Example usage for org.apache.commons.math3.ode FirstOrderIntegrator addStepHandler

List of usage examples for org.apache.commons.math3.ode FirstOrderIntegrator addStepHandler

Introduction

In this page you can find the example usage for org.apache.commons.math3.ode FirstOrderIntegrator addStepHandler.

Prototype

void addStepHandler(StepHandler handler);

Source Link

Document

Add a step handler to this integrator.

Usage

From source file:jat.examples.TwoBodyExample.TwoBodyExample.java

public static void main(String[] args) {

    TwoBodyExample x = new TwoBodyExample();

    // create a TwoBody orbit using orbit elements
    TwoBodyAPL sat = new TwoBodyAPL(7000.0, 0.3, 0.0, 0.0, 0.0, 0.0);

    double[] y = sat.randv();

    ArrayRealVector v = new ArrayRealVector(y);

    DecimalFormat df2 = new DecimalFormat("#,###,###,##0.00");
    RealVectorFormat format = new RealVectorFormat(df2);
    System.out.println(format.format(v));

    // find out the period of the orbit
    double period = sat.period();

    // set the final time = one orbit period
    double tf = period;

    // set the initial time to zero
    double t0 = 0.0;

    // propagate the orbit
    FirstOrderIntegrator dp853 = new DormandPrince853Integrator(1.0e-8, 100.0, 1.0e-10, 1.0e-10);
    dp853.addStepHandler(sat.stepHandler);
    // double[] y = new double[] { 7000.0, 0, 0, .0, 8, 0 }; // initial
    // state// w w  w.ja va 2 s  .  co m

    dp853.integrate(sat, 0.0, y, 8000, y); // now y contains final state at
    // tf

    Double[] objArray = sat.time.toArray(new Double[sat.time.size()]);
    double[] timeArray = ArrayUtils.toPrimitive(objArray);
    double[] xsolArray = ArrayUtils.toPrimitive(sat.xsol.toArray(new Double[sat.time.size()]));
    double[] ysolArray = ArrayUtils.toPrimitive(sat.ysol.toArray(new Double[sat.time.size()]));

    double[][] XY = new double[timeArray.length][2];

    // int a=0;
    // System.arraycopy(timeArray,0,XY[a],0,timeArray.length);
    // System.arraycopy(ysolArray,0,XY[1],0,ysolArray.length);

    for (int i = 0; i < timeArray.length; i++) {
        XY[i][0] = xsolArray[i];
        XY[i][1] = ysolArray[i];
    }

    Plot2DPanel p = new Plot2DPanel();

    // Plot2DPanel p = new Plot2DPanel(min, max, axesScales, axesLabels);

    ScatterPlot s = new ScatterPlot("orbit", Color.RED, XY);
    // LinePlot l = new LinePlot("sin", Color.RED, XY);
    // l.closed_curve = false;
    // l.draw_dot = true;
    p.addPlot(s);
    p.setLegendOrientation(PlotPanel.SOUTH);
    double plotSize = 10000.;
    double[] min = { -plotSize, -plotSize };
    double[] max = { plotSize, plotSize };
    p.setFixedBounds(min, max);

    new FrameView(p).setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

    System.out.println("end");

}

From source file:jat.examples.ephemeris.DE405PropagateText.java

void doExample() {
    //double tf = 10000000.;
    double tf = 3600 * 24 * 500;
    double[] y = { 2e8, 0, 0, 0, 24.2, 0 }; // initial state

    PathUtil path = new PathUtil();
    DE405Plus Eph = new DE405Plus(path);
    Eph.setFrame(DE405Frame.frame.HEE);
    Eph.printSteps = true;/*from w  ww  .j  a v  a  2s .c om*/
    TimeAPL myTime = new TimeAPL(2003, 3, 1, 12, 0, 0);
    Eph.setIntegrationStartTime(myTime);
    Eph.bodyGravOnOff[body.SUN.ordinal()] = true;
    FirstOrderIntegrator dp853 = new DormandPrince853Integrator(1.0e-8, tf / 10.0, 1.0e-10, 1.0e-10);
    dp853.addStepHandler(Eph.stepHandler);
    FirstOrderDifferentialEquations ode = Eph;

    dp853.integrate(ode, 0.0, y, tf, y); // now y contains final state
    // at
    // time tf
    if (print) {
        String nf = "%10.3f ";
        String format = nf + nf + nf + nf + nf;
        System.out.printf(format, tf, y[0], y[1], y[2], Eph.energy(tf, y));
        System.out.println();
    }
}

From source file:jat.examples.ephemeris.DE405PropagatePlot.java

void doExample() {
    double tf = 3600 * 24 * 300;
    double[] y0 = { 2e8, 0, 0, 0, 24.2, 0 }; // initial state
    double[] y = new double[6];

    PathUtil path = new PathUtil();
    DE405Plus Eph = new DE405Plus(path);
    Eph.setFrame(DE405Frame.frame.HEE);
    Eph.printSteps = true;//from  w  w w.ja  v  a  2  s  .  c  o  m
    TimeAPL myTime = new TimeAPL(2003, 3, 1, 12, 0, 0);
    Eph.setIntegrationStartTime(myTime);
    Eph.bodyGravOnOff[body.SUN.ordinal()] = true;
    // Eph.planetOnOff[body.JUPITER.ordinal()] = true;

    FirstOrderIntegrator dp853 = new DormandPrince853Integrator(1.0e-8, tf / 10.0, 1.0e-10, 1.0e-10);
    dp853.addStepHandler(Eph.stepHandler);
    FirstOrderDifferentialEquations ode = Eph;

    dp853.integrate(ode, 0.0, y0, tf, y); // now y contains final state at
    // time tf
    if (print) {
        String nf = "%10.3f ";
        String format = nf + nf + nf + nf + nf;
        System.out.printf(format, tf, y[0], y[1], y[2], Eph.energy(tf, y));
        System.out.println();
    }

    Plot2DPanel p = new Plot2DPanel();
    LinePlot l1 = new LinePlot("Jup. off", Color.RED, getXYforPlot(Eph.xsol, Eph.ysol));
    l1.closed_curve = false;
    p.addPlot(l1);

    Eph.reset();
    Eph.bodyGravOnOff[body.JUPITER.ordinal()] = true;
    dp853.integrate(ode, 0.0, y0, tf, y); // now y contains final state at

    LinePlot l2 = new LinePlot("Jup. on", Color.BLUE, getXYforPlot(Eph.xsol, Eph.ysol));
    l2.closed_curve = false;
    p.addPlot(l2);

    VectorN EarthPos = null;
    try {
        EarthPos = Eph.get_planet_pos(body.EARTH, myTime);
    } catch (IOException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }
    addPoint(p, "Earth", java.awt.Color.BLUE, EarthPos.x[0], EarthPos.x[1]);

    p.setLegendOrientation(PlotPanel.SOUTH);
    double plotSize = 2e8;
    p.setFixedBounds(0, -plotSize, plotSize);
    p.setFixedBounds(1, -plotSize, plotSize);
    new FrameView(p).setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

From source file:jat.examples.CRTBP.CRTBPPlot.java

void doExample() {
    double mu = 0.15;
    double[] y0 = { .11, 0, 0, 1.35, 1.33, 0 }; // initial state

    // double mu = 0.1;
    // double mu = 3.035909999e-6;

    // double mu = 0.012277471;
    // double[] y0 = { .1, 0, 0, 2.69, 2.69, 0 }; // initial state

    // double mu = 0.2;

    CRTBP myCRTBP = new CRTBP(mu);
    FirstOrderIntegrator dp853 = new DormandPrince853Integrator(1.0e-8, 100.0, 1.0e-10, 1.0e-10);
    dp853.addStepHandler(myCRTBP.stepHandler);

    FirstOrderDifferentialEquations ode = myCRTBP;

    double tf;//w ww  .ja v a  2 s.  co  m
    double[] y = new double[6]; // initial state

    // for (int i = 1; i < 2; i++) {
    // tf = i * 20.;
    tf = 40.;
    System.arraycopy(y0, 0, y, 0, 6);

    dp853.integrate(ode, 0.0, y, tf, y); // now y contains final state
    // at
    // time tf
    if (print) {
        System.out.printf("%9.6f %9.6f %9.6f %9.6f %9.6f", tf, y[0], y[1], y[2], myCRTBP.JacobiIntegral(y));
        System.out.println();
    }

    int arraySize = myCRTBP.time.size();
    double[] timeArray = ArrayUtils.toPrimitive(myCRTBP.time.toArray(new Double[arraySize]));
    double[] xsolArray = ArrayUtils.toPrimitive(myCRTBP.xsol.toArray(new Double[arraySize]));
    double[] ysolArray = ArrayUtils.toPrimitive(myCRTBP.ysol.toArray(new Double[arraySize]));
    double[][] XY = new double[timeArray.length][2];
    for (int i = 0; i < timeArray.length; i++) {
        XY[i][0] = xsolArray[i];
        XY[i][1] = ysolArray[i];
    }

    Plot2DPanel p = new Plot2DPanel();
    LinePlot l = new LinePlot("spacecraft", Color.RED, XY);
    l.closed_curve = false;
    l.draw_dot = true;
    p.addPlot(l);
    double plotSize = 1.2;
    myCRTBP.findLibrationPoints();
    Color darkGreen = new java.awt.Color(0, 190, 0);

    addPoint(p, "Earth", java.awt.Color.BLUE, -mu, 0);
    addPoint(p, "Moon", java.awt.Color.gray, 1 - mu, 0);
    addPoint(p, "L1", darkGreen, myCRTBP.LibPoints[0].getX(), 0);
    addPoint(p, "L2", darkGreen, myCRTBP.LibPoints[1].getX(), 0);
    addPoint(p, "L3", darkGreen, myCRTBP.LibPoints[2].getX(), 0);

    String Labelmu = "mu = " + myCRTBP.mu;
    p.addLabel(Labelmu, java.awt.Color.black, 1, .9 * plotSize);
    String initial = "initial x,v = (" + y0[0] + "," + y0[1] + "),(" + y0[3] + "," + y0[4] + ")";
    p.addLabel(initial, java.awt.Color.black, 1, .8 * plotSize);
    String Jacobi = "spacecraft C = " + myCRTBP.C;
    p.addLabel(Jacobi, java.awt.Color.black, 1, .7 * plotSize);
    String L1C = "L1 C = " + myCRTBP.C1;
    p.addLabel(L1C, java.awt.Color.black, 1, .6 * plotSize);

    myCRTBP.findZeroVelocity();
    int size = myCRTBP.xzv.size();
    double[] xzvArray = ArrayUtils.toPrimitive(myCRTBP.xzv.toArray(new Double[size]));
    double[] yzvArray = ArrayUtils.toPrimitive(myCRTBP.yzv.toArray(new Double[size]));
    double[][] XYzv = new double[size][2];
    for (int i = 0; i < size; i++) {
        XYzv[i][0] = xzvArray[i];
        XYzv[i][1] = yzvArray[i];
    }
    LinePlot lzv = new LinePlot("zero vel", Color.blue, XYzv);
    lzv.closed_curve = false;
    lzv.draw_dot = true;
    p.addPlot(lzv);

    p.setLegendOrientation(PlotPanel.SOUTH);
    p.setFixedBounds(0, -plotSize, plotSize);
    p.setFixedBounds(1, -plotSize, plotSize);
    new FrameView(p).setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

From source file:jat.application.DE405Propagator.DE405PropagatorPlot.java

public void add_scene() {

    // Update Ephemeris to current user parameters
    for (body b : body.values()) {
        Eph.bodyGravOnOff[b.ordinal()] = dpMain.dpParam.bodyGravOnOff[b.ordinal()];
    }/*  w w w  .jav a 2 s.  c om*/
    Eph.setIntegrationStartTime(dpMain.dpParam.simulationDate);
    try {
        Eph.setEarthMoonPlaneNormal(dpMain.dpParam.simulationDate);
    } catch (IOException e1) {
        e1.printStackTrace();
    }
    Eph.setFrame(dpMain.dpParam.Frame);
    Eph.reset();

    // Spacecraft Trajectory
    FirstOrderIntegrator dp853 = new DormandPrince853Integrator(1.0e-8, dpMain.dpParam.tf, 1.0e-10, 1.0e-10);
    dp853.addStepHandler(Eph.stepHandler);
    FirstOrderDifferentialEquations ode = Eph;
    double[] y = new double[6];
    dp853.integrate(ode, 0.0, dpMain.dpParam.y0, dpMain.dpParam.tf, y);
    if (print) {
        String nf = "%10.3f ";
        String format = nf + nf + nf + nf + nf;
        System.out.printf(format, dpMain.dpParam.tf, y[0], y[1], y[2], Eph.energy(dpMain.dpParam.tf, y));
        System.out.println();
    }

    LinePlot l1 = new LinePlot("spacecraft", Color.RED, getXYZforPlot(Eph.xsol, Eph.ysol, Eph.zsol));
    l1.closed_curve = false;
    plot.addPlot(l1);

    addBodies();

    // Vector3D y0v=new Vector3D(dpParam.y0[0],dpParam.y0[1],dpParam.y0[2]);
    // double plotBounds = 2*y0v.getNorm();
    plot.setFixedBounds(0, -plotBounds, plotBounds);
    plot.setFixedBounds(1, -plotBounds, plotBounds);
    plot.setFixedBounds(2, -plotBounds, plotBounds);
    plot.setLegendOrientation(PlotPanel.SOUTH);
}

From source file:edu.gcsc.vrl.commons.math.ode.ODESolver.java

public Trajectory solve(@ParamInfo(name = "Label", options = "value=\"Label 1\"") String label,
        @ParamInfo(name = "x0", options = "value=0.0D") double t0,
        @ParamInfo(name = "xn", options = "value=3.0D") double tn,
        @ParamInfo(name = "y0", options = "value=0.0") double y0,
        @ParamInfo(name = "Min Step", options = "value=1e-6D") double minStep,
        @ParamInfo(name = "Max Step", options = "value=1e-2D") double maxStep,
        @ParamInfo(name = "Abs.Tol.", options = "value=1e-10") double absTol,
        @ParamInfo(name = "Rel.Tol.", options = "value=1e-10") double relTol,
        @ParamInfo(name = "RHS") FirstOrderDifferentialEquations rhs) {

    FirstOrderIntegrator integrator = new DormandPrince853Integrator(minStep, maxStep, absTol, relTol);

    final Trajectory result = new Trajectory(label);

    StepHandler stepHandler = new StepHandler() {
        @Override/* w w  w . jav a2  s. c  o m*/
        public void init(double t0, double[] y0, double t) {
            result.add(t, y0[0]);
        }

        @Override
        public void handleStep(StepInterpolator interpolator, boolean isLast) {
            double t = interpolator.getCurrentTime();
            double[] y = interpolator.getInterpolatedState();
            result.add(t, y[0]);
        }
    };

    integrator.addStepHandler(stepHandler);

    double[] y = new double[] { y0 }; // initial state
    integrator.integrate(rhs, t0, y, tn, y);

    return result;
}

From source file:de.uni_erlangen.lstm.modelaccess.Model.java

/**
 * Run the model using set parameters/*  ww  w  . j  av  a2  s . c om*/
 */
public void simulate() {
    finished = false;
    /*
     * Integrator selection 
     */
    //FirstOrderIntegrator integrator = new HighamHall54Integrator(1.0e-8, 100.0, 1.0e-10, 1.0e-10);
    //FirstOrderIntegrator integrator = new DormandPrince54Integrator(1.0e-12, 100.0, 1.0e-12, 1.0e-12);
    //FirstOrderIntegrator integrator = new DormandPrince853Integrator(1.0e-8, 100.0, 1.0e-10, 1.0e-10);
    //FirstOrderIntegrator integrator = new GraggBulirschStoerIntegrator(1.0e-8, 100.0, 1.0e-10, 1.0e-10);
    FirstOrderIntegrator integrator = new AdamsBashforthIntegrator(2, 1.0e-14, 100.0, 1.0e-10, 1.0e-10);
    //FirstOrderIntegrator integrator = new AdamsMoultonIntegrator(2, 1.0e-8, 100.0, 1.0e-10, 1.0e-10);

    // influent values, digester parameters, S_H_ion, dae system
    final DAEModel ode = new DAEModel(u, param, S_H_ion, dae, fix_pH);
    //FirstOrderDifferentialEquations ode = model; 

    // Records progress
    StepHandler progHandler = new StepHandler() {
        public void init(double t0, double[] y0, double t) {
        }

        public void handleStep(StepInterpolator interpolator, boolean isLast) {
            progress = interpolator.getCurrentTime();
        }
    };
    integrator.addStepHandler(progHandler);

    /*
     * Continuous model recorded in CSV
     */
    if (onlineRecord) {
        final CSVWriter writer = new CSVWriter();
        StepHandler stepHandler = new StepHandler() {
            double prevT = 0.0;

            public void init(double t0, double[] y0, double t) {
            }

            public void handleStep(StepInterpolator interpolator, boolean isLast) {
                double t = interpolator.getCurrentTime();
                if (t - prevT > resolution) {
                    // Add time to the beginning of the array
                    double[] timemodel = new double[ode.getDimensions().length + 1];
                    timemodel[0] = t;

                    // We need to pull variables (S_h2 and acid-base) directly from the model if using DAE
                    for (int i = 1; i < timemodel.length; i++) {
                        timemodel[i] = ode.getDimensions()[i - 1];
                    }

                    writer.WriteArray(output_file, timemodel, true);
                    prevT = t;
                }
            }
        };
        integrator.addStepHandler(stepHandler);
    }

    /*
     * Add event handlers for discrete events
     * maxCheck - maximal time interval between switching function checks (this interval prevents missing sign changes in case the integration steps becomes very large)
      * conv - convergence threshold in the event time search
      * maxIt - upper limit of the iteration count in the event time search
     */
    if (events.size() > 0) {
        for (DiscreteEvent event : events) {
            double maxCheck = Double.POSITIVE_INFINITY;
            double conv = 1.0e-20;
            int maxIt = 100;
            integrator.addEventHandler(event, maxCheck, conv, maxIt);
        }
    }

    integrator.integrate(ode, start, x, end, x);

    /*
     * Return the time that the discrete event occurred
     */
    if (events.size() > 0) {
        for (DiscreteEvent event : events) {
            if (event.getTime() < end) {
                end = event.getTime();
            }
        }
    }

    // We need to pull variables (S_h2 and acid-base) directly from the model
    x = ode.getDimensions();

    finished = true;
}

From source file:nl.rivm.cib.episim.model.disease.infection.MSEIRSTest.java

public static Observable<Map.Entry<Double, double[]>> deterministic(final SIRConfig config,
        final Supplier<FirstOrderIntegrator> integrators) {
    return Observable.create(sub -> {
        final double gamma = 1. / config.recovery();
        final double beta = gamma * config.reproduction();
        final double[] y0 = Arrays.stream(config.population()).mapToDouble(n -> n).toArray();
        final double[] t = config.t();

        try {//ww  w.  j a  v a 2  s  .  c  o  m
            final FirstOrderIntegrator integrator = integrators.get();

            integrator.addStepHandler(new StepHandler() {
                @Override
                public void init(final double t0, final double[] y0, final double t) {
                    publishCopy(sub, t0, y0);
                }

                @Override
                public void handleStep(final StepInterpolator interpolator, final boolean isLast)
                        throws MaxCountExceededException {
                    publishCopy(sub, interpolator.getInterpolatedTime(), interpolator.getInterpolatedState());
                    if (isLast)
                        sub.onComplete();
                }
            });

            integrator.integrate(new FirstOrderDifferentialEquations() {
                @Override
                public int getDimension() {
                    return y0.length;
                }

                @Override
                public void computeDerivatives(final double t, final double[] y, final double[] yp) {
                    // SIR terms (flow rates)
                    final double n = y[0] + y[1] + y[2], flow_si = beta * y[0] * y[1] / n,
                            flow_ir = gamma * y[1];

                    yp[0] = -flow_si;
                    yp[1] = flow_si - flow_ir;
                    yp[2] = flow_ir;
                }
            }, t[0], y0, t[1], y0);
        } catch (final Exception e) {
            sub.onError(e);
        }
    });
}

From source file:org.orekit.utils.AngularCoordinatesTest.java

@Test
public void testShiftWithAcceleration() throws OrekitException {
    double rate = 2 * FastMath.PI / (12 * 60);
    double acc = 0.001;
    double dt = 1.0;
    int n = 2000;
    final AngularCoordinates quadratic = new AngularCoordinates(Rotation.IDENTITY,
            new Vector3D(rate, Vector3D.PLUS_K), new Vector3D(acc, Vector3D.PLUS_J));
    final AngularCoordinates linear = new AngularCoordinates(quadratic.getRotation(),
            quadratic.getRotationRate(), Vector3D.ZERO);

    final FirstOrderDifferentialEquations ode = new FirstOrderDifferentialEquations() {
        public int getDimension() {
            return 4;
        }/*from  w ww  .j a  v  a  2 s  .co m*/

        public void computeDerivatives(final double t, final double[] q, final double[] qDot) {
            final double omegaX = quadratic.getRotationRate().getX()
                    + t * quadratic.getRotationAcceleration().getX();
            final double omegaY = quadratic.getRotationRate().getY()
                    + t * quadratic.getRotationAcceleration().getY();
            final double omegaZ = quadratic.getRotationRate().getZ()
                    + t * quadratic.getRotationAcceleration().getZ();
            qDot[0] = 0.5 * MathArrays.linearCombination(-q[1], omegaX, -q[2], omegaY, -q[3], omegaZ);
            qDot[1] = 0.5 * MathArrays.linearCombination(q[0], omegaX, -q[3], omegaY, q[2], omegaZ);
            qDot[2] = 0.5 * MathArrays.linearCombination(q[3], omegaX, q[0], omegaY, -q[1], omegaZ);
            qDot[3] = 0.5 * MathArrays.linearCombination(-q[2], omegaX, q[1], omegaY, q[0], omegaZ);
        }
    };
    FirstOrderIntegrator integrator = new DormandPrince853Integrator(1.0e-6, 1.0, 1.0e-12, 1.0e-12);
    integrator.addStepHandler(new StepNormalizer(dt / n, new FixedStepHandler() {
        public void init(double t0, double[] y0, double t) {
        }

        public void handleStep(double t, double[] y, double[] yDot, boolean isLast) {
            Rotation reference = new Rotation(y[0], y[1], y[2], y[3], true);

            // the error in shiftedBy taking acceleration into account is cubic
            double expectedCubicError = 1.4544e-6 * t * t * t;
            Assert.assertEquals(expectedCubicError,
                    Rotation.distance(reference, quadratic.shiftedBy(t).getRotation()),
                    0.0001 * expectedCubicError);

            // the error in shiftedBy not taking acceleration into account is quadratic
            double expectedQuadraticError = 5.0e-4 * t * t;
            Assert.assertEquals(expectedQuadraticError,
                    Rotation.distance(reference, linear.shiftedBy(t).getRotation()),
                    0.00001 * expectedQuadraticError);

        }
    }));

    double[] y = new double[] { quadratic.getRotation().getQ0(), quadratic.getRotation().getQ1(),
            quadratic.getRotation().getQ2(), quadratic.getRotation().getQ3() };
    integrator.integrate(ode, 0, y, dt, y);

}

From source file:org.orekit.utils.TimeStampedAngularCoordinatesTest.java

private double[] interpolationErrors(final TimeStampedAngularCoordinates reference, double dt)
        throws OrekitException {

    final FirstOrderDifferentialEquations ode = new FirstOrderDifferentialEquations() {
        public int getDimension() {
            return 4;
        }//from ww  w .jav a2 s.  c  om

        public void computeDerivatives(final double t, final double[] q, final double[] qDot) {
            final double omegaX = reference.getRotationRate().getX()
                    + t * reference.getRotationAcceleration().getX();
            final double omegaY = reference.getRotationRate().getY()
                    + t * reference.getRotationAcceleration().getY();
            final double omegaZ = reference.getRotationRate().getZ()
                    + t * reference.getRotationAcceleration().getZ();
            qDot[0] = 0.5 * MathArrays.linearCombination(-q[1], omegaX, -q[2], omegaY, -q[3], omegaZ);
            qDot[1] = 0.5 * MathArrays.linearCombination(q[0], omegaX, -q[3], omegaY, q[2], omegaZ);
            qDot[2] = 0.5 * MathArrays.linearCombination(q[3], omegaX, q[0], omegaY, -q[1], omegaZ);
            qDot[3] = 0.5 * MathArrays.linearCombination(-q[2], omegaX, q[1], omegaY, q[0], omegaZ);
        }
    };
    final List<TimeStampedAngularCoordinates> complete = new ArrayList<TimeStampedAngularCoordinates>();
    FirstOrderIntegrator integrator = new DormandPrince853Integrator(1.0e-6, 1.0, 1.0e-12, 1.0e-12);
    integrator.addStepHandler(new StepNormalizer(dt / 2000, new FixedStepHandler() {
        public void init(double t0, double[] y0, double t) {
        }

        public void handleStep(double t, double[] y, double[] yDot, boolean isLast) {
            complete.add(
                    new TimeStampedAngularCoordinates(reference.getDate().shiftedBy(t),
                            new Rotation(y[0], y[1], y[2], y[3], true), new Vector3D(1,
                                    reference.getRotationRate(), t, reference.getRotationAcceleration()),
                            reference.getRotationAcceleration()));
        }
    }));

    double[] y = new double[] { reference.getRotation().getQ0(), reference.getRotation().getQ1(),
            reference.getRotation().getQ2(), reference.getRotation().getQ3() };
    integrator.integrate(ode, 0, y, dt, y);

    List<TimeStampedAngularCoordinates> sample = new ArrayList<TimeStampedAngularCoordinates>();
    sample.add(complete.get(0));
    sample.add(complete.get(complete.size() / 2));
    sample.add(complete.get(complete.size() - 1));

    double maxRotationError = 0;
    double maxRateError = 0;
    double maxAccelerationError = 0;
    for (TimeStampedAngularCoordinates acRef : complete) {
        TimeStampedAngularCoordinates interpolated = TimeStampedAngularCoordinates.interpolate(acRef.getDate(),
                AngularDerivativesFilter.USE_RRA, sample);
        double rotationError = Rotation.distance(acRef.getRotation(), interpolated.getRotation());
        double rateError = Vector3D.distance(acRef.getRotationRate(), interpolated.getRotationRate());
        double accelerationError = Vector3D.distance(acRef.getRotationAcceleration(),
                interpolated.getRotationAcceleration());
        maxRotationError = FastMath.max(maxRotationError, rotationError);
        maxRateError = FastMath.max(maxRateError, rateError);
        maxAccelerationError = FastMath.max(maxAccelerationError, accelerationError);
    }

    return new double[] { maxRotationError, maxRateError, maxAccelerationError };

}