to occur if XOPT is too far from XBASE.
            // If the following test holds, then XBASE is shifted so that XOPT becomes
            // zero. The appropriate changes are made to BMAT and to the second
            // derivatives of the current model, beginning with the changes to BMAT
            // that do not depend on ZMAT. VLAG is used temporarily for working space.

        }
        case 90: {
            printState(90); // XXX
            if (dsq <= xoptsq * ONE_OVER_A_THOUSAND) {
                final double fracsq = xoptsq * ONE_OVER_FOUR;
                double sumpq = ZERO;
                // final RealVector sumVector
                //     = new ArrayRealVector(npt, -HALF * xoptsq).add(interpolationPoints.operate(trustRegionCenter));
                for (int k = 0; k < npt; k++) {
                    sumpq += modelSecondDerivativesParameters.getEntry(k);
                    double sum = -HALF * xoptsq;
                    for (int i = 0; i < n; i++) {
                        sum += interpolationPoints.getEntry(k, i) * trustRegionCenterOffset.getEntry(i);
                    }
                    // sum = sumVector.getEntry(k); // XXX "testAckley" and "testDiffPow" fail.
                    work2.setEntry(k, sum);
                    final double temp = fracsq - HALF * sum;
                    for (int i = 0; i < n; i++) {
                        work1.setEntry(i, bMatrix.getEntry(k, i));
                        lagrangeValuesAtNewPoint.setEntry(i, sum * interpolationPoints.getEntry(k, i)
                                + temp * trustRegionCenterOffset.getEntry(i));
                        final int ip = npt + i;
                        for (int j = 0; j <= i; j++) {
                            bMatrix.setEntry(ip, j,
                                    bMatrix.getEntry(ip, j)
                                            + work1.getEntry(i) * lagrangeValuesAtNewPoint.getEntry(j)
                                            + lagrangeValuesAtNewPoint.getEntry(i) * work1.getEntry(j));
                        }
                    }
                }

                // Then the revisions of BMAT that depend on ZMAT are calculated.

                for (int m = 0; m < nptm; m++) {
                    double sumz = ZERO;
                    double sumw = ZERO;
                    for (int k = 0; k < npt; k++) {
                        sumz += zMatrix.getEntry(k, m);
                        lagrangeValuesAtNewPoint.setEntry(k, work2.getEntry(k) * zMatrix.getEntry(k, m));
                        sumw += lagrangeValuesAtNewPoint.getEntry(k);
                    }
                    for (int j = 0; j < n; j++) {
                        double sum = (fracsq * sumz - HALF * sumw) * trustRegionCenterOffset.getEntry(j);
                        for (int k = 0; k < npt; k++) {
                            sum += lagrangeValuesAtNewPoint.getEntry(k) * interpolationPoints.getEntry(k, j);
                        }
                        work1.setEntry(j, sum);
                        for (int k = 0; k < npt; k++) {
                            bMatrix.setEntry(k, j, bMatrix.getEntry(k, j) + sum * zMatrix.getEntry(k, m));
                        }
                    }
                    for (int i = 0; i < n; i++) {
                        final int ip = i + npt;
                        final double temp = work1.getEntry(i);
                        for (int j = 0; j <= i; j++) {
                            bMatrix.setEntry(ip, j, bMatrix.getEntry(ip, j) + temp * work1.getEntry(j));
                        }
                    }
                }

                // The following instructions complete the shift, including the changes
                // to the second derivative parameters of the quadratic model.

                int ih = 0;
                for (int j = 0; j < n; j++) {
                    work1.setEntry(j, -HALF * sumpq * trustRegionCenterOffset.getEntry(j));
                    for (int k = 0; k < npt; k++) {
                        work1.setEntry(j, work1.getEntry(j) + modelSecondDerivativesParameters.getEntry(k)
                                * interpolationPoints.getEntry(k, j));
                        interpolationPoints.setEntry(k, j,
                                interpolationPoints.getEntry(k, j) - trustRegionCenterOffset.getEntry(j));
                    }
                    for (int i = 0; i <= j; i++) {
                        modelSecondDerivativesValues.setEntry(ih,
                                modelSecondDerivativesValues.getEntry(ih)
                                        + work1.getEntry(i) * trustRegionCenterOffset.getEntry(j)
                                        + trustRegionCenterOffset.getEntry(i) * work1.getEntry(j));
                        bMatrix.setEntry(npt + i, j, bMatrix.getEntry(npt + j, i));
                        ih++;
                    }
                }
                for (int i = 0; i < n; i++) {
                    originShift.setEntry(i, originShift.getEntry(i) + trustRegionCenterOffset.getEntry(i));
                    newPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i));
                    lowerDifference.setEntry(i,
                            lowerDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i));
                    upperDifference.setEntry(i,
                            upperDifference.getEntry(i) - trustRegionCenterOffset.getEntry(i));
                    trustRegionCenterOffset.setEntry(i, ZERO);
                }
                xoptsq = ZERO;
            }
            if (ntrits == 0) {
                state = 210;
                break;
            }
            state = 230;
            break;

            // XBASE is also moved to XOPT by a call of RESCUE. This calculation is
            // more expensive than the previous shift, because new matrices BMAT and
            // ZMAT are generated from scratch, which may include the replacement of
            // interpolation points whose positions seem to be causing near linear
            // dependence in the interpolation conditions. Therefore RESCUE is called
            // only if rounding errors have reduced by at least a factor of two the
            // denominator of the formula for updating the H matrix. It provides a
            // useful safeguard, but is not invoked in most applications of BOBYQA.

        }
        case 210: {
            printState(210); // XXX
            // Pick two alternative vectors of variables, relative to XBASE, that
            // are suitable as new positions of the KNEW-th interpolation point.
            // Firstly, XNEW is set to the point on a line through XOPT and another
            // interpolation point that minimizes the predicted value of the next
            // denominator, subject to ||XNEW - XOPT|| .LEQ. ADELT and to the SL
            // and SU bounds. Secondly, XALT is set to the best feasible point on
            // a constrained version of the Cauchy step of the KNEW-th Lagrange
            // function, the corresponding value of the square of this function
            // being returned in CAUCHY. The choice between these alternatives is
            // going to be made when the denominator is calculated.

            final double[] alphaCauchy = altmov(knew, adelt);
            alpha = alphaCauchy[0];
            cauchy = alphaCauchy[1];

            for (int i = 0; i < n; i++) {
                trialStepPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i));
            }

            // Calculate VLAG and BETA for the current choice of D. The scalar
            // product of D with XPT(K,.) is going to be held in W(NPT+K) for
            // use when VQUAD is calculated.

        }
        case 230: {
            printState(230); // XXX
            for (int k = 0; k < npt; k++) {
                double suma = ZERO;
                double sumb = ZERO;
                double sum = ZERO;
                for (int j = 0; j < n; j++) {
                    suma += interpolationPoints.getEntry(k, j) * trialStepPoint.getEntry(j);
                    sumb += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
                    sum += bMatrix.getEntry(k, j) * trialStepPoint.getEntry(j);
                }
                work3.setEntry(k, suma * (HALF * suma + sumb));
                lagrangeValuesAtNewPoint.setEntry(k, sum);
                work2.setEntry(k, suma);
            }
            beta = ZERO;
            for (int m = 0; m < nptm; m++) {
                double sum = ZERO;
                for (int k = 0; k < npt; k++) {
                    sum += zMatrix.getEntry(k, m) * work3.getEntry(k);
                }
                beta -= sum * sum;
                for (int k = 0; k < npt; k++) {
                    lagrangeValuesAtNewPoint.setEntry(k,
                            lagrangeValuesAtNewPoint.getEntry(k) + sum * zMatrix.getEntry(k, m));
                }
            }
            dsq = ZERO;
            double bsum = ZERO;
            double dx = ZERO;
            for (int j = 0; j < n; j++) {
                // Computing 2nd power
                final double d1 = trialStepPoint.getEntry(j);
                dsq += d1 * d1;
                double sum = ZERO;
                for (int k = 0; k < npt; k++) {
                    sum += work3.getEntry(k) * bMatrix.getEntry(k, j);
                }
                bsum += sum * trialStepPoint.getEntry(j);
                final int jp = npt + j;
                for (int i = 0; i < n; i++) {
                    sum += bMatrix.getEntry(jp, i) * trialStepPoint.getEntry(i);
                }
                lagrangeValuesAtNewPoint.setEntry(jp, sum);
                bsum += sum * trialStepPoint.getEntry(j);
                dx += trialStepPoint.getEntry(j) * trustRegionCenterOffset.getEntry(j);
            }

            beta = dx * dx + dsq * (xoptsq + dx + dx + HALF * dsq) + beta - bsum; // Original
            // beta += dx * dx + dsq * (xoptsq + dx + dx + HALF * dsq) - bsum; // XXX "testAckley" and "testDiffPow" fail.
            // beta = dx * dx + dsq * (xoptsq + 2 * dx + HALF * dsq) + beta - bsum; // XXX "testDiffPow" fails.

            lagrangeValuesAtNewPoint.setEntry(trustRegionCenterInterpolationPointIndex,
                    lagrangeValuesAtNewPoint.getEntry(trustRegionCenterInterpolationPointIndex) + ONE);

            // If NTRITS is zero, the denominator may be increased by replacing
            // the step D of ALTMOV by a Cauchy step. Then RESCUE may be called if
            // rounding errors have damaged the chosen denominator.

            if (ntrits == 0) {
                // Computing 2nd power
                final double d1 = lagrangeValuesAtNewPoint.getEntry(knew);
                denom = d1 * d1 + alpha * beta;
                if (denom < cauchy && cauchy > ZERO) {
                    for (int i = 0; i < n; i++) {
                        newPoint.setEntry(i, alternativeNewPoint.getEntry(i));
                        trialStepPoint.setEntry(i, newPoint.getEntry(i) - trustRegionCenterOffset.getEntry(i));
                    }
                    cauchy = ZERO; // XXX Useful statement?
                    state = 230;
                    break;
                }
                // Alternatively, if NTRITS is positive, then set KNEW to the index of
                // the next interpolation point to be deleted to make room for a trust
                // region step. Again RESCUE may be called if rounding errors have damaged_
                // the chosen denominator, which is the reason for attempting to select
                // KNEW before calculating the next value of the objective function.

            } else {
                final double delsq = delta * delta;
                scaden = ZERO;
                biglsq = ZERO;
                knew = 0;
                for (int k = 0; k < npt; k++) {
                    if (k == trustRegionCenterInterpolationPointIndex) {
                        continue;
                    }
                    double hdiag = ZERO;
                    for (int m = 0; m < nptm; m++) {
                        // Computing 2nd power
                        final double d1 = zMatrix.getEntry(k, m);
                        hdiag += d1 * d1;
                    }
                    // Computing 2nd power
                    final double d2 = lagrangeValuesAtNewPoint.getEntry(k);
                    final double den = beta * hdiag + d2 * d2;
                    distsq = ZERO;
                    for (int j = 0; j < n; j++) {
                        // Computing 2nd power
                        final double d3 = interpolationPoints.getEntry(k, j)
                                - trustRegionCenterOffset.getEntry(j);
                        distsq += d3 * d3;
                    }
                    // Computing MAX
                    // Computing 2nd power
                    final double d4 = distsq / delsq;
                    final double temp = Math.max(ONE, d4 * d4);
                    if (temp * den > scaden) {
                        scaden = temp * den;
                        knew = k;
                        denom = den;
                    }
                    // Computing MAX
                    // Computing 2nd power
                    final double d5 = lagrangeValuesAtNewPoint.getEntry(k);
                    biglsq = Math.max(biglsq, temp * (d5 * d5));
                }
            }

            // Put the variables for the next calculation of the objective function
            //   in XNEW, with any adjustments for the bounds.

            // Calculate the value of the objective function at XBASE+XNEW, unless
            //   the limit on the number of calculations of F has been reached.

        }
        case 360: {
            printState(360); // XXX
            for (int i = 0; i < n; i++) {
                // Computing MIN
                // Computing MAX
                final double d3 = lowerBound[i];
                final double d4 = originShift.getEntry(i) + newPoint.getEntry(i);
                final double d1 = Math.max(d3, d4);
                final double d2 = upperBound[i];
                currentBest.setEntry(i, Math.min(d1, d2));
                if (newPoint.getEntry(i) == lowerDifference.getEntry(i)) {
                    currentBest.setEntry(i, lowerBound[i]);
                }
                if (newPoint.getEntry(i) == upperDifference.getEntry(i)) {
                    currentBest.setEntry(i, upperBound[i]);
                }
            }

            f = computeObjectiveValue(currentBest.toArray());

            if (!isMinimize)
                f = -f;
            if (ntrits == -1) {
                fsave = f;
                state = 720;
                break;
            }

            // Use the quadratic model to predict the change in F due to the step D,
            //   and set DIFF to the error of this prediction.

            final double fopt = fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex);
            double vquad = ZERO;
            int ih = 0;
            for (int j = 0; j < n; j++) {
                vquad += trialStepPoint.getEntry(j) * gradientAtTrustRegionCenter.getEntry(j);
                for (int i = 0; i <= j; i++) {
                    double temp = trialStepPoint.getEntry(i) * trialStepPoint.getEntry(j);
                    if (i == j) {
                        temp *= HALF;
                    }
                    vquad += modelSecondDerivativesValues.getEntry(ih) * temp;
                    ih++;
                }
            }
            for (int k = 0; k < npt; k++) {
                // Computing 2nd power
                final double d1 = work2.getEntry(k);
                final double d2 = d1 * d1; // "d1" must be squared first to prevent test failures.
                vquad += HALF * modelSecondDerivativesParameters.getEntry(k) * d2;
            }
            final double diff = f - fopt - vquad;
            diffc = diffb;
            diffb = diffa;
            diffa = Math.abs(diff);
            if (dnorm > rho) {
                nfsav = getEvaluations();
            }

            // Pick the next value of DELTA after a trust region step.

            if (ntrits > 0) {
                if (vquad >= ZERO) {
                    throw new MathIllegalStateException(LocalizedFormats.TRUST_REGION_STEP_FAILED, vquad);
                }
                ratio = (f - fopt) / vquad;
                final double hDelta = HALF * delta;
                if (ratio <= ONE_OVER_TEN) {
                    // Computing MIN
                    delta = Math.min(hDelta, dnorm);
                } else if (ratio <= .7) {
                    // Computing MAX
                    delta = Math.max(hDelta, dnorm);
                } else {
                    // Computing MAX
                    delta = Math.max(hDelta, 2 * dnorm);
                }
                if (delta <= rho * 1.5) {
                    delta = rho;
                }

                // Recalculate KNEW and DENOM if the new F is less than FOPT.

                if (f < fopt) {
                    final int ksav = knew;
                    final double densav = denom;
                    final double delsq = delta * delta;
                    scaden = ZERO;
                    biglsq = ZERO;
                    knew = 0;
                    for (int k = 0; k < npt; k++) {
                        double hdiag = ZERO;
                        for (int m = 0; m < nptm; m++) {
                            // Computing 2nd power
                            final double d1 = zMatrix.getEntry(k, m);
                            hdiag += d1 * d1;
                        }
                        // Computing 2nd power
                        final double d1 = lagrangeValuesAtNewPoint.getEntry(k);
                        final double den = beta * hdiag + d1 * d1;
                        distsq = ZERO;
                        for (int j = 0; j < n; j++) {
                            // Computing 2nd power
                            final double d2 = interpolationPoints.getEntry(k, j) - newPoint.getEntry(j);
                            distsq += d2 * d2;
                        }
                        // Computing MAX
                        // Computing 2nd power
                        final double d3 = distsq / delsq;
                        final double temp = Math.max(ONE, d3 * d3);
                        if (temp * den > scaden) {
                            scaden = temp * den;
                            knew = k;
                            denom = den;
                        }
                        // Computing MAX
                        // Computing 2nd power
                        final double d4 = lagrangeValuesAtNewPoint.getEntry(k);
                        final double d5 = temp * (d4 * d4);
                        biglsq = Math.max(biglsq, d5);
                    }
                    if (scaden <= HALF * biglsq) {
                        knew = ksav;
                        denom = densav;
                    }
                }
            }

            // Update BMAT and ZMAT, so that the KNEW-th interpolation point can be
            // moved. Also update the second derivative terms of the model.

            update(beta, denom, knew);

            ih = 0;
            final double pqold = modelSecondDerivativesParameters.getEntry(knew);
            modelSecondDerivativesParameters.setEntry(knew, ZERO);
            for (int i = 0; i < n; i++) {
                final double temp = pqold * interpolationPoints.getEntry(knew, i);
                for (int j = 0; j <= i; j++) {
                    modelSecondDerivativesValues.setEntry(ih, modelSecondDerivativesValues.getEntry(ih)
                            + temp * interpolationPoints.getEntry(knew, j));
                    ih++;
                }
            }
            for (int m = 0; m < nptm; m++) {
                final double temp = diff * zMatrix.getEntry(knew, m);
                for (int k = 0; k < npt; k++) {
                    modelSecondDerivativesParameters.setEntry(k,
                            modelSecondDerivativesParameters.getEntry(k) + temp * zMatrix.getEntry(k, m));
                }
            }

            // Include the new interpolation point, and make the changes to GOPT at
            // the old XOPT that are caused by the updating of the quadratic model.

            fAtInterpolationPoints.setEntry(knew, f);
            for (int i = 0; i < n; i++) {
                interpolationPoints.setEntry(knew, i, newPoint.getEntry(i));
                work1.setEntry(i, bMatrix.getEntry(knew, i));
            }
            for (int k = 0; k < npt; k++) {
                double suma = ZERO;
                for (int m = 0; m < nptm; m++) {
                    suma += zMatrix.getEntry(knew, m) * zMatrix.getEntry(k, m);
                }
                double sumb = ZERO;
                for (int j = 0; j < n; j++) {
                    sumb += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
                }
                final double temp = suma * sumb;
                for (int i = 0; i < n; i++) {
                    work1.setEntry(i, work1.getEntry(i) + temp * interpolationPoints.getEntry(k, i));
                }
            }
            for (int i = 0; i < n; i++) {
                gradientAtTrustRegionCenter.setEntry(i,
                        gradientAtTrustRegionCenter.getEntry(i) + diff * work1.getEntry(i));
            }

            // Update XOPT, GOPT and KOPT if the new calculated F is less than FOPT.

            if (f < fopt) {
                trustRegionCenterInterpolationPointIndex = knew;
                xoptsq = ZERO;
                ih = 0;
                for (int j = 0; j < n; j++) {
                    trustRegionCenterOffset.setEntry(j, newPoint.getEntry(j));
                    // Computing 2nd power
                    final double d1 = trustRegionCenterOffset.getEntry(j);
                    xoptsq += d1 * d1;
                    for (int i = 0; i <= j; i++) {
                        if (i < j) {
                            gradientAtTrustRegionCenter.setEntry(j, gradientAtTrustRegionCenter.getEntry(j)
                                    + modelSecondDerivativesValues.getEntry(ih) * trialStepPoint.getEntry(i));
                        }
                        gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i)
                                + modelSecondDerivativesValues.getEntry(ih) * trialStepPoint.getEntry(j));
                        ih++;
                    }
                }
                for (int k = 0; k < npt; k++) {
                    double temp = ZERO;
                    for (int j = 0; j < n; j++) {
                        temp += interpolationPoints.getEntry(k, j) * trialStepPoint.getEntry(j);
                    }
                    temp *= modelSecondDerivativesParameters.getEntry(k);
                    for (int i = 0; i < n; i++) {
                        gradientAtTrustRegionCenter.setEntry(i, gradientAtTrustRegionCenter.getEntry(i)
                                + temp * interpolationPoints.getEntry(k, i));
                    }
                }
            }

            // Calculate the parameters of the least Frobenius norm interpolant to
            // the current data, the gradientAt of this interpolant at XOPT being put
            // into VLAG(NPT+I), I=1,2,...,N.

            if (ntrits > 0) {
                for (int k = 0; k < npt; k++) {
                    lagrangeValuesAtNewPoint.setEntry(k, fAtInterpolationPoints.getEntry(k)
                            - fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex));
                    work3.setEntry(k, ZERO);
                }
                for (int j = 0; j < nptm; j++) {
                    double sum = ZERO;
                    for (int k = 0; k < npt; k++) {
                        sum += zMatrix.getEntry(k, j) * lagrangeValuesAtNewPoint.getEntry(k);
                    }
                    for (int k = 0; k < npt; k++) {
                        work3.setEntry(k, work3.getEntry(k) + sum * zMatrix.getEntry(k, j));
                    }
                }
                for (int k = 0; k < npt; k++) {
                    double sum = ZERO;
                    for (int j = 0; j < n; j++) {
                        sum += interpolationPoints.getEntry(k, j) * trustRegionCenterOffset.getEntry(j);
                    }
                    work2.setEntry(k, work3.getEntry(k));
                    work3.setEntry(k, sum * work3.getEntry(k));
                }
                double gqsq = ZERO;
                double gisq = ZERO;
                for (int i = 0; i < n; i++) {
                    double sum = ZERO;
                    for (int k = 0; k < npt; k++) {
                        sum += bMatrix.getEntry(k, i) * lagrangeValuesAtNewPoint.getEntry(k)
                                + interpolationPoints.getEntry(k, i) * work3.getEntry(k);
                    }
                    if (trustRegionCenterOffset.getEntry(i) == lowerDifference.getEntry(i)) {
                        // Computing MIN
                        // Computing 2nd power
                        final double d1 = Math.min(ZERO, gradientAtTrustRegionCenter.getEntry(i));
                        gqsq += d1 * d1;
                        // Computing 2nd power
                        final double d2 = Math.min(ZERO, sum);
                        gisq += d2 * d2;
                    } else if (trustRegionCenterOffset.getEntry(i) == upperDifference.getEntry(i)) {
                        // Computing MAX
                        // Computing 2nd power
                        final double d1 = Math.max(ZERO, gradientAtTrustRegionCenter.getEntry(i));
                        gqsq += d1 * d1;
                        // Computing 2nd power
                        final double d2 = Math.max(ZERO, sum);
                        gisq += d2 * d2;
                    } else {
                        // Computing 2nd power
                        final double d1 = gradientAtTrustRegionCenter.getEntry(i);
                        gqsq += d1 * d1;
                        gisq += sum * sum;
                    }
                    lagrangeValuesAtNewPoint.setEntry(npt + i, sum);
                }

                // Test whether to replace the new quadratic model by the least Frobenius
                // norm interpolant, making the replacement if the test is satisfied.

                ++itest;
                if (gqsq < TEN * gisq) {
                    itest = 0;
                }
                if (itest >= 3) {
                    for (int i = 0, max = Math.max(npt, nh); i < max; i++) {
                        if (i < n) {
                            gradientAtTrustRegionCenter.setEntry(i, lagrangeValuesAtNewPoint.getEntry(npt + i));
                        }
                        if (i < npt) {
                            modelSecondDerivativesParameters.setEntry(i, work2.getEntry(i));
                        }
                        if (i < nh) {
                            modelSecondDerivativesValues.setEntry(i, ZERO);
                        }
                        itest = 0;
                    }
                }
            }

            // If a trust region step has provided a sufficient decrease in F, then
            // branch for another trust region calculation. The case NTRITS=0 occurs
            // when the new interpolation point was reached by an alternative step.

            if (ntrits == 0) {
                state = 60;
                break;
            }
            if (f <= fopt + ONE_OVER_TEN * vquad) {
                state = 60;
                break;
            }

            // Alternatively, find out if the interpolation points are close enough
            //   to the best point so far.

            // Computing MAX
            // Computing 2nd power
            final double d1 = TWO * delta;
            // Computing 2nd power
            final double d2 = TEN * rho;
            distsq = Math.max(d1 * d1, d2 * d2);
        }
        case 650: {
            printState(650); // XXX
            knew = -1;
            for (int k = 0; k < npt; k++) {
                double sum = ZERO;
                for (int j = 0; j < n; j++) {
                    // Computing 2nd power
                    final double d1 = interpolationPoints.getEntry(k, j) - trustRegionCenterOffset.getEntry(j);
                    sum += d1 * d1;
                }
                if (sum > distsq) {
                    knew = k;
                    distsq = sum;
                }
            }

            // If KNEW is positive, then ALTMOV finds alternative new positions for
            // the KNEW-th interpolation point within distance ADELT of XOPT. It is
            // reached via label 90. Otherwise, there is a branch to label 60 for
            // another trust region iteration, unless the calculations with the
            // current RHO are complete.

            if (knew >= 0) {
                final double dist = Math.sqrt(distsq);
                if (ntrits == -1) {
                    // Computing MIN
                    delta = Math.min(ONE_OVER_TEN * delta, HALF * dist);
                    if (delta <= rho * 1.5) {
                        delta = rho;
                    }
                }
                ntrits = 0;
                // Computing MAX
                // Computing MIN
                final double d1 = Math.min(ONE_OVER_TEN * dist, delta);
                adelt = Math.max(d1, rho);
                dsq = adelt * adelt;
                state = 90;
                break;
            }
            if (ntrits == -1) {
                state = 680;
                break;
            }
            if (ratio > ZERO) {
                state = 60;
                break;
            }
            if (Math.max(delta, dnorm) > rho) {
                state = 60;
                break;
            }

            // The calculations with the current value of RHO are complete. Pick the
            //   next values of RHO and DELTA.
        }
        case 680: {
            printState(680); // XXX
            if (rho > stoppingTrustRegionRadius) {
                delta = HALF * rho;
                ratio = rho / stoppingTrustRegionRadius;
                if (ratio <= SIXTEEN) {
                    rho = stoppingTrustRegionRadius;
                } else if (ratio <= TWO_HUNDRED_FIFTY) {
                    rho = Math.sqrt(ratio) * stoppingTrustRegionRadius;
                } else {
                    rho *= ONE_OVER_TEN;
                }
                delta = Math.max(delta, rho);
                ntrits = 0;
                nfsav = getEvaluations();
                state = 60;
                break;
            }

            // Return from the calculation, after another Newton-Raphson step, if
            //   it is too short to have been tried before.

            if (ntrits == -1) {
                state = 360;
                break;
            }
        }
        case 720: {
            printState(720); // XXX
            if (fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex) <= fsave) {
                for (int i = 0; i < n; i++) {
                    // Computing MIN
                    // Computing MAX
                    final double d3 = lowerBound[i];
                    final double d4 = originShift.getEntry(i) + trustRegionCenterOffset.getEntry(i);
                    final double d1 = Math.max(d3, d4);
                    final double d2 = upperBound[i];
                    currentBest.setEntry(i, Math.min(d1, d2));
                    if (trustRegionCenterOffset.getEntry(i) == lowerDifference.getEntry(i)) {
                        currentBest.setEntry(i, lowerBound[i]);
                    }
                    if (trustRegionCenterOffset.getEntry(i) == upperDifference.getEntry(i)) {
                        currentBest.setEntry(i, upperBound[i]);
                    }
                }
                f = fAtInterpolationPoints.getEntry(trustRegionCenterInterpolationPointIndex);
            }
            return f;
        }
        default: {
            throw new MathIllegalStateException(LocalizedFormats.SIMPLE_MESSAGE, "bobyqb");
        }
        }
}