Example usage for org.apache.hadoop.fs Path getFileSystem

List of usage examples for org.apache.hadoop.fs Path getFileSystem

Introduction

In this page you can find the example usage for org.apache.hadoop.fs Path getFileSystem.

Prototype

public FileSystem getFileSystem(Configuration conf) throws IOException 

Source Link

Document

Return the FileSystem that owns this Path.

Usage

From source file:PageInputFormat.java

License:Apache License

public InputSplit[] getSplits(JobConf job, int num) throws IOException {
    long minSize = 1;
    long maxSize = getMaxSplitSize(job);

    // generate splits
    List<InputSplit> splits = new ArrayList<InputSplit>();
    FileStatus[] files = listStatus(job);
    for (FileStatus file : files) {
        Path path = file.getPath();
        long length = file.getLen();
        if (length != 0) {
            BlockLocation[] blkLocations;
            FileSystem fs = path.getFileSystem(job);
            blkLocations = fs.getFileBlockLocations(file, 0, length);
            if (isSplitable(path.getFileSystem(job), path)) {
                long blockSize = file.getBlockSize();
                long splitSize = computeSplitSize(blockSize, minSize, maxSize);

                long bytesRemaining = length;
                while (((double) bytesRemaining) / splitSize > SPLIT_SLOP) {
                    int blkIndex = getBlockIndex(blkLocations, length - bytesRemaining);
                    splits.add(makeSplit(path, length - bytesRemaining, splitSize,
                            blkLocations[blkIndex].getHosts()));
                    bytesRemaining -= splitSize;
                }//from www .  ja  v a 2 s.c  o  m

                if (bytesRemaining != 0) {
                    int blkIndex = getBlockIndex(blkLocations, length - bytesRemaining);
                    splits.add(makeSplit(path, length - bytesRemaining, bytesRemaining,
                            blkLocations[blkIndex].getHosts()));
                }
            } else
                splits.add(makeSplit(path, 0, length, blkLocations[0].getHosts()));
        } else
            splits.add(makeSplit(path, 0, length, new String[0]));
    }
    // Save the number of input files for metrics/loadgen
    job.setLong(NUM_INPUT_FILES, files.length);
    return splits.toArray(new InputSplit[0]);

}

From source file:Text2FormatStorageMR.java

License:Open Source License

@SuppressWarnings("deprecation")
public static void main(String[] args) throws Exception {

    if (args.length != 2) {
        System.out.println("FormatFileMR <input> <output>");
        System.exit(-1);/*from   w w w.ja  v  a  2s . co  m*/
    }

    JobConf conf = new JobConf(FormatStorageMR.class);

    conf.setJobName("Text2FormatMR");

    conf.setNumMapTasks(1);
    conf.setNumReduceTasks(4);

    conf.setOutputKeyClass(LongWritable.class);
    conf.setOutputValueClass(Unit.Record.class);

    conf.setMapperClass(TextFileTestMapper.class);
    conf.setReducerClass(FormatFileTestReducer.class);

    conf.setInputFormat(TextInputFormat.class);
    conf.setOutputFormat(FormatStorageOutputFormat.class);
    conf.set("mapred.output.compress", "flase");

    Head head = new Head();
    initHead(head);

    head.toJobConf(conf);

    FileInputFormat.setInputPaths(conf, args[0]);
    Path outputPath = new Path(args[1]);
    FileOutputFormat.setOutputPath(conf, outputPath);

    FileSystem fs = outputPath.getFileSystem(conf);
    fs.delete(outputPath, true);

    JobClient jc = new JobClient(conf);
    RunningJob rj = null;
    rj = jc.submitJob(conf);

    String lastReport = "";
    SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd hh:mm:ss,SSS");
    long reportTime = System.currentTimeMillis();
    long maxReportInterval = 3 * 1000;
    while (!rj.isComplete()) {
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
        }

        int mapProgress = Math.round(rj.mapProgress() * 100);
        int reduceProgress = Math.round(rj.reduceProgress() * 100);

        String report = " map = " + mapProgress + "%,  reduce = " + reduceProgress + "%";

        if (!report.equals(lastReport) || System.currentTimeMillis() >= reportTime + maxReportInterval) {

            String output = dateFormat.format(Calendar.getInstance().getTime()) + report;
            System.out.println(output);
            lastReport = report;
            reportTime = System.currentTimeMillis();
        }
    }

    System.exit(0);

}

From source file:HiveKeyIgnoringBAMOutputFormat.java

License:Open Source License

private void setSAMHeaderFrom(JobConf job) throws IOException {
    if (wrappedOutputFormat.getSAMHeader() != null)
        return;/*from w  ww .j av  a2s  .c om*/

    // XXX: We're not told where to take the SAM header from so we just merge
    // them all. There should probably be a better way of doing this.

    final List<SAMFileHeader> headers = new ArrayList<SAMFileHeader>();

    // The "best" sort order among the headers: unsorted if they're sorted
    // differently, otherwise their common sort order.
    SAMFileHeader.SortOrder sortOrder = null;

    // XXX: it seems that FileInputFormat.getInputPaths(job) will point to
    // the directories of the input tables in the query. I'm not sure if this
    // is always the case.
    for (final Path table : FileInputFormat.getInputPaths(job)) {
        final FileSystem fs = table.getFileSystem(job);
        for (final FileStatus stat : fs.listStatus(table)) {
            if (!stat.isFile())
                throw new IOException("Unexpected directory '" + stat.getPath() + "', expected only files");

            final SAMFileReader r = new SAMFileReader(fs.open(stat.getPath()));
            final SAMFileHeader h = r.getFileHeader();
            r.close();
            headers.add(h);

            if (sortOrder == null) {
                sortOrder = h.getSortOrder();
                continue;
            }
            if (sortOrder == SAMFileHeader.SortOrder.unsorted)
                continue;
            if (sortOrder != h.getSortOrder())
                sortOrder = SAMFileHeader.SortOrder.unsorted;
        }
    }

    wrappedOutputFormat.setSAMHeader(new SamFileHeaderMerger(sortOrder, headers, true).getMergedHeader());
}

From source file:ComRoughSetApproInputSampler.java

License:Apache License

/**
 * Write a partition file for the given job, using the Sampler provided.
 * Queries the sampler for a sample keyset, sorts by the output key
 * comparator, selects the keys for each rank, and writes to the destination
 * returned from {@link TotalOrderPartitioner#getPartitionFile}.
 *//*from   w w  w  .j a  v  a 2 s  . c o  m*/
@SuppressWarnings("unchecked") // getInputFormat, getOutputKeyComparator
public static <K, V> void writePartitionFile(Job job, Sampler<K, V> sampler)
        throws IOException, ClassNotFoundException, InterruptedException {
    Configuration conf = job.getConfiguration();
    final InputFormat inf = ReflectionUtils.newInstance(job.getInputFormatClass(), conf);
    int numPartitions = job.getNumReduceTasks();
    K[] samples = (K[]) sampler.getSample(inf, job);
    LOG.info("Using " + samples.length + " samples");
    RawComparator<K> comparator = (RawComparator<K>) job.getSortComparator();
    Arrays.sort(samples, comparator);
    Path dst = new Path(TotalOrderPartitioner.getPartitionFile(conf));
    FileSystem fs = dst.getFileSystem(conf);
    if (fs.exists(dst)) {
        fs.delete(dst, false);
    }
    SequenceFile.Writer writer = SequenceFile.createWriter(fs, conf, dst, job.getMapOutputKeyClass(),
            NullWritable.class);
    NullWritable nullValue = NullWritable.get();
    float stepSize = samples.length / (float) numPartitions;
    int last = -1;
    for (int i = 1; i < numPartitions; ++i) {
        int k = Math.round(stepSize * i);
        while (last >= k && comparator.compare(samples[last], samples[k]) == 0) {
            ++k;
        }
        writer.append(samples[k], nullValue);
        last = k;
    }
    writer.close();
}

From source file:DeprecatedBAMRecordReader.java

License:Open Source License

public DeprecatedBAMRecordReader(InputSplit split, final JobConf job, Reporter reporter) throws IOException {
    if (split instanceof DeprecatedFileVirtualSplit) {
        rr.initialize(((DeprecatedFileVirtualSplit) split).vs, new FakeTaskAttemptContext(job));

        splitLength = split.getLength();
        return;/*from  w  w w .j a  va2  s . com*/

    }
    if (split instanceof FileSplit) {
        // XXX             XXX
        //     XXX     XXX
        //         XXX
        //     XXX     XXX
        // XXX             XXX
        //
        // Hive gives us its own custom FileSplits for some reason, so we have
        // to do our own split alignment. (Sometimes, anyway; for "select
        // count(*) from table" we get FileSplits here, but for "select * from
        // table" our input format is used directly. Perhaps it's only because
        // the latter doesn't spawn a MapReduce job, so getting a FileSplit
        // here is the common case.)
        //
        // Since we get only one split at a time here, this is very poor: we
        // have to open the file for every split, even if it's the same file
        // every time.
        //
        // This should always work, but might be /very/ slow. I can't think of
        // a better way.

        final FileSplit fspl = (FileSplit) split;
        final Path path = fspl.getPath();

        final long beg = fspl.getStart();
        final long end = beg + fspl.getLength();

        final SeekableStream sin = WrapSeekable.openPath(path.getFileSystem(job), path);
        final BAMSplitGuesser guesser = new BAMSplitGuesser(sin);

        final long alignedBeg = guesser.guessNextBAMRecordStart(beg, end);
        sin.close();

        if (alignedBeg == end)
            throw new IOException("Guesser found nothing after pos " + beg);

        final long alignedEnd = end << 16 | 0xffff;
        splitLength = (alignedEnd - alignedBeg) >> 16;

        rr.initialize(new FileVirtualSplit(path, alignedBeg, alignedEnd, fspl.getLocations()),
                new FakeTaskAttemptContext(job));
        return;
    }

    throw new ClassCastException("Can only handle DeprecatedFileVirtualSplit and FileSplit");
}

From source file:DupleInputFormat.java

License:Apache License

/** 
 * Generate the list of files and make them into FileSplits.
 * @param job the job context//from  w  w  w .jav a  2s  .c o  m
 * @throws IOException
 */
public List<InputSplit> getSplits(JobContext job) throws IOException {
    long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));
    long maxSize = getMaxSplitSize(job);

    // generate splits
    List<InputSplit> splits = new ArrayList<InputSplit>();
    List<FileStatus> files = listStatus(job);
    // times that each file exists in the files List
    ArrayList<Integer> times = new ArrayList<Integer>();
    ArrayList<Path> paths = new ArrayList<Path>();

    for (FileStatus file : files) {
        Path path = file.getPath();
        long length = file.getLen();
        if (length != 0) {
            FileSystem fs = path.getFileSystem(job.getConfiguration());
            BlockLocation[] blkLocations = fs.getFileBlockLocations(file, 0, length);

            int index;
            if ((index = paths.indexOf(path)) != -1)
                times.set(index, times.get(index) + 1);
            else {
                times.add(0);
                paths.add(path);
                index = times.size() - 1;
            }

            // not splitable
            splits.add(makeSplit(path, 0, length, blkLocations[0].getHosts(), times.get(index)));

        } else {
            //Create empty hosts array for zero length files
            splits.add(makeSplit(path, 0, length, new String[0]));
        }
    }
    // Save the number of input files for metrics/loadgen
    job.getConfiguration().setLong(NUM_INPUT_FILES, files.size());
    //LOG.debug("Total # of splits: " + splits.size());
    return splits;
}

From source file:MRDriver.java

License:Apache License

public int run(String args[]) throws Exception {
    FileSystem fs = null;//from w w  w.j a v a  2  s .  com
    Path samplesMapPath = null;

    float epsilon = Float.parseFloat(args[0]);
    double delta = Double.parseDouble(args[1]);
    int minFreqPercent = Integer.parseInt(args[2]);
    int d = Integer.parseInt(args[3]);
    int datasetSize = Integer.parseInt(args[4]);
    int numSamples = Integer.parseInt(args[5]);
    double phi = Double.parseDouble(args[6]);
    Random rand;

    /************************ Job 1 (local FIM) Configuration ************************/

    JobConf conf = new JobConf(getConf());

    /*
     * Compute the number of required "votes" for an itemsets to be
     * declared frequent    
     */
    // The +1 at the end is needed to ensure reqApproxNum > numsamples / 2.
    int reqApproxNum = (int) Math
            .floor((numSamples * (1 - phi)) - Math.sqrt(numSamples * (1 - phi) * 2 * Math.log(1 / delta))) + 1;
    int sampleSize = (int) Math.ceil((2 / Math.pow(epsilon, 2)) * (d + Math.log(1 / phi)));
    //System.out.println("reducersNum: " + numSamples + " reqApproxNum: " + reqApproxNum);

    conf.setInt("PARMM.reducersNum", numSamples);
    conf.setInt("PARMM.datasetSize", datasetSize);
    conf.setInt("PARMM.minFreqPercent", minFreqPercent);
    conf.setInt("PARMM.sampleSize", sampleSize);
    conf.setFloat("PARMM.epsilon", epsilon);

    // Set the number of reducers equal to the number of samples, to
    // maximize parallelism. Required by our Partitioner.
    conf.setNumReduceTasks(numSamples);

    // XXX: why do we disable the speculative execution? MR
    conf.setBoolean("mapred.reduce.tasks.speculative.execution", false);
    conf.setInt("mapred.task.timeout", MR_TIMEOUT_MILLI);

    /* 
     * Enable compression of map output.
     *
     * We do it for this job and not for the aggregation one because
     * each mapper there only print out one record for each itemset,
     * so there isn't much to compress, I'd say. MR
     *
     * In Amazon MapReduce compression of the map output seems to be
     * happen by default and the Snappy codec is used, which is
     * extremely fast.
     */
    conf.setBoolean("mapred.compress.map.output", true);
    //conf.setMapOutputCompressorClass(com.hadoop.compression.lzo.LzoCodec.class);

    conf.setJarByClass(MRDriver.class);

    conf.setMapOutputKeyClass(IntWritable.class);
    conf.setMapOutputValueClass(Text.class);

    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(DoubleWritable.class);

    conf.setInputFormat(SequenceFileInputFormat.class);
    // We write the collections found in a reducers as a SequenceFile 
    conf.setOutputFormat(SequenceFileOutputFormat.class);
    SequenceFileOutputFormat.setOutputPath(conf, new Path(args[9]));

    // set the mapper class based on command line option
    switch (Integer.parseInt(args[7])) {
    case 1:
        System.out.println("running partition mapper...");
        SequenceFileInputFormat.addInputPath(conf, new Path(args[8]));
        conf.setMapperClass(PartitionMapper.class);
        break;
    case 2:
        System.out.println("running binomial mapper...");
        SequenceFileInputFormat.addInputPath(conf, new Path(args[8]));
        conf.setMapperClass(BinomialSamplerMapper.class);
        break;
    case 3:
        System.out.println("running coin mapper...");
        SequenceFileInputFormat.addInputPath(conf, new Path(args[8]));
        conf.setMapperClass(CoinFlipSamplerMapper.class);
    case 4:
        System.out.println("running sampler mapper...");
        SequenceFileInputFormat.addInputPath(conf, new Path(args[8]));
        conf.setMapperClass(InputSamplerMapper.class);

        // create a random sample of size T*m
        rand = new Random();
        long sampling_start_time = System.nanoTime();
        int[] samples = new int[numSamples * sampleSize];
        for (int i = 0; i < numSamples * sampleSize; i++) {
            samples[i] = rand.nextInt(datasetSize);
        }

        // for each key in the sample, create a list of all T samples to which this key belongs
        Hashtable<LongWritable, ArrayList<IntWritable>> hashTable = new Hashtable<LongWritable, ArrayList<IntWritable>>();
        for (int i = 0; i < numSamples * sampleSize; i++) {
            ArrayList<IntWritable> sampleIDs = null;
            LongWritable key = new LongWritable(samples[i]);
            if (hashTable.containsKey(key))
                sampleIDs = hashTable.get(key);
            else
                sampleIDs = new ArrayList<IntWritable>();
            sampleIDs.add(new IntWritable(i % numSamples));
            hashTable.put(key, sampleIDs);
        }

        /*
         * Convert the Hastable to a MapWritable which we will
         * write to HDFS and distribute to all Mappers using
         * DistributedCache
         */
        MapWritable map = new MapWritable();
        for (LongWritable key : hashTable.keySet()) {
            ArrayList<IntWritable> sampleIDs = hashTable.get(key);
            IntArrayWritable sampleIDsIAW = new IntArrayWritable();
            sampleIDsIAW.set(sampleIDs.toArray(new IntWritable[sampleIDs.size()]));
            map.put(key, sampleIDsIAW);
        }

        fs = FileSystem.get(URI.create("samplesMap.ser"), conf);
        samplesMapPath = new Path("samplesMap.ser");
        FSDataOutputStream out = fs.create(samplesMapPath, true);
        map.write(out);
        out.sync();
        out.close();
        DistributedCache.addCacheFile(new URI(fs.getWorkingDirectory() + "/samplesMap.ser#samplesMap.ser"),
                conf);
        // stop the sampling timer   
        long sampling_end_time = System.nanoTime();
        long sampling_runtime = (sampling_end_time - sampling_start_time) / 1000000;
        System.out.println("sampling runtime (milliseconds): " + sampling_runtime);
        break; // end switch case
    case 5:
        System.out.println("running random integer partition mapper...");
        conf.setInputFormat(WholeSplitInputFormat.class);
        Path inputFilePath = new Path(args[8]);
        WholeSplitInputFormat.addInputPath(conf, inputFilePath);
        conf.setMapperClass(RandIntPartSamplerMapper.class);
        // Compute number of map tasks.
        fs = inputFilePath.getFileSystem(conf);
        FileStatus inputFileStatus = fs.getFileStatus(inputFilePath);
        long len = inputFileStatus.getLen();
        long blockSize = inputFileStatus.getBlockSize();
        conf.setLong("mapred.min.split.size", blockSize);
        conf.setLong("mapred.max.split.size", blockSize);
        int mapTasksNum = ((int) (len / blockSize)) + 1;
        conf.setNumMapTasks(mapTasksNum);
        //System.out.println("len: " + len + " blockSize: " 
        //      + blockSize + " mapTasksNum: " + mapTasksNum);
        // Extract random integer partition of total sample
        // size into up to mapTasksNum partitions.
        // XXX I'm not sure this is a correct way to do
        // it.
        rand = new Random();
        IntWritable[][] toSampleArr = new IntWritable[mapTasksNum][numSamples];
        for (int j = 0; j < numSamples; j++) {
            IntWritable[] tempToSampleArr = new IntWritable[mapTasksNum];
            int sum = 0;
            int i;
            for (i = 0; i < mapTasksNum - 1; i++) {
                int size = rand.nextInt(sampleSize - sum);
                tempToSampleArr[i] = new IntWritable(size);
                sum += size;
                if (sum > numSamples * sampleSize) {
                    System.out.println("Something went wrong generating the sample Sizes");
                    System.exit(1);
                }
                if (sum == sampleSize) {
                    break;
                }
            }
            if (i == mapTasksNum - 1) {
                tempToSampleArr[i] = new IntWritable(sampleSize - sum);
            } else {
                for (; i < mapTasksNum; i++) {
                    tempToSampleArr[i] = new IntWritable(0);
                }
            }
            Collections.shuffle(Arrays.asList(tempToSampleArr));
            for (i = 0; i < mapTasksNum; i++) {
                toSampleArr[i][j] = tempToSampleArr[i];
            }
        }

        for (int i = 0; i < mapTasksNum; i++) {
            DefaultStringifier.storeArray(conf, toSampleArr[i], "PARMM.toSampleArr_" + i);
        }
        break;
    default:
        System.err.println("Wrong Mapper ID. Can only be in [1,5]");
        System.exit(1);
        break;
    }

    /*
     * We don't use the default hash partitioner because we want to
     * maximize the parallelism. That's why we also fix the number
     * of reducers.
     */
    conf.setPartitionerClass(FIMPartitioner.class);

    conf.setReducerClass(FIMReducer.class);

    /************************ Job 2 (aggregation) Configuration ************************/

    JobConf confAggr = new JobConf(getConf());

    confAggr.setInt("PARMM.reducersNum", numSamples);
    confAggr.setInt("PARMM.reqApproxNum", reqApproxNum);
    confAggr.setInt("PARMM.sampleSize", sampleSize);
    confAggr.setFloat("PARMM.epsilon", epsilon);

    // XXX: Why do we disable speculative execution? MR
    confAggr.setBoolean("mapred.reduce.tasks.speculative.execution", false);
    confAggr.setInt("mapred.task.timeout", MR_TIMEOUT_MILLI);

    confAggr.setJarByClass(MRDriver.class);

    confAggr.setMapOutputKeyClass(Text.class);
    confAggr.setMapOutputValueClass(DoubleWritable.class);

    confAggr.setOutputKeyClass(Text.class);
    confAggr.setOutputValueClass(Text.class);

    confAggr.setMapperClass(AggregateMapper.class);
    confAggr.setReducerClass(AggregateReducer.class);

    confAggr.setInputFormat(CombineSequenceFileInputFormat.class);
    SequenceFileInputFormat.addInputPath(confAggr, new Path(args[9]));

    FileOutputFormat.setOutputPath(confAggr, new Path(args[10]));

    long FIMjob_start_time = System.currentTimeMillis();
    RunningJob FIMjob = JobClient.runJob(conf);
    long FIMjob_end_time = System.currentTimeMillis();

    RunningJob aggregateJob = JobClient.runJob(confAggr);
    long aggrJob_end_time = System.currentTimeMillis();

    long FIMjob_runtime = FIMjob_end_time - FIMjob_start_time;

    long aggrJob_runtime = aggrJob_end_time - FIMjob_end_time;

    if (args[7].equals("4")) {
        // Remove samplesMap file 
        fs.delete(samplesMapPath, false);
    }

    Counters counters = FIMjob.getCounters();
    Counters.Group FIMMapperStartTimesCounters = counters.getGroup("FIMMapperStart");
    long[] FIMMapperStartTimes = new long[FIMMapperStartTimesCounters.size()];
    int i = 0;
    for (Counters.Counter counter : FIMMapperStartTimesCounters) {
        FIMMapperStartTimes[i++] = counter.getCounter();
    }

    Counters.Group FIMMapperEndTimesCounters = counters.getGroup("FIMMapperEnd");
    long[] FIMMapperEndTimes = new long[FIMMapperEndTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : FIMMapperEndTimesCounters) {
        FIMMapperEndTimes[i++] = counter.getCounter();
    }

    Counters.Group FIMReducerStartTimesCounters = counters.getGroup("FIMReducerStart");
    long[] FIMReducerStartTimes = new long[FIMReducerStartTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : FIMReducerStartTimesCounters) {
        FIMReducerStartTimes[i++] = counter.getCounter();
    }

    Counters.Group FIMReducerEndTimesCounters = counters.getGroup("FIMReducerEnd");
    long[] FIMReducerEndTimes = new long[FIMReducerEndTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : FIMReducerEndTimesCounters) {
        FIMReducerEndTimes[i++] = counter.getCounter();
    }

    Counters countersAggr = aggregateJob.getCounters();
    Counters.Group AggregateMapperStartTimesCounters = countersAggr.getGroup("AggregateMapperStart");
    long[] AggregateMapperStartTimes = new long[AggregateMapperStartTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : AggregateMapperStartTimesCounters) {
        AggregateMapperStartTimes[i++] = counter.getCounter();
    }

    Counters.Group AggregateMapperEndTimesCounters = countersAggr.getGroup("AggregateMapperEnd");
    long[] AggregateMapperEndTimes = new long[AggregateMapperEndTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : AggregateMapperEndTimesCounters) {
        AggregateMapperEndTimes[i++] = counter.getCounter();
    }

    Counters.Group AggregateReducerStartTimesCounters = countersAggr.getGroup("AggregateReducerStart");
    long[] AggregateReducerStartTimes = new long[AggregateReducerStartTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : AggregateReducerStartTimesCounters) {
        AggregateReducerStartTimes[i++] = counter.getCounter();
    }

    Counters.Group AggregateReducerEndTimesCounters = countersAggr.getGroup("AggregateReducerEnd");
    long[] AggregateReducerEndTimes = new long[AggregateReducerEndTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : AggregateReducerEndTimesCounters) {
        AggregateReducerEndTimes[i++] = counter.getCounter();
    }

    long FIMMapperStartMin = FIMMapperStartTimes[0];
    for (long l : FIMMapperStartTimes) {
        if (l < FIMMapperStartMin) {
            FIMMapperStartMin = l;
        }
    }
    long FIMMapperEndMax = FIMMapperEndTimes[0];
    for (long l : FIMMapperEndTimes) {
        if (l > FIMMapperEndMax) {
            FIMMapperEndMax = l;
        }
    }
    System.out.println("FIM job setup time (milliseconds): " + (FIMMapperStartMin - FIMjob_start_time));
    System.out.println("FIMMapper total runtime (milliseconds): " + (FIMMapperEndMax - FIMMapperStartMin));
    long[] FIMMapperRunTimes = new long[FIMMapperStartTimes.length];
    long FIMMapperRunTimesSum = 0;
    for (int l = 0; l < FIMMapperStartTimes.length; l++) {
        FIMMapperRunTimes[l] = FIMMapperEndTimes[l] - FIMMapperStartTimes[l];
        FIMMapperRunTimesSum += FIMMapperRunTimes[l];
    }
    System.out.println("FIMMapper average task runtime (milliseconds): "
            + FIMMapperRunTimesSum / FIMMapperStartTimes.length);
    long FIMMapperRunTimesMin = FIMMapperRunTimes[0];
    long FIMMapperRunTimesMax = FIMMapperRunTimes[0];
    for (long l : FIMMapperRunTimes) {
        if (l < FIMMapperRunTimesMin) {
            FIMMapperRunTimesMin = l;
        }
        if (l > FIMMapperRunTimesMax) {
            FIMMapperRunTimesMax = l;
        }
    }
    System.out.println("FIMMapper minimum task runtime (milliseconds): " + FIMMapperRunTimesMin);
    System.out.println("FIMMapper maximum task runtime (milliseconds): " + FIMMapperRunTimesMax);

    long FIMReducerStartMin = FIMReducerStartTimes[0];
    for (long l : FIMReducerStartTimes) {
        if (l < FIMReducerStartMin) {
            FIMReducerStartMin = l;
        }
    }
    long FIMReducerEndMax = FIMReducerEndTimes[0];
    for (long l : FIMReducerEndTimes) {
        if (l > FIMReducerEndMax) {
            FIMReducerEndMax = l;
        }
    }
    System.out
            .println("FIM job shuffle phase runtime (milliseconds): " + (FIMReducerStartMin - FIMMapperEndMax));
    System.out.println("FIMReducer total runtime (milliseconds): " + (FIMReducerEndMax - FIMReducerStartMin));
    long[] FIMReducerRunTimes = new long[FIMReducerStartTimes.length];
    long FIMReducerRunTimesSum = 0;
    for (int l = 0; l < FIMReducerStartTimes.length; l++) {
        FIMReducerRunTimes[l] = FIMReducerEndTimes[l] - FIMReducerStartTimes[l];
        FIMReducerRunTimesSum += FIMReducerRunTimes[l];
    }
    System.out.println("FIMReducer average task runtime (milliseconds): "
            + FIMReducerRunTimesSum / FIMReducerStartTimes.length);
    long FIMReducerRunTimesMin = FIMReducerRunTimes[0];
    long FIMReducerRunTimesMax = FIMReducerRunTimes[0];
    for (long l : FIMReducerRunTimes) {
        if (l < FIMReducerRunTimesMin) {
            FIMReducerRunTimesMin = l;
        }
        if (l > FIMReducerRunTimesMax) {
            FIMReducerRunTimesMax = l;
        }
    }
    System.out.println("FIMReducer minimum task runtime (milliseconds): " + FIMReducerRunTimesMin);
    System.out.println("FIMReducer maximum task runtime (milliseconds): " + FIMReducerRunTimesMax);
    System.out.println("FIM job cooldown time (milliseconds): " + (FIMjob_end_time - FIMReducerEndMax));

    long AggregateMapperStartMin = AggregateMapperStartTimes[0];
    for (long l : AggregateMapperStartTimes) {
        if (l < AggregateMapperStartMin) {
            AggregateMapperStartMin = l;
        }
    }
    long AggregateMapperEndMax = AggregateMapperEndTimes[0];
    for (long l : AggregateMapperEndTimes) {
        if (l > AggregateMapperEndMax) {
            AggregateMapperEndMax = l;
        }
    }
    System.out.println(
            "Aggregation job setup time (milliseconds): " + (AggregateMapperStartMin - FIMjob_end_time));
    System.out.println("AggregateMapper total runtime (milliseconds): "
            + (AggregateMapperEndMax - AggregateMapperStartMin));
    long[] AggregateMapperRunTimes = new long[AggregateMapperStartTimes.length];
    long AggregateMapperRunTimesSum = 0;
    for (int l = 0; l < AggregateMapperStartTimes.length; l++) {
        AggregateMapperRunTimes[l] = AggregateMapperEndTimes[l] - AggregateMapperStartTimes[l];
        AggregateMapperRunTimesSum += AggregateMapperRunTimes[l];
    }
    System.out.println("AggregateMapper average task runtime (milliseconds): "
            + AggregateMapperRunTimesSum / AggregateMapperStartTimes.length);
    long AggregateMapperRunTimesMin = AggregateMapperRunTimes[0];
    long AggregateMapperRunTimesMax = AggregateMapperRunTimes[0];
    for (long l : AggregateMapperRunTimes) {
        if (l < AggregateMapperRunTimesMin) {
            AggregateMapperRunTimesMin = l;
        }
        if (l > AggregateMapperRunTimesMax) {
            AggregateMapperRunTimesMax = l;
        }
    }
    System.out.println("AggregateMapper minimum task runtime (milliseconds): " + AggregateMapperRunTimesMin);
    System.out.println("AggregateMapper maximum task runtime (milliseconds): " + AggregateMapperRunTimesMax);

    long AggregateReducerStartMin = AggregateReducerStartTimes[0];
    for (long l : AggregateReducerStartTimes) {
        if (l < AggregateReducerStartMin) {
            AggregateReducerStartMin = l;
        }
    }
    long AggregateReducerEndMax = AggregateReducerEndTimes[0];
    for (long l : AggregateReducerEndTimes) {
        if (l > AggregateReducerEndMax) {
            AggregateReducerEndMax = l;
        }
    }
    System.out.println("Aggregate job round shuffle phase runtime (milliseconds): "
            + (AggregateReducerStartMin - AggregateMapperEndMax));
    System.out.println("AggregateReducer total runtime (milliseconds): "
            + (AggregateReducerEndMax - AggregateReducerStartMin));
    long[] AggregateReducerRunTimes = new long[AggregateReducerStartTimes.length];
    long AggregateReducerRunTimesSum = 0;
    for (int l = 0; l < AggregateReducerStartTimes.length; l++) {
        AggregateReducerRunTimes[l] = AggregateReducerEndTimes[l] - AggregateReducerStartTimes[l];
        AggregateReducerRunTimesSum += AggregateReducerRunTimes[l];
    }
    System.out.println("AggregateReducer average task runtime (milliseconds): "
            + AggregateReducerRunTimesSum / AggregateReducerStartTimes.length);
    long AggregateReducerRunTimesMin = AggregateReducerRunTimes[0];
    long AggregateReducerRunTimesMax = AggregateReducerRunTimes[0];
    for (long l : AggregateReducerRunTimes) {
        if (l < AggregateReducerRunTimesMin) {
            AggregateReducerRunTimesMin = l;
        }
        if (l > AggregateReducerRunTimesMax) {
            AggregateReducerRunTimesMax = l;
        }
    }
    System.out.println("AggregateReducer minimum task runtime (milliseconds): " + AggregateReducerRunTimesMin);
    System.out.println("AggregateReducer maximum task runtime (milliseconds): " + AggregateReducerRunTimesMax);

    System.out.println(
            "Aggregation job cooldown time (milliseconds): " + (aggrJob_end_time - AggregateReducerEndMax));

    System.out
            .println("total runtime (all inclusive) (milliseconds): " + (aggrJob_end_time - FIMjob_start_time));
    System.out.println("total runtime (no FIM job setup, no aggregation job cooldown) (milliseconds): "
            + (AggregateReducerEndMax - FIMMapperStartMin));
    System.out.println("total runtime (no setups, no cooldowns) (milliseconds): "
            + (FIMReducerEndMax - FIMMapperStartMin + AggregateReducerEndMax - AggregateMapperStartMin));
    System.out.println("FIM job runtime (including setup and cooldown) (milliseconds): " + FIMjob_runtime);
    System.out.println("FIM job runtime (no setup, no cooldown) (milliseconds): "
            + (FIMReducerEndMax - FIMMapperStartMin));
    System.out.println(
            "Aggregation job runtime (including setup and cooldown) (milliseconds): " + aggrJob_runtime);
    System.out.println("Aggregation job runtime (no setup, no cooldown) (milliseconds): "
            + (AggregateReducerEndMax - AggregateMapperStartMin));

    return 0;
}

From source file:Text2ColumntStorageMR.java

License:Open Source License

@SuppressWarnings("deprecation")
public static void main(String[] args) throws Exception {

    if (args.length != 3) {
        System.out.println("Text2ColumnStorageMR <input> <output> <columnStorageMode>");
        System.exit(-1);//from  www.  java2s.  c  o m
    }

    JobConf conf = new JobConf(Text2ColumntStorageMR.class);

    conf.setJobName("Text2ColumnStorageMR");

    conf.setNumMapTasks(1);
    conf.setNumReduceTasks(4);

    conf.setOutputKeyClass(LongWritable.class);
    conf.setOutputValueClass(Unit.Record.class);

    conf.setMapperClass(TextFileMapper.class);
    conf.setReducerClass(ColumnStorageReducer.class);

    conf.setInputFormat(TextInputFormat.class);
    conf.setOutputFormat((Class<? extends OutputFormat>) ColumnStorageHiveOutputFormat.class);
    conf.set("mapred.output.compress", "flase");

    Head head = new Head();
    initHead(head);

    head.toJobConf(conf);

    int bt = Integer.valueOf(args[2]);

    FileInputFormat.setInputPaths(conf, args[0]);
    Path outputPath = new Path(args[1]);
    FileOutputFormat.setOutputPath(conf, outputPath);

    FileSystem fs = outputPath.getFileSystem(conf);
    fs.delete(outputPath, true);

    JobClient jc = new JobClient(conf);
    RunningJob rj = null;
    rj = jc.submitJob(conf);

    String lastReport = "";
    SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd hh:mm:ss,SSS");
    long reportTime = System.currentTimeMillis();
    long maxReportInterval = 3 * 1000;
    while (!rj.isComplete()) {
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
        }

        int mapProgress = Math.round(rj.mapProgress() * 100);
        int reduceProgress = Math.round(rj.reduceProgress() * 100);

        String report = " map = " + mapProgress + "%,  reduce = " + reduceProgress + "%";

        if (!report.equals(lastReport) || System.currentTimeMillis() >= reportTime + maxReportInterval) {

            String output = dateFormat.format(Calendar.getInstance().getTime()) + report;
            System.out.println(output);
            lastReport = report;
            reportTime = System.currentTimeMillis();
        }
    }

    System.exit(0);

}

From source file:ApplicationMaster.java

License:Apache License

private void renameScriptFile(final Path renamedScriptPath) throws IOException, InterruptedException {
    appSubmitterUgi.doAs(new PrivilegedExceptionAction<Void>() {
        @Override/* w ww .j  a va  2s . c  o  m*/
        public Void run() throws IOException {
            FileSystem fs = renamedScriptPath.getFileSystem(conf);
            fs.rename(new Path(scriptPath), renamedScriptPath);
            return null;
        }
    });
    LOG.info("User " + appSubmitterUgi.getUserName() + " added suffix(.sh/.bat) to script file as "
            + renamedScriptPath);
}

From source file:JavaCustomReceiver.java

License:Apache License

/** Create a socket connection and receive data until receiver is stopped */
private void receive() {
    Socket socket = null;/*w w w  .j a v a  2  s.  c  o m*/
    String userInput = null;

    try {
        // connect to the server
        socket = new Socket(host, port);

        //   BufferedReader reader = new BufferedReader(new InputStreamReader(socket.getInputStream()));

        //      Path pt=new Path("hdfs://192.168.0.1:9000/equinox-sanjose.20120119-netflow.txt");
        //      FileSystem fs = FileSystem.get(new Configuration());
        //      BufferedReader in=new BufferedReader(new InputStreamReader(fs.open(pt)));
        Path pt = new Path("hdfs://192.168.0.1:9000/user/hduser/equinox-sanjose.20120119-netflow.txt");

        Configuration conf = new Configuration();
        conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
        conf.addResource(new Path("/usr/local/hadoop/conf/hdfs-site.xml"));
        //      FileSystem fs = FileSystem.get(conf);
        FileSystem fs = pt.getFileSystem(conf);
        System.out.println(fs.getHomeDirectory());
        BufferedReader in = new BufferedReader(new InputStreamReader(fs.open(pt)));

        //      BufferedReader in = new BufferedReader(
        //            new FileReader(
        //                  "/home/hduser/spark_scratchPad/equinox-sanjose.20120119-netflow.txt"));
        //      
        // Until stopped or connection broken continue reading
        while (!isStopped() && (userInput = in.readLine()) != null) {
            System.out.println("Received data '" + userInput + "'");
            store(userInput);
        }
        in.close();
        socket.close();

        // Restart in an attempt to connect again when server is active again
        restart("Trying to connect again");
    } catch (ConnectException ce) {
        // restart if could not connect to server
        restart("Could not connect", ce);
    } catch (Throwable t) {
        restart("Error receiving data", t);
    }
}