Example usage for org.apache.hadoop.fs FileSystem get

List of usage examples for org.apache.hadoop.fs FileSystem get

Introduction

In this page you can find the example usage for org.apache.hadoop.fs FileSystem get.

Prototype

public static FileSystem get(URI uri, Configuration conf) throws IOException 

Source Link

Document

Get a FileSystem for this URI's scheme and authority.

Usage

From source file:GetRetweetersAndCountPerUser.java

License:Apache License

public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    if (otherArgs.length != 3) {
        System.err.println("Usage: GetRetweetersAndCountPerUser <in> <out> <num_reducers>");
        System.exit(2);//from  w w  w  . j av a 2 s  .  co  m
    }
    Job job = new Job(conf, "word count");
    job.setJarByClass(RetweetersPerUser.class);
    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
    System.out.println(otherArgs[0]);
    job.setMapperClass(TweetMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(IntWritable.class);
    job.setOutputValueClass(IntWritable.class);
    job.setNumReduceTasks(Integer.parseInt(args[2]));
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

    if (job.waitForCompletion(true)) {
        FileSystem hdfs = FileSystem.get(new URI(args[1]), conf);
        Path dir = new Path(args[1]);
        PathFilter filter = new PathFilter() {
            public boolean accept(Path file) {
                return file.getName().startsWith("part-r-");
            }
        };

        HashMap<Integer, Integer> counts_for_user = new HashMap<Integer, Integer>();
        FileStatus[] files = hdfs.listStatus(dir, filter);
        Arrays.sort(files);
        for (int i = 0; i != files.length; i++) {
            Path pt = files[i].getPath();
            BufferedReader br = new BufferedReader(new InputStreamReader(hdfs.open(pt)));
            String line = null;
            while ((line = br.readLine()) != null) {
                String[] columns = new String[2];
                columns = line.split("\t");
                int key = Integer.parseInt(columns[0]);
                if (counts_for_user.containsKey(key))
                    counts_for_user.put(key, counts_for_user.get(key) + 1);
                else
                    counts_for_user.put(key, 1);
            }
            br.close();
        }

        FSDataOutputStream fsDataOutputStream = hdfs.create(new Path(otherArgs[1] + "_count"));
        PrintWriter writer = new PrintWriter(fsDataOutputStream);
        for (Entry<Integer, Integer> e : counts_for_user.entrySet()) {
            writer.write(e.getKey() + "\t" + e.getValue() + "\n");
        }
        writer.close();
        fsDataOutputStream.close();
        hdfs.close();
        System.exit(0);
    }
    System.exit(1);
}

From source file:Hw2Part1.java

License:Apache License

public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    if (otherArgs.length < 2) {
        System.err.println("Usage: <input file> <output directory>");
        System.exit(2);//ww  w  . jav  a 2  s.c o m
    }

    //    FileSystem hdfs = FileSystem.get(conf);
    String target = "hdfs://localhost:9000/";
    FileSystem fs = FileSystem.get(URI.create(target), conf);//is diffrent
    Path outputpath = new Path(otherArgs[otherArgs.length - 1]);
    if (fs.exists(outputpath)) {
        fs.delete(outputpath, true);
    }

    Job job = Job.getInstance(conf, "Hw2Part1");

    job.setJarByClass(Hw2Part1.class);

    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumCombiner.class);
    job.setReducerClass(IntSumReducer.class);

    job.setMapOutputKeyClass(Text.class);
    job.setMapOutputValueClass(InfoWritable.class);

    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(InfoWritable.class);

    // add the input paths as given by command line
    for (int i = 0; i < otherArgs.length - 1; ++i) {
        FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
    }

    // add the output path as given by the command line
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1]));

    System.exit(job.waitForCompletion(true) ? 0 : 1);
}

From source file:DijikstraAlgo.java

License:GNU General Public License

public static void run(String[] args) throws Exception {
    IN = "hdfs://10.8.3.161:9000/user/sagar/input/";
    OUT = "hdfs://10.8.3.161:9000/user/sagar/output/";
    String input = IN;/*  ww  w.j  a v a2 s  .c  o m*/
    String output = OUT + System.nanoTime();
    String MAX_SPLIT_SIZE = args[0];
    boolean isdone = false;

    // Reiteration again and again till the convergence
    while (isdone == false) {
        JobConf conf = new JobConf(DijikstraAlgo.class);
        conf.setJobName("Dijikstra");
        // conf.set("mapred.max.split.size", MAX_SPLIT_SIZE);
        conf.setOutputKeyClass(LongWritable.class);
        conf.setOutputValueClass(Text.class);
        conf.setMapperClass(Map.class);
        conf.setReducerClass(Reduce.class);
        conf.setInputFormat(TextInputFormat.class);
        conf.setOutputFormat(TextOutputFormat.class);

        FileInputFormat.setInputPaths(conf, new Path(input));
        FileOutputFormat.setOutputPath(conf, new Path(output));

        JobClient.runJob(conf);

        input = output + "/part-00000";
        isdone = true;// set the job to NOT run again!
        Path ofile = new Path(input);
        FileSystem fs = FileSystem.get(new URI("hdfs://10.8.3.165:9000"), conf);
        //FileSystem fs = FileSystem.get(new Configuration());
        BufferedReader br = new BufferedReader(new InputStreamReader(fs.open(ofile)));
        HashMap<Integer, Integer> imap = new HashMap<Integer, Integer>();
        String line = br.readLine();
        // Read the current output file and put it into HashMap
        while (line != null) {
            String[] sp = line.split("\t| ");
            int node = Integer.parseInt(sp[0]);
            int distance = Integer.parseInt(sp[1]);
            imap.put(node, distance);
            line = br.readLine();
        }
        br.close();

        // Check for convergence condition if any node is still left then
        // continue else stop
        Iterator<Integer> itr = imap.keySet().iterator();
        while (itr.hasNext()) {
            int key = itr.next();
            int value = imap.get(key);
            if (value >= 125) {
                isdone = false;
            }
        }
        input = output;
        output = OUT + System.nanoTime();
    }
}

From source file:HDFSRandomAccessFile.java

License:Apache License

public HDFSRandomAccessFile(String fileSystemURI, String location, int bufferSize) throws IOException {
    super(bufferSize);
    fsURI = URI.create(fileSystemURI);
    filePath = new Path(location);
    this.location = location;
    if (debugLeaks) {
        openFiles.add(location);/*  ww  w  .  j  a  v a 2s  .c  o  m*/
    }

    FileSystem fs = FileSystem.get(fsURI, new Configuration());
    hfile = fs.open(filePath);

    fileStatus = fs.getFileStatus(filePath);
}

From source file:Txt2SeqConverter.java

License:Apache License

public static void main(String[] args) {
    if (args.length != 2) {
        //System.out.println("Usage: env HADOOP_CLASSPATH=.:$HADOOP_CLASSPATH hadoop Txt2SeqConverter input output");
        System.out.println("Usage: hadoop Txt2SeqConverter input output");
        System.exit(1);/* w  ww  .jav  a  2s  .  c  o m*/
    }
    FileSystem fs = null;
    String seqFileName = args[1];
    Configuration conf = new Configuration();
    try {
        fs = FileSystem.get(URI.create(seqFileName), conf);
    } catch (IOException e) {
        System.out.println("ERROR: " + e.getMessage());
    }

    Path path = new Path(seqFileName);

    LongWritable key = new LongWritable();
    Text value = new Text();
    SequenceFile.Writer writer = null;
    try {
        //writer = SequenceFile.createWriter(fs, conf, path, LongWritable.class, Text.class, SequenceFile.CompressionType.BLOCK);
        writer = SequenceFile.createWriter(fs, conf, path, LongWritable.class, Text.class,
                SequenceFile.CompressionType.BLOCK, new com.hadoop.compression.lzo.LzoCodec());
        BufferedReader br = new BufferedReader(new FileReader(args[0]));

        int transactionID = 0;
        String transaction = null;
        while ((transaction = br.readLine()) != null) {
            key.set(transactionID);
            value.set(transaction);
            writer.append(key, value);

            transactionID++;
        }
    } catch (IOException e) {
        System.out.println("ERROR: " + e.getMessage());
    } finally {
        IOUtils.closeStream(writer);
    }
}

From source file:ReadAllTest.java

License:Apache License

public static void main(String[] args) throws Exception {
    if (args.length < 2) {
        System.out.println("ReadAllTest: must supply the HDFS uri and file to read");
        System.exit(1);/* ww w  .j a  v a 2s  .co  m*/
    }
    String hdfsUri = args[0];
    String fileName = args[1];
    final Configuration conf = new Configuration();
    FileSystem fs = FileSystem.get(new URI(hdfsUri), conf);

    byte ORIGINAL[] = new byte[10];
    for (int i = 0; i < ORIGINAL.length; i++) {
        ORIGINAL[i] = (byte) i;
    }
    FSDataOutputStream out = fs.create(new Path(fileName), (short) 1);
    try {
        out.write(ORIGINAL);
    } finally {
        out.close();
    }
    byte input[] = new byte[ORIGINAL.length];
    FSDataInputStream in = fs.open(new Path(fileName));
    try {
        in.readFully(input);
    } finally {
        in.close();
    }
    in = fs.open(new Path(fileName));
    try {
        in.readFully(0, input);
    } finally {
        in.close();
    }
}

From source file:MRDriver.java

License:Apache License

public int run(String args[]) throws Exception {
    FileSystem fs = null;//from   w  w  w. ja v a2s .  co  m
    Path samplesMapPath = null;

    float epsilon = Float.parseFloat(args[0]);
    double delta = Double.parseDouble(args[1]);
    int minFreqPercent = Integer.parseInt(args[2]);
    int d = Integer.parseInt(args[3]);
    int datasetSize = Integer.parseInt(args[4]);
    int numSamples = Integer.parseInt(args[5]);
    double phi = Double.parseDouble(args[6]);
    Random rand;

    /************************ Job 1 (local FIM) Configuration ************************/

    JobConf conf = new JobConf(getConf());

    /*
     * Compute the number of required "votes" for an itemsets to be
     * declared frequent    
     */
    // The +1 at the end is needed to ensure reqApproxNum > numsamples / 2.
    int reqApproxNum = (int) Math
            .floor((numSamples * (1 - phi)) - Math.sqrt(numSamples * (1 - phi) * 2 * Math.log(1 / delta))) + 1;
    int sampleSize = (int) Math.ceil((2 / Math.pow(epsilon, 2)) * (d + Math.log(1 / phi)));
    //System.out.println("reducersNum: " + numSamples + " reqApproxNum: " + reqApproxNum);

    conf.setInt("PARMM.reducersNum", numSamples);
    conf.setInt("PARMM.datasetSize", datasetSize);
    conf.setInt("PARMM.minFreqPercent", minFreqPercent);
    conf.setInt("PARMM.sampleSize", sampleSize);
    conf.setFloat("PARMM.epsilon", epsilon);

    // Set the number of reducers equal to the number of samples, to
    // maximize parallelism. Required by our Partitioner.
    conf.setNumReduceTasks(numSamples);

    // XXX: why do we disable the speculative execution? MR
    conf.setBoolean("mapred.reduce.tasks.speculative.execution", false);
    conf.setInt("mapred.task.timeout", MR_TIMEOUT_MILLI);

    /* 
     * Enable compression of map output.
     *
     * We do it for this job and not for the aggregation one because
     * each mapper there only print out one record for each itemset,
     * so there isn't much to compress, I'd say. MR
     *
     * In Amazon MapReduce compression of the map output seems to be
     * happen by default and the Snappy codec is used, which is
     * extremely fast.
     */
    conf.setBoolean("mapred.compress.map.output", true);
    //conf.setMapOutputCompressorClass(com.hadoop.compression.lzo.LzoCodec.class);

    conf.setJarByClass(MRDriver.class);

    conf.setMapOutputKeyClass(IntWritable.class);
    conf.setMapOutputValueClass(Text.class);

    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(DoubleWritable.class);

    conf.setInputFormat(SequenceFileInputFormat.class);
    // We write the collections found in a reducers as a SequenceFile 
    conf.setOutputFormat(SequenceFileOutputFormat.class);
    SequenceFileOutputFormat.setOutputPath(conf, new Path(args[9]));

    // set the mapper class based on command line option
    switch (Integer.parseInt(args[7])) {
    case 1:
        System.out.println("running partition mapper...");
        SequenceFileInputFormat.addInputPath(conf, new Path(args[8]));
        conf.setMapperClass(PartitionMapper.class);
        break;
    case 2:
        System.out.println("running binomial mapper...");
        SequenceFileInputFormat.addInputPath(conf, new Path(args[8]));
        conf.setMapperClass(BinomialSamplerMapper.class);
        break;
    case 3:
        System.out.println("running coin mapper...");
        SequenceFileInputFormat.addInputPath(conf, new Path(args[8]));
        conf.setMapperClass(CoinFlipSamplerMapper.class);
    case 4:
        System.out.println("running sampler mapper...");
        SequenceFileInputFormat.addInputPath(conf, new Path(args[8]));
        conf.setMapperClass(InputSamplerMapper.class);

        // create a random sample of size T*m
        rand = new Random();
        long sampling_start_time = System.nanoTime();
        int[] samples = new int[numSamples * sampleSize];
        for (int i = 0; i < numSamples * sampleSize; i++) {
            samples[i] = rand.nextInt(datasetSize);
        }

        // for each key in the sample, create a list of all T samples to which this key belongs
        Hashtable<LongWritable, ArrayList<IntWritable>> hashTable = new Hashtable<LongWritable, ArrayList<IntWritable>>();
        for (int i = 0; i < numSamples * sampleSize; i++) {
            ArrayList<IntWritable> sampleIDs = null;
            LongWritable key = new LongWritable(samples[i]);
            if (hashTable.containsKey(key))
                sampleIDs = hashTable.get(key);
            else
                sampleIDs = new ArrayList<IntWritable>();
            sampleIDs.add(new IntWritable(i % numSamples));
            hashTable.put(key, sampleIDs);
        }

        /*
         * Convert the Hastable to a MapWritable which we will
         * write to HDFS and distribute to all Mappers using
         * DistributedCache
         */
        MapWritable map = new MapWritable();
        for (LongWritable key : hashTable.keySet()) {
            ArrayList<IntWritable> sampleIDs = hashTable.get(key);
            IntArrayWritable sampleIDsIAW = new IntArrayWritable();
            sampleIDsIAW.set(sampleIDs.toArray(new IntWritable[sampleIDs.size()]));
            map.put(key, sampleIDsIAW);
        }

        fs = FileSystem.get(URI.create("samplesMap.ser"), conf);
        samplesMapPath = new Path("samplesMap.ser");
        FSDataOutputStream out = fs.create(samplesMapPath, true);
        map.write(out);
        out.sync();
        out.close();
        DistributedCache.addCacheFile(new URI(fs.getWorkingDirectory() + "/samplesMap.ser#samplesMap.ser"),
                conf);
        // stop the sampling timer   
        long sampling_end_time = System.nanoTime();
        long sampling_runtime = (sampling_end_time - sampling_start_time) / 1000000;
        System.out.println("sampling runtime (milliseconds): " + sampling_runtime);
        break; // end switch case
    case 5:
        System.out.println("running random integer partition mapper...");
        conf.setInputFormat(WholeSplitInputFormat.class);
        Path inputFilePath = new Path(args[8]);
        WholeSplitInputFormat.addInputPath(conf, inputFilePath);
        conf.setMapperClass(RandIntPartSamplerMapper.class);
        // Compute number of map tasks.
        fs = inputFilePath.getFileSystem(conf);
        FileStatus inputFileStatus = fs.getFileStatus(inputFilePath);
        long len = inputFileStatus.getLen();
        long blockSize = inputFileStatus.getBlockSize();
        conf.setLong("mapred.min.split.size", blockSize);
        conf.setLong("mapred.max.split.size", blockSize);
        int mapTasksNum = ((int) (len / blockSize)) + 1;
        conf.setNumMapTasks(mapTasksNum);
        //System.out.println("len: " + len + " blockSize: " 
        //      + blockSize + " mapTasksNum: " + mapTasksNum);
        // Extract random integer partition of total sample
        // size into up to mapTasksNum partitions.
        // XXX I'm not sure this is a correct way to do
        // it.
        rand = new Random();
        IntWritable[][] toSampleArr = new IntWritable[mapTasksNum][numSamples];
        for (int j = 0; j < numSamples; j++) {
            IntWritable[] tempToSampleArr = new IntWritable[mapTasksNum];
            int sum = 0;
            int i;
            for (i = 0; i < mapTasksNum - 1; i++) {
                int size = rand.nextInt(sampleSize - sum);
                tempToSampleArr[i] = new IntWritable(size);
                sum += size;
                if (sum > numSamples * sampleSize) {
                    System.out.println("Something went wrong generating the sample Sizes");
                    System.exit(1);
                }
                if (sum == sampleSize) {
                    break;
                }
            }
            if (i == mapTasksNum - 1) {
                tempToSampleArr[i] = new IntWritable(sampleSize - sum);
            } else {
                for (; i < mapTasksNum; i++) {
                    tempToSampleArr[i] = new IntWritable(0);
                }
            }
            Collections.shuffle(Arrays.asList(tempToSampleArr));
            for (i = 0; i < mapTasksNum; i++) {
                toSampleArr[i][j] = tempToSampleArr[i];
            }
        }

        for (int i = 0; i < mapTasksNum; i++) {
            DefaultStringifier.storeArray(conf, toSampleArr[i], "PARMM.toSampleArr_" + i);
        }
        break;
    default:
        System.err.println("Wrong Mapper ID. Can only be in [1,5]");
        System.exit(1);
        break;
    }

    /*
     * We don't use the default hash partitioner because we want to
     * maximize the parallelism. That's why we also fix the number
     * of reducers.
     */
    conf.setPartitionerClass(FIMPartitioner.class);

    conf.setReducerClass(FIMReducer.class);

    /************************ Job 2 (aggregation) Configuration ************************/

    JobConf confAggr = new JobConf(getConf());

    confAggr.setInt("PARMM.reducersNum", numSamples);
    confAggr.setInt("PARMM.reqApproxNum", reqApproxNum);
    confAggr.setInt("PARMM.sampleSize", sampleSize);
    confAggr.setFloat("PARMM.epsilon", epsilon);

    // XXX: Why do we disable speculative execution? MR
    confAggr.setBoolean("mapred.reduce.tasks.speculative.execution", false);
    confAggr.setInt("mapred.task.timeout", MR_TIMEOUT_MILLI);

    confAggr.setJarByClass(MRDriver.class);

    confAggr.setMapOutputKeyClass(Text.class);
    confAggr.setMapOutputValueClass(DoubleWritable.class);

    confAggr.setOutputKeyClass(Text.class);
    confAggr.setOutputValueClass(Text.class);

    confAggr.setMapperClass(AggregateMapper.class);
    confAggr.setReducerClass(AggregateReducer.class);

    confAggr.setInputFormat(CombineSequenceFileInputFormat.class);
    SequenceFileInputFormat.addInputPath(confAggr, new Path(args[9]));

    FileOutputFormat.setOutputPath(confAggr, new Path(args[10]));

    long FIMjob_start_time = System.currentTimeMillis();
    RunningJob FIMjob = JobClient.runJob(conf);
    long FIMjob_end_time = System.currentTimeMillis();

    RunningJob aggregateJob = JobClient.runJob(confAggr);
    long aggrJob_end_time = System.currentTimeMillis();

    long FIMjob_runtime = FIMjob_end_time - FIMjob_start_time;

    long aggrJob_runtime = aggrJob_end_time - FIMjob_end_time;

    if (args[7].equals("4")) {
        // Remove samplesMap file 
        fs.delete(samplesMapPath, false);
    }

    Counters counters = FIMjob.getCounters();
    Counters.Group FIMMapperStartTimesCounters = counters.getGroup("FIMMapperStart");
    long[] FIMMapperStartTimes = new long[FIMMapperStartTimesCounters.size()];
    int i = 0;
    for (Counters.Counter counter : FIMMapperStartTimesCounters) {
        FIMMapperStartTimes[i++] = counter.getCounter();
    }

    Counters.Group FIMMapperEndTimesCounters = counters.getGroup("FIMMapperEnd");
    long[] FIMMapperEndTimes = new long[FIMMapperEndTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : FIMMapperEndTimesCounters) {
        FIMMapperEndTimes[i++] = counter.getCounter();
    }

    Counters.Group FIMReducerStartTimesCounters = counters.getGroup("FIMReducerStart");
    long[] FIMReducerStartTimes = new long[FIMReducerStartTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : FIMReducerStartTimesCounters) {
        FIMReducerStartTimes[i++] = counter.getCounter();
    }

    Counters.Group FIMReducerEndTimesCounters = counters.getGroup("FIMReducerEnd");
    long[] FIMReducerEndTimes = new long[FIMReducerEndTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : FIMReducerEndTimesCounters) {
        FIMReducerEndTimes[i++] = counter.getCounter();
    }

    Counters countersAggr = aggregateJob.getCounters();
    Counters.Group AggregateMapperStartTimesCounters = countersAggr.getGroup("AggregateMapperStart");
    long[] AggregateMapperStartTimes = new long[AggregateMapperStartTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : AggregateMapperStartTimesCounters) {
        AggregateMapperStartTimes[i++] = counter.getCounter();
    }

    Counters.Group AggregateMapperEndTimesCounters = countersAggr.getGroup("AggregateMapperEnd");
    long[] AggregateMapperEndTimes = new long[AggregateMapperEndTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : AggregateMapperEndTimesCounters) {
        AggregateMapperEndTimes[i++] = counter.getCounter();
    }

    Counters.Group AggregateReducerStartTimesCounters = countersAggr.getGroup("AggregateReducerStart");
    long[] AggregateReducerStartTimes = new long[AggregateReducerStartTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : AggregateReducerStartTimesCounters) {
        AggregateReducerStartTimes[i++] = counter.getCounter();
    }

    Counters.Group AggregateReducerEndTimesCounters = countersAggr.getGroup("AggregateReducerEnd");
    long[] AggregateReducerEndTimes = new long[AggregateReducerEndTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : AggregateReducerEndTimesCounters) {
        AggregateReducerEndTimes[i++] = counter.getCounter();
    }

    long FIMMapperStartMin = FIMMapperStartTimes[0];
    for (long l : FIMMapperStartTimes) {
        if (l < FIMMapperStartMin) {
            FIMMapperStartMin = l;
        }
    }
    long FIMMapperEndMax = FIMMapperEndTimes[0];
    for (long l : FIMMapperEndTimes) {
        if (l > FIMMapperEndMax) {
            FIMMapperEndMax = l;
        }
    }
    System.out.println("FIM job setup time (milliseconds): " + (FIMMapperStartMin - FIMjob_start_time));
    System.out.println("FIMMapper total runtime (milliseconds): " + (FIMMapperEndMax - FIMMapperStartMin));
    long[] FIMMapperRunTimes = new long[FIMMapperStartTimes.length];
    long FIMMapperRunTimesSum = 0;
    for (int l = 0; l < FIMMapperStartTimes.length; l++) {
        FIMMapperRunTimes[l] = FIMMapperEndTimes[l] - FIMMapperStartTimes[l];
        FIMMapperRunTimesSum += FIMMapperRunTimes[l];
    }
    System.out.println("FIMMapper average task runtime (milliseconds): "
            + FIMMapperRunTimesSum / FIMMapperStartTimes.length);
    long FIMMapperRunTimesMin = FIMMapperRunTimes[0];
    long FIMMapperRunTimesMax = FIMMapperRunTimes[0];
    for (long l : FIMMapperRunTimes) {
        if (l < FIMMapperRunTimesMin) {
            FIMMapperRunTimesMin = l;
        }
        if (l > FIMMapperRunTimesMax) {
            FIMMapperRunTimesMax = l;
        }
    }
    System.out.println("FIMMapper minimum task runtime (milliseconds): " + FIMMapperRunTimesMin);
    System.out.println("FIMMapper maximum task runtime (milliseconds): " + FIMMapperRunTimesMax);

    long FIMReducerStartMin = FIMReducerStartTimes[0];
    for (long l : FIMReducerStartTimes) {
        if (l < FIMReducerStartMin) {
            FIMReducerStartMin = l;
        }
    }
    long FIMReducerEndMax = FIMReducerEndTimes[0];
    for (long l : FIMReducerEndTimes) {
        if (l > FIMReducerEndMax) {
            FIMReducerEndMax = l;
        }
    }
    System.out
            .println("FIM job shuffle phase runtime (milliseconds): " + (FIMReducerStartMin - FIMMapperEndMax));
    System.out.println("FIMReducer total runtime (milliseconds): " + (FIMReducerEndMax - FIMReducerStartMin));
    long[] FIMReducerRunTimes = new long[FIMReducerStartTimes.length];
    long FIMReducerRunTimesSum = 0;
    for (int l = 0; l < FIMReducerStartTimes.length; l++) {
        FIMReducerRunTimes[l] = FIMReducerEndTimes[l] - FIMReducerStartTimes[l];
        FIMReducerRunTimesSum += FIMReducerRunTimes[l];
    }
    System.out.println("FIMReducer average task runtime (milliseconds): "
            + FIMReducerRunTimesSum / FIMReducerStartTimes.length);
    long FIMReducerRunTimesMin = FIMReducerRunTimes[0];
    long FIMReducerRunTimesMax = FIMReducerRunTimes[0];
    for (long l : FIMReducerRunTimes) {
        if (l < FIMReducerRunTimesMin) {
            FIMReducerRunTimesMin = l;
        }
        if (l > FIMReducerRunTimesMax) {
            FIMReducerRunTimesMax = l;
        }
    }
    System.out.println("FIMReducer minimum task runtime (milliseconds): " + FIMReducerRunTimesMin);
    System.out.println("FIMReducer maximum task runtime (milliseconds): " + FIMReducerRunTimesMax);
    System.out.println("FIM job cooldown time (milliseconds): " + (FIMjob_end_time - FIMReducerEndMax));

    long AggregateMapperStartMin = AggregateMapperStartTimes[0];
    for (long l : AggregateMapperStartTimes) {
        if (l < AggregateMapperStartMin) {
            AggregateMapperStartMin = l;
        }
    }
    long AggregateMapperEndMax = AggregateMapperEndTimes[0];
    for (long l : AggregateMapperEndTimes) {
        if (l > AggregateMapperEndMax) {
            AggregateMapperEndMax = l;
        }
    }
    System.out.println(
            "Aggregation job setup time (milliseconds): " + (AggregateMapperStartMin - FIMjob_end_time));
    System.out.println("AggregateMapper total runtime (milliseconds): "
            + (AggregateMapperEndMax - AggregateMapperStartMin));
    long[] AggregateMapperRunTimes = new long[AggregateMapperStartTimes.length];
    long AggregateMapperRunTimesSum = 0;
    for (int l = 0; l < AggregateMapperStartTimes.length; l++) {
        AggregateMapperRunTimes[l] = AggregateMapperEndTimes[l] - AggregateMapperStartTimes[l];
        AggregateMapperRunTimesSum += AggregateMapperRunTimes[l];
    }
    System.out.println("AggregateMapper average task runtime (milliseconds): "
            + AggregateMapperRunTimesSum / AggregateMapperStartTimes.length);
    long AggregateMapperRunTimesMin = AggregateMapperRunTimes[0];
    long AggregateMapperRunTimesMax = AggregateMapperRunTimes[0];
    for (long l : AggregateMapperRunTimes) {
        if (l < AggregateMapperRunTimesMin) {
            AggregateMapperRunTimesMin = l;
        }
        if (l > AggregateMapperRunTimesMax) {
            AggregateMapperRunTimesMax = l;
        }
    }
    System.out.println("AggregateMapper minimum task runtime (milliseconds): " + AggregateMapperRunTimesMin);
    System.out.println("AggregateMapper maximum task runtime (milliseconds): " + AggregateMapperRunTimesMax);

    long AggregateReducerStartMin = AggregateReducerStartTimes[0];
    for (long l : AggregateReducerStartTimes) {
        if (l < AggregateReducerStartMin) {
            AggregateReducerStartMin = l;
        }
    }
    long AggregateReducerEndMax = AggregateReducerEndTimes[0];
    for (long l : AggregateReducerEndTimes) {
        if (l > AggregateReducerEndMax) {
            AggregateReducerEndMax = l;
        }
    }
    System.out.println("Aggregate job round shuffle phase runtime (milliseconds): "
            + (AggregateReducerStartMin - AggregateMapperEndMax));
    System.out.println("AggregateReducer total runtime (milliseconds): "
            + (AggregateReducerEndMax - AggregateReducerStartMin));
    long[] AggregateReducerRunTimes = new long[AggregateReducerStartTimes.length];
    long AggregateReducerRunTimesSum = 0;
    for (int l = 0; l < AggregateReducerStartTimes.length; l++) {
        AggregateReducerRunTimes[l] = AggregateReducerEndTimes[l] - AggregateReducerStartTimes[l];
        AggregateReducerRunTimesSum += AggregateReducerRunTimes[l];
    }
    System.out.println("AggregateReducer average task runtime (milliseconds): "
            + AggregateReducerRunTimesSum / AggregateReducerStartTimes.length);
    long AggregateReducerRunTimesMin = AggregateReducerRunTimes[0];
    long AggregateReducerRunTimesMax = AggregateReducerRunTimes[0];
    for (long l : AggregateReducerRunTimes) {
        if (l < AggregateReducerRunTimesMin) {
            AggregateReducerRunTimesMin = l;
        }
        if (l > AggregateReducerRunTimesMax) {
            AggregateReducerRunTimesMax = l;
        }
    }
    System.out.println("AggregateReducer minimum task runtime (milliseconds): " + AggregateReducerRunTimesMin);
    System.out.println("AggregateReducer maximum task runtime (milliseconds): " + AggregateReducerRunTimesMax);

    System.out.println(
            "Aggregation job cooldown time (milliseconds): " + (aggrJob_end_time - AggregateReducerEndMax));

    System.out
            .println("total runtime (all inclusive) (milliseconds): " + (aggrJob_end_time - FIMjob_start_time));
    System.out.println("total runtime (no FIM job setup, no aggregation job cooldown) (milliseconds): "
            + (AggregateReducerEndMax - FIMMapperStartMin));
    System.out.println("total runtime (no setups, no cooldowns) (milliseconds): "
            + (FIMReducerEndMax - FIMMapperStartMin + AggregateReducerEndMax - AggregateMapperStartMin));
    System.out.println("FIM job runtime (including setup and cooldown) (milliseconds): " + FIMjob_runtime);
    System.out.println("FIM job runtime (no setup, no cooldown) (milliseconds): "
            + (FIMReducerEndMax - FIMMapperStartMin));
    System.out.println(
            "Aggregation job runtime (including setup and cooldown) (milliseconds): " + aggrJob_runtime);
    System.out.println("Aggregation job runtime (no setup, no cooldown) (milliseconds): "
            + (AggregateReducerEndMax - AggregateMapperStartMin));

    return 0;
}

From source file:Vectors.java

License:Apache License

public static void write(Vector vector, Path path, Configuration conf, boolean laxPrecision)
        throws IOException {
    FileSystem fs = FileSystem.get(path.toUri(), conf);
    FSDataOutputStream out = fs.create(path);
    try {//  w  ww.j a  v  a 2s  . c o m
        VectorWritable vectorWritable = new VectorWritable(vector);
        vectorWritable.setWritesLaxPrecision(laxPrecision);
        vectorWritable.write(out);
    } finally {
        Closeables.closeQuietly(out);
    }
}

From source file:Vectors.java

License:Apache License

public static OpenIntIntHashMap readAsIntMap(Path path, Configuration conf) throws IOException {
    FileSystem fs = FileSystem.get(path.toUri(), conf);
    FSDataInputStream in = fs.open(path);
    try {//ww w . ja va  2 s  . co  m
        return readAsIntMap(in);
    } finally {
        Closeables.closeQuietly(in);
    }
}

From source file:Vectors.java

License:Apache License

public static Vector read(Path path, Configuration conf) throws IOException {
    FileSystem fs = FileSystem.get(path.toUri(), conf);
    FSDataInputStream in = fs.open(path);
    try {//from   w w w  . j a v  a2  s  .  c o m
        return VectorWritable.readVector(in);
    } finally {
        Closeables.closeQuietly(in);
    }
}