Example usage for org.apache.commons.math3.util FastMath toIntExact

List of usage examples for org.apache.commons.math3.util FastMath toIntExact

Introduction

In this page you can find the example usage for org.apache.commons.math3.util FastMath toIntExact.

Prototype

public static int toIntExact(final long n) throws MathArithmeticException 

Source Link

Document

Convert a long to interger, detecting overflows

Usage

From source file:lambertmrev.Lambert.java

/** Constructs and solves a Lambert problem.
 *
 * \param[in] R1 first cartesian position
 * \param[in] R2 second cartesian position
 * \param[in] tof time of flight//from   w w  w .  j ava  2 s  .  c  o m
 * \param[in] mu gravity parameter
 * \param[in] cw when 1 a retrograde orbit is assumed
 * \param[in] multi_revs maximum number of multirevolutions to compute
 */

public void lambert_problem(Vector3D r1, Vector3D r2, double tof, double mu, Boolean cw, int multi_revs) {
    // sanity checks
    if (tof <= 0) {
        System.out.println("ToF is negative! \n");
    }
    if (mu <= 0) {
        System.out.println("mu is below zero");
    }

    // 1 - getting lambda and T
    double m_c = FastMath.sqrt((r2.getX() - r1.getX()) * (r2.getX() - r1.getX())
            + (r2.getY() - r1.getY()) * (r2.getY() - r1.getY())
            + (r2.getZ() - r1.getZ()) * (r2.getZ() - r1.getZ()));
    double R1 = r1.getNorm();
    double R2 = r2.getNorm();
    double m_s = (m_c + R1 + R2) / 2.0;

    Vector3D ir1 = r1.normalize();
    Vector3D ir2 = r2.normalize();
    Vector3D ih = Vector3D.crossProduct(ir1, ir2);
    ih = ih.normalize();

    if (ih.getZ() == 0) {
        System.out.println("angular momentum vector has no z component \n");
    }
    double lambda2 = 1.0 - m_c / m_s;
    double m_lambda = FastMath.sqrt(lambda2);

    Vector3D it1 = new Vector3D(0.0, 0.0, 0.0);
    Vector3D it2 = new Vector3D(0.0, 0.0, 0.0);

    if (ih.getZ() < 0.0) { // Transfer angle is larger than 180 degrees as seen from abive the z axis
        m_lambda = -m_lambda;
        it1 = Vector3D.crossProduct(ir1, ih);
        it2 = Vector3D.crossProduct(ir2, ih);
    } else {
        it1 = Vector3D.crossProduct(ih, ir1);
        it2 = Vector3D.crossProduct(ih, ir2);
    }
    it1.normalize();
    it2.normalize();

    if (cw) { // Retrograde motion
        m_lambda = -m_lambda;
        it1.negate();
        it2.negate();
    }
    double lambda3 = m_lambda * lambda2;
    double T = FastMath.sqrt(2.0 * mu / m_s / m_s / m_s) * tof;

    // 2 - We now hava lambda, T and we will find all x
    // 2.1 - let us first detect the maximum number of revolutions for which there exists a solution
    int m_Nmax = FastMath.toIntExact(FastMath.round(T / FastMath.PI));
    double T00 = FastMath.acos(m_lambda) + m_lambda * FastMath.sqrt(1.0 - lambda2);
    double T0 = (T00 + m_Nmax * FastMath.PI);
    double T1 = 2.0 / 3.0 * (1.0 - lambda3);
    double DT = 0.0;
    double DDT = 0.0;
    double DDDT = 0.0;

    if (m_Nmax > 0) {
        if (T < T0) { // We use Halley iterations to find xM and TM
            int it = 0;
            double err = 1.0;
            double T_min = T0;
            double x_old = 0.0, x_new = 0.0;
            while (true) {
                ArrayRealVector deriv = dTdx(x_old, T_min, m_lambda);
                DT = deriv.getEntry(0);
                DDT = deriv.getEntry(1);
                DDDT = deriv.getEntry(2);
                if (DT != 0.0) {
                    x_new = x_old - DT * DDT / (DDT * DDT - DT * DDDT / 2.0);
                }
                err = FastMath.abs(x_old - x_new);
                if ((err < 1e-13) || (it > 12)) {
                    break;
                }
                tof = x2tof(x_new, m_Nmax, m_lambda);
                x_old = x_new;
                it++;
            }
            if (T_min > T) {
                m_Nmax -= 1;
            }
        }
    }
    // We exit this if clause with Mmax being the maximum number of revolutions
    // for which there exists a solution. We crop it to multi_revs
    m_Nmax = FastMath.min(multi_revs, m_Nmax);

    // 2.2 We now allocate the memory for the output variables
    m_v1 = MatrixUtils.createRealMatrix(m_Nmax * 2 + 1, 3);
    RealMatrix m_v2 = MatrixUtils.createRealMatrix(m_Nmax * 2 + 1, 3);
    RealMatrix m_iters = MatrixUtils.createRealMatrix(m_Nmax * 2 + 1, 3);
    //RealMatrix m_x = MatrixUtils.createRealMatrix(m_Nmax*2+1, 3);
    ArrayRealVector m_x = new ArrayRealVector(m_Nmax * 2 + 1);

    // 3 - We may now find all solution in x,y
    // 3.1 0 rev solution
    // 3.1.1 initial guess
    if (T >= T00) {
        m_x.setEntry(0, -(T - T00) / (T - T00 + 4));
    } else if (T <= T1) {
        m_x.setEntry(0, T1 * (T1 - T) / (2.0 / 5.0 * (1 - lambda2 * lambda3) * T) + 1);
    } else {
        m_x.setEntry(0, FastMath.pow((T / T00), 0.69314718055994529 / FastMath.log(T1 / T00)) - 1.0);
    }
    // 3.1.2 Householder iterations
    //m_iters.setEntry(0, 0, housOutTmp.getEntry(0));
    m_x.setEntry(0, householder(T, m_x.getEntry(0), 0, 1e-5, 15, m_lambda));

    // 3.2 multi rev solutions
    double tmp;
    double x0;

    for (int i = 1; i < m_Nmax + 1; i++) {
        // 3.2.1 left householder iterations
        tmp = FastMath.pow((i * FastMath.PI + FastMath.PI) / (8.0 * T), 2.0 / 3.0);
        m_x.setEntry(2 * i - 1, (tmp - 1) / (tmp + 1));
        x0 = householder(T, m_x.getEntry(2 * i - 1), i, 1e-8, 15, m_lambda);
        m_x.setEntry(2 * i - 1, x0);
        //m_iters.setEntry(2*i-1, 0, housOutTmp.getEntry(0));

        //3.2.1 right Householder iterations
        tmp = FastMath.pow((8.0 * T) / (i * FastMath.PI), 2.0 / 3.0);
        m_x.setEntry(2 * i, (tmp - 1) / (tmp + 1));
        x0 = householder(T, m_x.getEntry(2 * i), i, 1e-8, 15, m_lambda);
        m_x.setEntry(2 * i, x0);
        //m_iters.setEntry(2*i, 0, housOutTmp.getEntry(0));
    }

    // 4 - For each found x value we recontruct the terminal velocities
    double gamma = FastMath.sqrt(mu * m_s / 2.0);
    double rho = (R1 - R2) / m_c;

    double sigma = FastMath.sqrt(1 - rho * rho);
    double vr1, vt1, vr2, vt2, y;

    ArrayRealVector ir1_vec = new ArrayRealVector(3);
    ArrayRealVector ir2_vec = new ArrayRealVector(3);
    ArrayRealVector it1_vec = new ArrayRealVector(3);
    ArrayRealVector it2_vec = new ArrayRealVector(3);

    // set Vector3D values to a mutable type
    ir1_vec.setEntry(0, ir1.getX());
    ir1_vec.setEntry(1, ir1.getY());
    ir1_vec.setEntry(2, ir1.getZ());
    ir2_vec.setEntry(0, ir2.getX());
    ir2_vec.setEntry(1, ir2.getY());
    ir2_vec.setEntry(2, ir2.getZ());
    it1_vec.setEntry(0, it1.getX());
    it1_vec.setEntry(1, it1.getY());
    it1_vec.setEntry(2, it1.getZ());
    it2_vec.setEntry(0, it2.getX());
    it2_vec.setEntry(1, it2.getY());
    it2_vec.setEntry(2, it2.getZ());

    for (int i = 0; i < m_x.getDimension(); i++) {
        y = FastMath.sqrt(1.0 - lambda2 + lambda2 * m_x.getEntry(i) * m_x.getEntry(i));
        vr1 = gamma * ((m_lambda * y - m_x.getEntry(i)) - rho * (m_lambda * y + m_x.getEntry(i))) / R1;
        vr2 = -gamma * ((m_lambda * y - m_x.getEntry(i)) + rho * (m_lambda * y + m_x.getEntry(i))) / R2;

        double vt = gamma * sigma * (y + m_lambda * m_x.getEntry(i));

        vt1 = vt / R1;
        vt2 = vt / R2;

        for (int j = 0; j < 3; ++j)
            m_v1.setEntry(i, j, vr1 * ir1_vec.getEntry(j) + vt1 * it1_vec.getEntry(j));
        for (int j = 0; j < 3; ++j)
            m_v2.setEntry(i, j, vr2 * ir2_vec.getEntry(j) + vt2 * it2_vec.getEntry(j));
    }

}