Example usage for org.apache.commons.math3.linear QRDecomposition QRDecomposition

List of usage examples for org.apache.commons.math3.linear QRDecomposition QRDecomposition

Introduction

In this page you can find the example usage for org.apache.commons.math3.linear QRDecomposition QRDecomposition.

Prototype

public QRDecomposition(RealMatrix matrix, double threshold) 

Source Link

Document

Calculates the QR-decomposition of the given matrix.

Usage

From source file:io.yields.math.concepts.operator.Smoothness.java

private RealMatrix computeDistance(List<Tuple> normalizedData) {
    RealMatrix a = new Array2DRowRealMatrix(normalizedData.size(), order + 1);
    RealMatrix b = new Array2DRowRealMatrix(normalizedData.size(), 1);
    int row = 0;/*  ww w  . j  a  v  a2s.  c o m*/
    for (Tuple tuple : normalizedData) {
        final int currentRow = row;
        IntStream.rangeClosed(0, order)
                .forEach(power -> a.setEntry(currentRow, power, Math.pow(tuple.getX(), power)));
        b.setEntry(currentRow, 0, tuple.getY());
        row++;
    }
    DecompositionSolver solver = new QRDecomposition(a, EPS).getSolver();
    if (solver.isNonSingular() && !isConstant(b)) {
        RealMatrix solution = solver.solve(b);
        return a.multiply(solution).subtract(b);
    } else {
        return new Array2DRowRealMatrix(normalizedData.size(), 1);
    }
}

From source file:org.orekit.utils.AngularCoordinates.java

/** Find a vector from two known cross products.
 * <p>//from  w  w  w  .  j a v  a2s  .co m
 * We want to find  such that:   v? = c? and   v = c
 * </p>
 * <p>
 * The first equation (  v? = c?) will always be fulfilled exactly,
 * and the second one will be fulfilled if possible.
 * </p>
 * @param v1 vector forming the first known cross product
 * @param c1 know vector for cross product   v?
 * @param v2 vector forming the second known cross product
 * @param c2 know vector for cross product   v
 * @param tolerance relative tolerance factor used to check singularities
 * @return vector  such that:   v? = c? and   v = c
 * @exception MathIllegalArgumentException if vectors are inconsistent and
 * no solution can be found
 */
private static Vector3D inverseCrossProducts(final Vector3D v1, final Vector3D c1, final Vector3D v2,
        final Vector3D c2, final double tolerance) throws MathIllegalArgumentException {

    final double v12 = v1.getNormSq();
    final double v1n = FastMath.sqrt(v12);
    final double v22 = v2.getNormSq();
    final double v2n = FastMath.sqrt(v22);
    final double threshold = tolerance * FastMath.max(v1n, v2n);

    Vector3D omega;

    try {
        // create the over-determined linear system representing the two cross products
        final RealMatrix m = MatrixUtils.createRealMatrix(6, 3);
        m.setEntry(0, 1, v1.getZ());
        m.setEntry(0, 2, -v1.getY());
        m.setEntry(1, 0, -v1.getZ());
        m.setEntry(1, 2, v1.getX());
        m.setEntry(2, 0, v1.getY());
        m.setEntry(2, 1, -v1.getX());
        m.setEntry(3, 1, v2.getZ());
        m.setEntry(3, 2, -v2.getY());
        m.setEntry(4, 0, -v2.getZ());
        m.setEntry(4, 2, v2.getX());
        m.setEntry(5, 0, v2.getY());
        m.setEntry(5, 1, -v2.getX());

        final RealVector rhs = MatrixUtils.createRealVector(
                new double[] { c1.getX(), c1.getY(), c1.getZ(), c2.getX(), c2.getY(), c2.getZ() });

        // find the best solution we can
        final DecompositionSolver solver = new QRDecomposition(m, threshold).getSolver();
        final RealVector v = solver.solve(rhs);
        omega = new Vector3D(v.getEntry(0), v.getEntry(1), v.getEntry(2));

    } catch (SingularMatrixException sme) {

        // handle some special cases for which we can compute a solution
        final double c12 = c1.getNormSq();
        final double c1n = FastMath.sqrt(c12);
        final double c22 = c2.getNormSq();
        final double c2n = FastMath.sqrt(c22);

        if (c1n <= threshold && c2n <= threshold) {
            // simple special case, velocities are cancelled
            return Vector3D.ZERO;
        } else if (v1n <= threshold && c1n >= threshold) {
            // this is inconsistent, if v? is zero, c? must be 0 too
            throw new NumberIsTooLargeException(c1n, 0, true);
        } else if (v2n <= threshold && c2n >= threshold) {
            // this is inconsistent, if v is zero, c must be 0 too
            throw new NumberIsTooLargeException(c2n, 0, true);
        } else if (Vector3D.crossProduct(v1, v2).getNorm() <= threshold && v12 > threshold) {
            // simple special case, v is redundant with v?, we just ignore it
            // use the simplest : orthogonal to both v? and c?
            omega = new Vector3D(1.0 / v12, Vector3D.crossProduct(v1, c1));
        } else {
            throw sme;
        }

    }

    // check results
    final double d1 = Vector3D.distance(Vector3D.crossProduct(omega, v1), c1);
    if (d1 > threshold) {
        throw new NumberIsTooLargeException(d1, 0, true);
    }

    final double d2 = Vector3D.distance(Vector3D.crossProduct(omega, v2), c2);
    if (d2 > threshold) {
        throw new NumberIsTooLargeException(d2, 0, true);
    }

    return omega;

}