Example usage for org.apache.commons.math3.stat.descriptive.rank Percentile Percentile

List of usage examples for org.apache.commons.math3.stat.descriptive.rank Percentile Percentile

Introduction

In this page you can find the example usage for org.apache.commons.math3.stat.descriptive.rank Percentile Percentile.

Prototype

public Percentile() 

Source Link

Document

Constructs a Percentile with a default quantile value of 50.0.

Usage

From source file:com.itemanalysis.psychometrics.statistics.Bootstrap.java

public Bootstrap(double lower, double upper) {
    this.lower = lower;
    this.upper = upper;
    percentile = new Percentile();
    stdDev = new StandardDeviation();
}

From source file:com.itemanalysis.psychometrics.statistics.Deciles.java

private void intialize() {
    for (int i = 0; i < size; i++) {
        q[i] = new Percentile();
    }
}

From source file:com.itemanalysis.psychometrics.kernel.ScottsBandwidth.java

public ScottsBandwidth(double[] x, double adjustmentFactor) {
    this.x = x;//from  w  w  w  . j  a  va 2  s  .  c  o  m
    this.adjustmentFactor = adjustmentFactor;
    pcntl = new Percentile();
}

From source file:com.github.rvesse.github.pr.stats.collectors.LongStatsCollector.java

@Override
public void end() {
    double[] ds = toDoubles();

    // Populate percentiles
    this.percentiles = new Percentile();
    this.percentiles.setData(ds);
}

From source file:com.itemanalysis.psychometrics.irt.equating.RobustZEquatingTest.java

/**
 * Constructor for use with 2PL and 3PL models.
 *
 * @param aX// w  ww .j av  a  2  s . c o  m
 * @param aY
 * @param bX
 * @param bY
 * @param significanceLevel
 * @throws IllegalArgumentException
 */
public RobustZEquatingTest(double[] aX, double[] aY, double[] bX, double[] bY, double significanceLevel)
        throws IllegalArgumentException {
    if (aX.length != aY.length || bX.length != bY.length) {
        throw new IllegalArgumentException("Item parameter arrays must be the same length");
    }

    this.aX = aX;
    this.aY = aY;
    this.bX = bX;
    this.bY = bY;
    nA = aX.length;
    nB = bX.length;
    this.significanceLevel = significanceLevel / 2.0;

    percentile = new Percentile();
    if (hasDiscriminationParameters()) {
        modelParams = 2;
        testA();
    } else {
        modelParams = 1;
    }
    testB();
}

From source file:inflor.core.transforms.LogicleTransform.java

private double optimizeW(double[] data) {
    /**//from   w w w.j  a  v a  2  s  .c o m
     * Based on the percentile method suggested by Parks/Moore.
     */
    double lowerBound = new Percentile().evaluate(data, LOGICLE_W_PERCENTILE);
    if (lowerBound < 0) {
        this.w = (m - Math.log10(t / Math.abs(lowerBound))) / 2;
    } else {
        this.w = 0.2;//TODO: Reasonable?
    }
    //TODO HACKZ
    if (w <= 0)
        w = 0.2;
    return w;
}

From source file:inflor.core.transforms.BoundDisplayTransform.java

public void optimize(double[] data) {
    this.boundaryMin = new Percentile().evaluate(data, LOWER_BOUND_PERCENT);
    this.boundaryMax = new Percentile().evaluate(data, UPPER_BOUND_PERCENT);
}

From source file:com.cidre.algorithms.CidreMath.java

public static double[] zLimitsFromPercentiles(double[] values) {
    double[] zLimits = new double[2];
    Percentile p = new Percentile();
    p.setData(values);/* www.  j a  v  a  2s.c om*/
    zLimits[0] = p.evaluate(0.1);
    zLimits[1] = p.evaluate(99.9);
    log.debug("zLimits {}, {}", zLimits[0], zLimits[1]);
    return zLimits;
}

From source file:com.itemanalysis.psychometrics.irt.equating.RobustZEquatingTest.java

/**
 * Constructor for use with Rasch or 1PL model
 * @param bX// w  w w .  j  a v a 2s.  c om
 * @param bY
 * @param significanceLevel
 * @throws IllegalArgumentException
 */
public RobustZEquatingTest(double[] bX, double[] bY, double significanceLevel) throws IllegalArgumentException {
    nB = bX.length;
    if (nB != bX.length || nB != bY.length) {
        throw new IllegalArgumentException("Item parameter arrays must be the same length");
    }
    this.bX = bX;
    this.bY = bY;
    this.significanceLevel = significanceLevel;
    modelParams = 1;
    percentile = new Percentile();
    testB();
}

From source file:com.mgmtp.perfload.perfalyzer.binning.PerfMonBinningStrategy.java

private void writeAggregatedLine(final WritableByteChannel destChannel) throws IOException {
    double[] allValues = binManager.flatValuesStream().toArray();

    StrBuilder sb = new StrBuilder();

    String min = intNumberFormat.format(Doubles.min(allValues));
    String max = intNumberFormat.format(Doubles.max(allValues));

    switch (typeConfig) {
    case CPU://from   w w  w .  j a va2s.c o m
    case IO:
    case JAVA:
        String mean = intNumberFormat.format(StatUtils.mean(allValues));
        appendEscapedAndQuoted(sb, DELIMITER, min, mean, max);
        break;
    case MEM:
    case SWAP:
        Percentile percentile = new Percentile();
        percentile.setData(allValues);
        String q10 = intNumberFormat.format(percentile.evaluate(10d));
        String q50 = intNumberFormat.format(percentile.evaluate(50d));
        String q90 = intNumberFormat.format(percentile.evaluate(90d));
        appendEscapedAndQuoted(sb, DELIMITER, min, q10, q50, q90, max);
        break;
    default:
        throw new IllegalStateException("Invalid perfMon data type");
    }

    writeLineToChannel(destChannel, sb.toString(), Charsets.UTF_8);
}