List of usage examples for org.apache.commons.math3.linear RealVector setEntry
public abstract void setEntry(int index, double value) throws OutOfRangeException;
From source file:com.github.thorbenlindhauer.factor.CanonicalGaussianFactor.java
protected RealVector getSubVector(RealVector vector, int[] entriesToKeep) { RealVector subVector = new ArrayRealVector(entriesToKeep.length); for (int i = 0; i < entriesToKeep.length; i++) { subVector.setEntry(i, vector.getEntry(entriesToKeep[i])); }// w ww . j av a 2 s . co m return subVector; }
From source file:edu.stanford.cfuller.imageanalysistools.fitting.BisquareLinearFit.java
/** * Calculates the weight for the next weighted least squares iteration using the bisquare weighting function. * @param stdAdjR the standardized adjusted residuals, as computed by {@link #calculateStandardizedAdjustedResiduals(RealVector, RealVector, RealVector, RealVector)} * @return a RealVector containing weights for each data point suitable for weighted least squares fitting. */// w w w .jav a2 s . com protected RealVector calculateBisquareWeights(RealVector stdAdjR) { RealVector bisquareWeights = new ArrayRealVector(stdAdjR.getDimension(), 0.0); for (int i = 0; i < bisquareWeights.getDimension(); i++) { if (Math.abs(stdAdjR.getEntry(i)) < 1) { bisquareWeights.setEntry(i, Math.pow(1 - Math.pow(stdAdjR.getEntry(i), 2), 2)); } } return bisquareWeights; }
From source file:edu.stanford.cfuller.imageanalysistools.fitting.BisquareLinearFit.java
/** * Calculates the standardized adjusted residuals (according to the same definition used by MATLAB) of the data points for fitting. * * @param indVarValues The values of the independent variable used for the fitting. * @param depVarValues The values of the dependent variable used for the fitting. * @param leverages the leverages of the independent variables, as compted by {@link #calculateLeverages(RealVector)} * @param fitParams the results of a (possibly weighted) least squares fit to the data, containing one or two components: a slope and an optional y-intercept. * @return a RealVector containing an adjusted residual value for each data point *///from ww w.j a v a2 s . c o m protected RealVector calculateStandardizedAdjustedResiduals(RealVector indVarValues, RealVector depVarValues, RealVector leverages, RealVector fitParams) { RealVector predictedValues = indVarValues.mapMultiply(fitParams.getEntry(0)); RealVector denom = leverages.mapMultiply(-1.0).mapAddToSelf(1 + this.CLOSE_TO_ZERO) .mapToSelf(new org.apache.commons.math3.analysis.function.Sqrt()); if (!this.noIntercept) { predictedValues = predictedValues.mapAdd(fitParams.getEntry(1)); } double stddev = 0; double mean = 0; for (int i = 0; i < depVarValues.getDimension(); i++) { mean += depVarValues.getEntry(i); } mean /= depVarValues.getDimension(); stddev = depVarValues.mapSubtract(mean).getNorm() * (depVarValues.getDimension() * 1.0 / (depVarValues.getDimension() - 1)); RealVector residuals = depVarValues.subtract(predictedValues).ebeDivide(denom); RealVector absDev = residuals.map(new org.apache.commons.math3.analysis.function.Abs()); int smallerDim = 2; if (this.noIntercept) { smallerDim = 1; } double[] resArray = residuals.map(new org.apache.commons.math3.analysis.function.Abs()).toArray(); java.util.Arrays.sort(resArray); RealVector partialRes = new ArrayRealVector(absDev.getDimension() - smallerDim + 1, 0.0); for (int i = smallerDim - 1; i < resArray.length; i++) { partialRes.setEntry(i - smallerDim + 1, resArray[i]); } double resMAD = 0; if (partialRes.getDimension() % 2 == 0) { resMAD = LocalBackgroundEstimationFilter.quickFindKth(partialRes.getDimension() / 2, partialRes) + LocalBackgroundEstimationFilter.quickFindKth(partialRes.getDimension() / 2 - 1, partialRes); resMAD /= 2.0; } else { resMAD = LocalBackgroundEstimationFilter.quickFindKth((partialRes.getDimension() - 1) / 2, partialRes); } resMAD /= 0.6745; if (resMAD < stddev * CLOSE_TO_ZERO) { resMAD = stddev * CLOSE_TO_ZERO; } return residuals.mapDivide(DEFAULT_TUNING_CONST * resMAD); }
From source file:edu.stanford.cfuller.imageanalysistools.fitting.BisquareLinearFit.java
/** * Performs a weighted least squares fit with supplied weights to the supplied data. * * @param indVarValues A RealVector containing the values of the independent variable. * @param depVarValues A RealVector containing the values of the dependent variable. * @param weights A RealVector containing the weights for the data points. * @return a RealVector containing two elements: the slope of the fit and the y-intercept of the fit. *//*from w w w . jav a 2s .co m*/ public RealVector wlsFit(RealVector indVarValues, RealVector depVarValues, RealVector weights) { //initial guess for the fit: unweighted regression. SimpleRegression unweighted = new SimpleRegression(!this.noIntercept); for (int i = 0; i < indVarValues.getDimension(); i++) { unweighted.addData(indVarValues.getEntry(i), depVarValues.getEntry(i)); } RealVector parameters = null; if (this.noIntercept) { parameters = new ArrayRealVector(1, 0.0); } else { parameters = new ArrayRealVector(2, 0.0); } parameters.setEntry(0, unweighted.getSlope()); if (!this.noIntercept) { parameters.setEntry(1, unweighted.getIntercept()); } NelderMeadMinimizer nmm = new NelderMeadMinimizer(1e-12); WlsObjectiveFunction wof = new WlsObjectiveFunction(); wof.setIndVar(indVarValues); wof.setDepVar(depVarValues); wof.setWeights(weights); wof.setShouldFitIntercept(!this.noIntercept); parameters = nmm.optimize(wof, parameters); if (this.noIntercept) { RealVector output = new ArrayRealVector(2, 0.0); output.setEntry(0, parameters.getEntry(0)); return output; } return parameters; }
From source file:edu.stanford.cfuller.imageanalysistools.clustering.ObjectClustering.java
/** * Applies basic clustering to an Image with objects. * * This will use the long-range gaussian filtering approach to assign clusters; objects sufficiently near to each other will be smeared into a single object and assigned to the same cluster. * * @param input An Image mask labeled such that each object in the Image is assigned a unique nonzero greylevel value. These should start at 1 and be consecutive. * @param original The original image (not currently used... this is here to maintain the interface with a previous version that used this image) * @param gaussianFiltered The mask with a long range Gaussian filter applied (as from {@link #gaussianFilterMask}). This is an optional parameter; * input null to have this automatically generated by the method. This parameter is * chiefly useful to save computation time when running the clutering multiple times. * This will be modified, so if planning to reuse the Gaussian filtered image, pass in a copy. *//* w ww . j a v a2 s .co m*/ public static Image doBasicClustering(WritableImage input, Image original, Image gaussianFiltered) { RelabelFilter rlf = new RelabelFilter(); LabelFilter lf = new LabelFilter(); MaskFilter mf = new MaskFilter(); mf.setReferenceImage(input); Histogram h_individualCentromeres = new Histogram(input); WritableImage origCopy = null; if (gaussianFiltered == null) { origCopy = gaussianFilterMask(input).getWritableInstance(); } else { origCopy = gaussianFiltered.getWritableInstance(); } lf.apply(origCopy); WritableImage mapped = ImageFactory.createWritable(origCopy); Histogram h_mapped_0 = new Histogram(origCopy); //first, find the centroid of each cluster org.apache.commons.math3.linear.RealVector centroids_x = new ArrayRealVector(h_mapped_0.getMaxValue() + 1); org.apache.commons.math3.linear.RealVector centroids_y = new ArrayRealVector(h_mapped_0.getMaxValue() + 1); org.apache.commons.math3.linear.RealVector counts = new ArrayRealVector(h_mapped_0.getMaxValue() + 1); centroids_x.mapMultiplyToSelf(0.0); centroids_y.mapMultiplyToSelf(0.0); counts.mapMultiplyToSelf(0.0); for (ImageCoordinate i : origCopy) { if (origCopy.getValue(i) > 0) { int value = (int) origCopy.getValue(i); centroids_x.setEntry(value, centroids_x.getEntry(value) + i.get(ImageCoordinate.X)); centroids_y.setEntry(value, centroids_y.getEntry(value) + i.get(ImageCoordinate.Y)); counts.setEntry(value, counts.getEntry(value) + 1); } } for (int i = 0; i < counts.getDimension(); i++) { if (counts.getEntry(i) == 0) { counts.setEntry(i, 1); centroids_x.setEntry(i, -1 * origCopy.getDimensionSizes().get(ImageCoordinate.X)); centroids_y.setEntry(i, -1 * origCopy.getDimensionSizes().get(ImageCoordinate.Y)); } centroids_x.setEntry(i, centroids_x.getEntry(i) / counts.getEntry(i)); centroids_y.setEntry(i, centroids_y.getEntry(i) / counts.getEntry(i)); } for (ImageCoordinate i : origCopy) { if (mapped.getValue(i) > 0 || input.getValue(i) == 0) continue; double minDistance = Double.MAX_VALUE; int minIndex = 0; for (int j = 0; j < centroids_x.getDimension(); j++) { double dist = Math.hypot(centroids_x.getEntry(j) - i.get(ImageCoordinate.X), centroids_y.getEntry(j) - i.get(ImageCoordinate.Y)); if (dist < minDistance) { minDistance = dist; minIndex = j; } } mapped.setValue(i, minIndex); } int[] centromereAssignments = new int[h_individualCentromeres.getMaxValue() + 1]; java.util.Arrays.fill(centromereAssignments, 0); for (ImageCoordinate i : mapped) { if (input.getValue(i) > 0) { int value = (int) input.getValue(i); if (centromereAssignments[value] > 0) { mapped.setValue(i, centromereAssignments[value]); } else { centromereAssignments[value] = (int) mapped.getValue(i); } } } mf.apply(mapped); origCopy.copy(mapped); mf.setReferenceImage(origCopy); mf.apply(input); rlf.apply(input); rlf.apply(origCopy); return origCopy; }
From source file:edu.stanford.cfuller.imageanalysistools.filter.LocalBackgroundEstimationFilter.java
/** * Finds the kth item sorted by increasing value in a possibly unsorted vector. * <p>//w w w . j a va2 s . c o m * This will likely not completely sort the vector, but will almost certainly * change the order of the items in the vector in place. * * @param k The index of the item (in the sorted vector) to find. * @param toFind The RealVector in which to find the kth item. * @return The value of the kth item (in the sorted vector). */ public static double quickFindKth(int k, RealVector toFind) { int n = toFind.getDimension(); int l = 0; int ir = n - 1; while (true) { if (ir <= l + 1) { if (ir == l + 1 && toFind.getEntry(ir) < toFind.getEntry(l)) { swap(ir, l, toFind); } return toFind.getEntry(k); } else { int mid = (l + ir) >> 1; swap(mid, l + 1, toFind); if (toFind.getEntry(l) > toFind.getEntry(ir)) swap(l, ir, toFind); if (toFind.getEntry(l + 1) > toFind.getEntry(ir)) swap(l + 1, ir, toFind); if (toFind.getEntry(l) > toFind.getEntry(l + 1)) swap(l, l + 1, toFind); int i = l + 1; int j = ir; double a = toFind.getEntry(l + 1); while (true) { do { i++; } while (toFind.getEntry(i) < a); do { j--; } while (toFind.getEntry(j) > a); if (j < i) break; swap(i, j, toFind); } toFind.setEntry(l + 1, toFind.getEntry(j)); toFind.setEntry(j, a); if (j >= k) ir = j - 1; if (j <= k) l = i; } } }
From source file:edu.stanford.cfuller.imageanalysistools.fitting.NelderMeadMinimizer.java
/** * Constructs the initial simplex that is the starting point of the optimization given an initial guess at the minimum. * * This method will attempt to guess the scale of each parameters, but it is preferable to specify this manually using the other form of * generateInitialSimplex if any information about these scales is known. * * @param initialPoint The initial guess at the minimum, one component per parameter. * @return A matrix containing p + 1 rows, each of which is one set of p parameters, which specify the simplex. */// w w w .ja v a 2 s. c om public RealMatrix generateInitialSimplex(RealVector initialPoint) { final double constantScale = 0.1; RealVector componentScales = initialPoint.mapMultiply(constantScale); //if the initial point has zeros in it, those entries will not be optimized //perturb slightly to allow optimization for (int i = 0; i < componentScales.getDimension(); i++) { if (componentScales.getEntry(i) == 0.0) { componentScales.setEntry(i, constantScale); } } return generateInitialSimplex(initialPoint, componentScales); }
From source file:com.joptimizer.optimizers.LPStandardConverterTest.java
/** * Standardization of a problem on the form: * min(c) s.t.//from w w w. j ava 2s. co m * G.x < h * A.x = b */ public void testCGhAb3() throws Exception { log.debug("testCGhAb3"); String problemId = "3"; double[] c = Utils.loadDoubleArrayFromFile( "lp" + File.separator + "standardization" + File.separator + "c" + problemId + ".txt"); double[][] G = Utils.loadDoubleMatrixFromFile( "lp" + File.separator + "standardization" + File.separator + "G" + problemId + ".csv", ",".charAt(0)); double[] h = Utils.loadDoubleArrayFromFile( "lp" + File.separator + "standardization" + File.separator + "h" + problemId + ".txt"); ; double[][] A = Utils.loadDoubleMatrixFromFile( "lp" + File.separator + "standardization" + File.separator + "A" + problemId + ".csv", ",".charAt(0)); double[] b = Utils.loadDoubleArrayFromFile( "lp" + File.separator + "standardization" + File.separator + "b" + problemId + ".txt"); double[] expectedSol = Utils.loadDoubleArrayFromFile( "lp" + File.separator + "standardization" + File.separator + "sol" + problemId + ".txt"); double expectedValue = Utils.loadDoubleArrayFromFile( "lp" + File.separator + "standardization" + File.separator + "value" + problemId + ".txt")[0]; double expectedTolerance = MatrixUtils.createRealMatrix(A) .operate(MatrixUtils.createRealVector(expectedSol)).subtract(MatrixUtils.createRealVector(b)) .getNorm(); //standard form conversion LPStandardConverter lpConverter = new LPStandardConverter(); lpConverter.toStandardForm(c, G, h, A, b, null, null); int n = lpConverter.getStandardN(); int s = lpConverter.getStandardS(); c = lpConverter.getStandardC().toArray(); A = lpConverter.getStandardA().toArray(); b = lpConverter.getStandardB().toArray(); double[] lb = lpConverter.getStandardLB().toArray(); double[] ub = lpConverter.getStandardUB().toArray(); log.debug("n : " + n); log.debug("s : " + s); //check consistency assertEquals(G.length, s); assertEquals(A[0].length, n); assertEquals(s + lpConverter.getOriginalN(), n); assertEquals(lb.length, n); assertEquals(ub.length, n); //check constraints RealMatrix GOrig = new Array2DRowRealMatrix(G); RealVector hOrig = new ArrayRealVector(h); RealMatrix AStandard = new Array2DRowRealMatrix(A); RealVector bStandard = new ArrayRealVector(b); RealVector expectedSolVector = new ArrayRealVector(expectedSol); RealVector Gxh = GOrig.operate(expectedSolVector).subtract(hOrig);//G.x - h RealVector slackVariables = new ArrayRealVector(s); for (int i = 0; i < s; i++) { slackVariables.setEntry(i, 0. - Gxh.getEntry(i));//the difference from 0 assertTrue(slackVariables.getEntry(i) >= 0.); } RealVector sol = slackVariables.append(expectedSolVector); RealVector Axmb = AStandard.operate(sol).subtract(bStandard); assertEquals(0., Axmb.getNorm(), expectedTolerance); // Utils.writeDoubleArrayToFile(new double[]{s}, "target" + File.separator + "standardS"+problemId+".txt"); // Utils.writeDoubleArrayToFile(c, "target" + File.separator + "standardC"+problemId+".txt"); // Utils.writeDoubleMatrixToFile(A, "target" + File.separator + "standardA"+problemId+".txt"); // Utils.writeDoubleArrayToFile(b, "target" + File.separator + "standardB"+problemId+".txt"); // Utils.writeDoubleArrayToFile(lb, "target" + File.separator + "standardLB"+problemId+".txt"); // Utils.writeDoubleArrayToFile(ub, "target" + File.separator + "standardUB"+problemId+".txt"); }
From source file:com.joptimizer.optimizers.LPStandardConverterTest.java
/** * Standardization of a problem on the form: * min(c) s.t./* w w w . j av a 2 s . com*/ * G.x < h * A.x = b */ public void testCGhAb2() throws Exception { log.debug("testCGhAb2"); String problemId = "2"; double[] c = Utils.loadDoubleArrayFromFile( "lp" + File.separator + "standardization" + File.separator + "c" + problemId + ".txt"); double[][] G = Utils.loadDoubleMatrixFromFile( "lp" + File.separator + "standardization" + File.separator + "G" + problemId + ".csv", ",".charAt(0)); double[] h = Utils.loadDoubleArrayFromFile( "lp" + File.separator + "standardization" + File.separator + "h" + problemId + ".txt"); ; double[][] A = Utils.loadDoubleMatrixFromFile( "lp" + File.separator + "standardization" + File.separator + "A" + problemId + ".csv", ",".charAt(0)); double[] b = Utils.loadDoubleArrayFromFile( "lp" + File.separator + "standardization" + File.separator + "b" + problemId + ".txt"); double[] expectedSol = Utils.loadDoubleArrayFromFile( "lp" + File.separator + "standardization" + File.separator + "sol" + problemId + ".txt"); double expectedValue = Utils.loadDoubleArrayFromFile( "lp" + File.separator + "standardization" + File.separator + "value" + problemId + ".txt")[0]; double expectedTolerance = MatrixUtils.createRealMatrix(A) .operate(MatrixUtils.createRealVector(expectedSol)).subtract(MatrixUtils.createRealVector(b)) .getNorm(); //standard form conversion double unboundedLBValue = Double.NEGATIVE_INFINITY; double unboundedUBValue = Double.POSITIVE_INFINITY; LPStandardConverter lpConverter = new LPStandardConverter(unboundedLBValue, unboundedUBValue); lpConverter.toStandardForm(c, G, h, A, b, null, null); int n = lpConverter.getStandardN(); int s = lpConverter.getStandardS(); c = lpConverter.getStandardC().toArray(); A = lpConverter.getStandardA().toArray(); b = lpConverter.getStandardB().toArray(); double[] lb = lpConverter.getStandardLB().toArray(); double[] ub = lpConverter.getStandardUB().toArray(); log.debug("n : " + n); log.debug("s : " + s); log.debug("c : " + ArrayUtils.toString(c)); log.debug("A : " + ArrayUtils.toString(A)); log.debug("b : " + ArrayUtils.toString(b)); log.debug("lb : " + ArrayUtils.toString(lb)); log.debug("ub : " + ArrayUtils.toString(ub)); //check consistency assertEquals(G.length, s); assertEquals(A[0].length, n); assertEquals(s + lpConverter.getOriginalN(), n); assertEquals(lb.length, n); assertEquals(ub.length, n); //check constraints RealMatrix GOrig = new Array2DRowRealMatrix(G); RealVector hOrig = new ArrayRealVector(h); RealMatrix AStandard = new Array2DRowRealMatrix(A); RealVector bStandard = new ArrayRealVector(b); RealVector expectedSolVector = new ArrayRealVector(expectedSol); RealVector Gxh = GOrig.operate(expectedSolVector).subtract(hOrig);//G.x - h RealVector slackVariables = new ArrayRealVector(s); for (int i = 0; i < s; i++) { slackVariables.setEntry(i, 0. - Gxh.getEntry(i));//the difference from 0 assertTrue(slackVariables.getEntry(i) >= 0.); } RealVector sol = slackVariables.append(expectedSolVector); RealVector Axmb = AStandard.operate(sol).subtract(bStandard); assertEquals(0., Axmb.getNorm(), expectedTolerance); // Utils.writeDoubleArrayToFile(new double[]{s}, "target" + File.separator + "standardS"+problemId+".txt"); // Utils.writeDoubleArrayToFile(c, "target" + File.separator + "standardC"+problemId+".txt"); // Utils.writeDoubleMatrixToFile(A, "target" + File.separator + "standardA"+problemId+".txt"); // Utils.writeDoubleArrayToFile(b, "target" + File.separator + "standardB"+problemId+".txt"); // Utils.writeDoubleArrayToFile(lb, "target" + File.separator + "standardLB"+problemId+".txt"); // Utils.writeDoubleArrayToFile(ub, "target" + File.separator + "standardUB"+problemId+".txt"); }
From source file:com.joptimizer.optimizers.LPStandardConverterTest.java
/** * Standardization of a problem on the form: * min(c) s.t./*from w w w .ja va2 s .c o m*/ * G.x < h * A.x = b * lb <= x <= ub */ public void testCGhAbLbUb1() throws Exception { log.debug("testCGhAbLbUb1"); String problemId = "1"; double[] c = Utils.loadDoubleArrayFromFile( "lp" + File.separator + "standardization" + File.separator + "c" + problemId + ".txt"); double[][] G = Utils.loadDoubleMatrixFromFile( "lp" + File.separator + "standardization" + File.separator + "G" + problemId + ".csv", ",".charAt(0)); double[] h = Utils.loadDoubleArrayFromFile( "lp" + File.separator + "standardization" + File.separator + "h" + problemId + ".txt"); ; double[][] A = Utils.loadDoubleMatrixFromFile( "lp" + File.separator + "standardization" + File.separator + "A" + problemId + ".csv", ",".charAt(0)); double[] b = Utils.loadDoubleArrayFromFile( "lp" + File.separator + "standardization" + File.separator + "b" + problemId + ".txt"); double[] lb = Utils.loadDoubleArrayFromFile( "lp" + File.separator + "standardization" + File.separator + "lb" + problemId + ".txt"); double[] ub = Utils.loadDoubleArrayFromFile( "lp" + File.separator + "standardization" + File.separator + "ub" + problemId + ".txt"); double[] expectedSol = Utils.loadDoubleArrayFromFile( "lp" + File.separator + "standardization" + File.separator + "sol" + problemId + ".txt"); double expectedValue = Utils.loadDoubleArrayFromFile( "lp" + File.separator + "standardization" + File.separator + "value" + problemId + ".txt")[0]; //double expectedTolerance = Utils.loadDoubleArrayFromFile("lp"+File.separator+"standardization"+File.separator+"tolerance"+problemId+".txt")[0]; double expectedTolerance = MatrixUtils.createRealMatrix(A) .operate(MatrixUtils.createRealVector(expectedSol)).subtract(MatrixUtils.createRealVector(b)) .getNorm(); //standard form conversion double unboundedLBValue = Double.NEGATIVE_INFINITY;//this is because in the file the unbounded lb are -Infinity values (not the default value) double unboundedUBValue = Double.POSITIVE_INFINITY;//this is because in the file the unbounded ub are +Infinity values LPStandardConverter lpConverter = new LPStandardConverter(unboundedLBValue, unboundedUBValue); lpConverter.toStandardForm(c, G, h, A, b, lb, ub); int n = lpConverter.getStandardN(); int s = lpConverter.getStandardS(); c = lpConverter.getStandardC().toArray(); A = lpConverter.getStandardA().toArray(); b = lpConverter.getStandardB().toArray(); lb = lpConverter.getStandardLB().toArray(); ub = lpConverter.getStandardUB().toArray(); log.debug("n : " + n); log.debug("s : " + s); log.debug("c : " + ArrayUtils.toString(c)); log.debug("A : " + ArrayUtils.toString(A)); log.debug("b : " + ArrayUtils.toString(b)); log.debug("lb : " + ArrayUtils.toString(lb)); log.debug("ub : " + ArrayUtils.toString(ub)); //check consistency assertEquals(G.length, s); assertEquals(s + lpConverter.getOriginalN(), n); assertEquals(lb.length, n); assertEquals(ub.length, n); //check constraints RealMatrix GOrig = new Array2DRowRealMatrix(G); RealVector hOrig = new ArrayRealVector(h); RealMatrix AStandard = new Array2DRowRealMatrix(A); RealVector bStandard = new ArrayRealVector(b); RealVector expectedSolVector = new ArrayRealVector(expectedSol); RealVector Gxh = GOrig.operate(expectedSolVector).subtract(hOrig);//G.x - h RealVector slackVariables = new ArrayRealVector(s); for (int i = 0; i < s; i++) { slackVariables.setEntry(i, 0. - Gxh.getEntry(i));//the difference from 0 assertTrue(slackVariables.getEntry(i) >= 0.); } RealVector sol = slackVariables.append(expectedSolVector); RealVector Axmb = AStandard.operate(sol).subtract(bStandard); assertEquals(0., Axmb.getNorm(), expectedTolerance); // Utils.writeDoubleArrayToFile(new double[]{s}, "target" + File.separator + "standardS"+problemId+".txt"); // Utils.writeDoubleArrayToFile(c, "target" + File.separator + "standardC"+problemId+".txt"); // Utils.writeDoubleMatrixToFile(A, "target" + File.separator + "standardA"+problemId+".txt"); // Utils.writeDoubleArrayToFile(b, "target" + File.separator + "standardB"+problemId+".txt"); // Utils.writeDoubleArrayToFile(lb, "target" + File.separator + "standardLB"+problemId+".txt"); // Utils.writeDoubleArrayToFile(ub, "target" + File.separator + "standardUB"+problemId+".txt"); }