Example usage for org.apache.hadoop.io MapWritable write

List of usage examples for org.apache.hadoop.io MapWritable write

Introduction

In this page you can find the example usage for org.apache.hadoop.io MapWritable write.

Prototype

@Override
    public void write(DataOutput out) throws IOException 

Source Link

Usage

From source file:MRDriver.java

License:Apache License

public int run(String args[]) throws Exception {
    FileSystem fs = null;/* w  w w  . j a  va 2 s  .c o m*/
    Path samplesMapPath = null;

    float epsilon = Float.parseFloat(args[0]);
    double delta = Double.parseDouble(args[1]);
    int minFreqPercent = Integer.parseInt(args[2]);
    int d = Integer.parseInt(args[3]);
    int datasetSize = Integer.parseInt(args[4]);
    int numSamples = Integer.parseInt(args[5]);
    double phi = Double.parseDouble(args[6]);
    Random rand;

    /************************ Job 1 (local FIM) Configuration ************************/

    JobConf conf = new JobConf(getConf());

    /*
     * Compute the number of required "votes" for an itemsets to be
     * declared frequent    
     */
    // The +1 at the end is needed to ensure reqApproxNum > numsamples / 2.
    int reqApproxNum = (int) Math
            .floor((numSamples * (1 - phi)) - Math.sqrt(numSamples * (1 - phi) * 2 * Math.log(1 / delta))) + 1;
    int sampleSize = (int) Math.ceil((2 / Math.pow(epsilon, 2)) * (d + Math.log(1 / phi)));
    //System.out.println("reducersNum: " + numSamples + " reqApproxNum: " + reqApproxNum);

    conf.setInt("PARMM.reducersNum", numSamples);
    conf.setInt("PARMM.datasetSize", datasetSize);
    conf.setInt("PARMM.minFreqPercent", minFreqPercent);
    conf.setInt("PARMM.sampleSize", sampleSize);
    conf.setFloat("PARMM.epsilon", epsilon);

    // Set the number of reducers equal to the number of samples, to
    // maximize parallelism. Required by our Partitioner.
    conf.setNumReduceTasks(numSamples);

    // XXX: why do we disable the speculative execution? MR
    conf.setBoolean("mapred.reduce.tasks.speculative.execution", false);
    conf.setInt("mapred.task.timeout", MR_TIMEOUT_MILLI);

    /* 
     * Enable compression of map output.
     *
     * We do it for this job and not for the aggregation one because
     * each mapper there only print out one record for each itemset,
     * so there isn't much to compress, I'd say. MR
     *
     * In Amazon MapReduce compression of the map output seems to be
     * happen by default and the Snappy codec is used, which is
     * extremely fast.
     */
    conf.setBoolean("mapred.compress.map.output", true);
    //conf.setMapOutputCompressorClass(com.hadoop.compression.lzo.LzoCodec.class);

    conf.setJarByClass(MRDriver.class);

    conf.setMapOutputKeyClass(IntWritable.class);
    conf.setMapOutputValueClass(Text.class);

    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(DoubleWritable.class);

    conf.setInputFormat(SequenceFileInputFormat.class);
    // We write the collections found in a reducers as a SequenceFile 
    conf.setOutputFormat(SequenceFileOutputFormat.class);
    SequenceFileOutputFormat.setOutputPath(conf, new Path(args[9]));

    // set the mapper class based on command line option
    switch (Integer.parseInt(args[7])) {
    case 1:
        System.out.println("running partition mapper...");
        SequenceFileInputFormat.addInputPath(conf, new Path(args[8]));
        conf.setMapperClass(PartitionMapper.class);
        break;
    case 2:
        System.out.println("running binomial mapper...");
        SequenceFileInputFormat.addInputPath(conf, new Path(args[8]));
        conf.setMapperClass(BinomialSamplerMapper.class);
        break;
    case 3:
        System.out.println("running coin mapper...");
        SequenceFileInputFormat.addInputPath(conf, new Path(args[8]));
        conf.setMapperClass(CoinFlipSamplerMapper.class);
    case 4:
        System.out.println("running sampler mapper...");
        SequenceFileInputFormat.addInputPath(conf, new Path(args[8]));
        conf.setMapperClass(InputSamplerMapper.class);

        // create a random sample of size T*m
        rand = new Random();
        long sampling_start_time = System.nanoTime();
        int[] samples = new int[numSamples * sampleSize];
        for (int i = 0; i < numSamples * sampleSize; i++) {
            samples[i] = rand.nextInt(datasetSize);
        }

        // for each key in the sample, create a list of all T samples to which this key belongs
        Hashtable<LongWritable, ArrayList<IntWritable>> hashTable = new Hashtable<LongWritable, ArrayList<IntWritable>>();
        for (int i = 0; i < numSamples * sampleSize; i++) {
            ArrayList<IntWritable> sampleIDs = null;
            LongWritable key = new LongWritable(samples[i]);
            if (hashTable.containsKey(key))
                sampleIDs = hashTable.get(key);
            else
                sampleIDs = new ArrayList<IntWritable>();
            sampleIDs.add(new IntWritable(i % numSamples));
            hashTable.put(key, sampleIDs);
        }

        /*
         * Convert the Hastable to a MapWritable which we will
         * write to HDFS and distribute to all Mappers using
         * DistributedCache
         */
        MapWritable map = new MapWritable();
        for (LongWritable key : hashTable.keySet()) {
            ArrayList<IntWritable> sampleIDs = hashTable.get(key);
            IntArrayWritable sampleIDsIAW = new IntArrayWritable();
            sampleIDsIAW.set(sampleIDs.toArray(new IntWritable[sampleIDs.size()]));
            map.put(key, sampleIDsIAW);
        }

        fs = FileSystem.get(URI.create("samplesMap.ser"), conf);
        samplesMapPath = new Path("samplesMap.ser");
        FSDataOutputStream out = fs.create(samplesMapPath, true);
        map.write(out);
        out.sync();
        out.close();
        DistributedCache.addCacheFile(new URI(fs.getWorkingDirectory() + "/samplesMap.ser#samplesMap.ser"),
                conf);
        // stop the sampling timer   
        long sampling_end_time = System.nanoTime();
        long sampling_runtime = (sampling_end_time - sampling_start_time) / 1000000;
        System.out.println("sampling runtime (milliseconds): " + sampling_runtime);
        break; // end switch case
    case 5:
        System.out.println("running random integer partition mapper...");
        conf.setInputFormat(WholeSplitInputFormat.class);
        Path inputFilePath = new Path(args[8]);
        WholeSplitInputFormat.addInputPath(conf, inputFilePath);
        conf.setMapperClass(RandIntPartSamplerMapper.class);
        // Compute number of map tasks.
        fs = inputFilePath.getFileSystem(conf);
        FileStatus inputFileStatus = fs.getFileStatus(inputFilePath);
        long len = inputFileStatus.getLen();
        long blockSize = inputFileStatus.getBlockSize();
        conf.setLong("mapred.min.split.size", blockSize);
        conf.setLong("mapred.max.split.size", blockSize);
        int mapTasksNum = ((int) (len / blockSize)) + 1;
        conf.setNumMapTasks(mapTasksNum);
        //System.out.println("len: " + len + " blockSize: " 
        //      + blockSize + " mapTasksNum: " + mapTasksNum);
        // Extract random integer partition of total sample
        // size into up to mapTasksNum partitions.
        // XXX I'm not sure this is a correct way to do
        // it.
        rand = new Random();
        IntWritable[][] toSampleArr = new IntWritable[mapTasksNum][numSamples];
        for (int j = 0; j < numSamples; j++) {
            IntWritable[] tempToSampleArr = new IntWritable[mapTasksNum];
            int sum = 0;
            int i;
            for (i = 0; i < mapTasksNum - 1; i++) {
                int size = rand.nextInt(sampleSize - sum);
                tempToSampleArr[i] = new IntWritable(size);
                sum += size;
                if (sum > numSamples * sampleSize) {
                    System.out.println("Something went wrong generating the sample Sizes");
                    System.exit(1);
                }
                if (sum == sampleSize) {
                    break;
                }
            }
            if (i == mapTasksNum - 1) {
                tempToSampleArr[i] = new IntWritable(sampleSize - sum);
            } else {
                for (; i < mapTasksNum; i++) {
                    tempToSampleArr[i] = new IntWritable(0);
                }
            }
            Collections.shuffle(Arrays.asList(tempToSampleArr));
            for (i = 0; i < mapTasksNum; i++) {
                toSampleArr[i][j] = tempToSampleArr[i];
            }
        }

        for (int i = 0; i < mapTasksNum; i++) {
            DefaultStringifier.storeArray(conf, toSampleArr[i], "PARMM.toSampleArr_" + i);
        }
        break;
    default:
        System.err.println("Wrong Mapper ID. Can only be in [1,5]");
        System.exit(1);
        break;
    }

    /*
     * We don't use the default hash partitioner because we want to
     * maximize the parallelism. That's why we also fix the number
     * of reducers.
     */
    conf.setPartitionerClass(FIMPartitioner.class);

    conf.setReducerClass(FIMReducer.class);

    /************************ Job 2 (aggregation) Configuration ************************/

    JobConf confAggr = new JobConf(getConf());

    confAggr.setInt("PARMM.reducersNum", numSamples);
    confAggr.setInt("PARMM.reqApproxNum", reqApproxNum);
    confAggr.setInt("PARMM.sampleSize", sampleSize);
    confAggr.setFloat("PARMM.epsilon", epsilon);

    // XXX: Why do we disable speculative execution? MR
    confAggr.setBoolean("mapred.reduce.tasks.speculative.execution", false);
    confAggr.setInt("mapred.task.timeout", MR_TIMEOUT_MILLI);

    confAggr.setJarByClass(MRDriver.class);

    confAggr.setMapOutputKeyClass(Text.class);
    confAggr.setMapOutputValueClass(DoubleWritable.class);

    confAggr.setOutputKeyClass(Text.class);
    confAggr.setOutputValueClass(Text.class);

    confAggr.setMapperClass(AggregateMapper.class);
    confAggr.setReducerClass(AggregateReducer.class);

    confAggr.setInputFormat(CombineSequenceFileInputFormat.class);
    SequenceFileInputFormat.addInputPath(confAggr, new Path(args[9]));

    FileOutputFormat.setOutputPath(confAggr, new Path(args[10]));

    long FIMjob_start_time = System.currentTimeMillis();
    RunningJob FIMjob = JobClient.runJob(conf);
    long FIMjob_end_time = System.currentTimeMillis();

    RunningJob aggregateJob = JobClient.runJob(confAggr);
    long aggrJob_end_time = System.currentTimeMillis();

    long FIMjob_runtime = FIMjob_end_time - FIMjob_start_time;

    long aggrJob_runtime = aggrJob_end_time - FIMjob_end_time;

    if (args[7].equals("4")) {
        // Remove samplesMap file 
        fs.delete(samplesMapPath, false);
    }

    Counters counters = FIMjob.getCounters();
    Counters.Group FIMMapperStartTimesCounters = counters.getGroup("FIMMapperStart");
    long[] FIMMapperStartTimes = new long[FIMMapperStartTimesCounters.size()];
    int i = 0;
    for (Counters.Counter counter : FIMMapperStartTimesCounters) {
        FIMMapperStartTimes[i++] = counter.getCounter();
    }

    Counters.Group FIMMapperEndTimesCounters = counters.getGroup("FIMMapperEnd");
    long[] FIMMapperEndTimes = new long[FIMMapperEndTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : FIMMapperEndTimesCounters) {
        FIMMapperEndTimes[i++] = counter.getCounter();
    }

    Counters.Group FIMReducerStartTimesCounters = counters.getGroup("FIMReducerStart");
    long[] FIMReducerStartTimes = new long[FIMReducerStartTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : FIMReducerStartTimesCounters) {
        FIMReducerStartTimes[i++] = counter.getCounter();
    }

    Counters.Group FIMReducerEndTimesCounters = counters.getGroup("FIMReducerEnd");
    long[] FIMReducerEndTimes = new long[FIMReducerEndTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : FIMReducerEndTimesCounters) {
        FIMReducerEndTimes[i++] = counter.getCounter();
    }

    Counters countersAggr = aggregateJob.getCounters();
    Counters.Group AggregateMapperStartTimesCounters = countersAggr.getGroup("AggregateMapperStart");
    long[] AggregateMapperStartTimes = new long[AggregateMapperStartTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : AggregateMapperStartTimesCounters) {
        AggregateMapperStartTimes[i++] = counter.getCounter();
    }

    Counters.Group AggregateMapperEndTimesCounters = countersAggr.getGroup("AggregateMapperEnd");
    long[] AggregateMapperEndTimes = new long[AggregateMapperEndTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : AggregateMapperEndTimesCounters) {
        AggregateMapperEndTimes[i++] = counter.getCounter();
    }

    Counters.Group AggregateReducerStartTimesCounters = countersAggr.getGroup("AggregateReducerStart");
    long[] AggregateReducerStartTimes = new long[AggregateReducerStartTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : AggregateReducerStartTimesCounters) {
        AggregateReducerStartTimes[i++] = counter.getCounter();
    }

    Counters.Group AggregateReducerEndTimesCounters = countersAggr.getGroup("AggregateReducerEnd");
    long[] AggregateReducerEndTimes = new long[AggregateReducerEndTimesCounters.size()];
    i = 0;
    for (Counters.Counter counter : AggregateReducerEndTimesCounters) {
        AggregateReducerEndTimes[i++] = counter.getCounter();
    }

    long FIMMapperStartMin = FIMMapperStartTimes[0];
    for (long l : FIMMapperStartTimes) {
        if (l < FIMMapperStartMin) {
            FIMMapperStartMin = l;
        }
    }
    long FIMMapperEndMax = FIMMapperEndTimes[0];
    for (long l : FIMMapperEndTimes) {
        if (l > FIMMapperEndMax) {
            FIMMapperEndMax = l;
        }
    }
    System.out.println("FIM job setup time (milliseconds): " + (FIMMapperStartMin - FIMjob_start_time));
    System.out.println("FIMMapper total runtime (milliseconds): " + (FIMMapperEndMax - FIMMapperStartMin));
    long[] FIMMapperRunTimes = new long[FIMMapperStartTimes.length];
    long FIMMapperRunTimesSum = 0;
    for (int l = 0; l < FIMMapperStartTimes.length; l++) {
        FIMMapperRunTimes[l] = FIMMapperEndTimes[l] - FIMMapperStartTimes[l];
        FIMMapperRunTimesSum += FIMMapperRunTimes[l];
    }
    System.out.println("FIMMapper average task runtime (milliseconds): "
            + FIMMapperRunTimesSum / FIMMapperStartTimes.length);
    long FIMMapperRunTimesMin = FIMMapperRunTimes[0];
    long FIMMapperRunTimesMax = FIMMapperRunTimes[0];
    for (long l : FIMMapperRunTimes) {
        if (l < FIMMapperRunTimesMin) {
            FIMMapperRunTimesMin = l;
        }
        if (l > FIMMapperRunTimesMax) {
            FIMMapperRunTimesMax = l;
        }
    }
    System.out.println("FIMMapper minimum task runtime (milliseconds): " + FIMMapperRunTimesMin);
    System.out.println("FIMMapper maximum task runtime (milliseconds): " + FIMMapperRunTimesMax);

    long FIMReducerStartMin = FIMReducerStartTimes[0];
    for (long l : FIMReducerStartTimes) {
        if (l < FIMReducerStartMin) {
            FIMReducerStartMin = l;
        }
    }
    long FIMReducerEndMax = FIMReducerEndTimes[0];
    for (long l : FIMReducerEndTimes) {
        if (l > FIMReducerEndMax) {
            FIMReducerEndMax = l;
        }
    }
    System.out
            .println("FIM job shuffle phase runtime (milliseconds): " + (FIMReducerStartMin - FIMMapperEndMax));
    System.out.println("FIMReducer total runtime (milliseconds): " + (FIMReducerEndMax - FIMReducerStartMin));
    long[] FIMReducerRunTimes = new long[FIMReducerStartTimes.length];
    long FIMReducerRunTimesSum = 0;
    for (int l = 0; l < FIMReducerStartTimes.length; l++) {
        FIMReducerRunTimes[l] = FIMReducerEndTimes[l] - FIMReducerStartTimes[l];
        FIMReducerRunTimesSum += FIMReducerRunTimes[l];
    }
    System.out.println("FIMReducer average task runtime (milliseconds): "
            + FIMReducerRunTimesSum / FIMReducerStartTimes.length);
    long FIMReducerRunTimesMin = FIMReducerRunTimes[0];
    long FIMReducerRunTimesMax = FIMReducerRunTimes[0];
    for (long l : FIMReducerRunTimes) {
        if (l < FIMReducerRunTimesMin) {
            FIMReducerRunTimesMin = l;
        }
        if (l > FIMReducerRunTimesMax) {
            FIMReducerRunTimesMax = l;
        }
    }
    System.out.println("FIMReducer minimum task runtime (milliseconds): " + FIMReducerRunTimesMin);
    System.out.println("FIMReducer maximum task runtime (milliseconds): " + FIMReducerRunTimesMax);
    System.out.println("FIM job cooldown time (milliseconds): " + (FIMjob_end_time - FIMReducerEndMax));

    long AggregateMapperStartMin = AggregateMapperStartTimes[0];
    for (long l : AggregateMapperStartTimes) {
        if (l < AggregateMapperStartMin) {
            AggregateMapperStartMin = l;
        }
    }
    long AggregateMapperEndMax = AggregateMapperEndTimes[0];
    for (long l : AggregateMapperEndTimes) {
        if (l > AggregateMapperEndMax) {
            AggregateMapperEndMax = l;
        }
    }
    System.out.println(
            "Aggregation job setup time (milliseconds): " + (AggregateMapperStartMin - FIMjob_end_time));
    System.out.println("AggregateMapper total runtime (milliseconds): "
            + (AggregateMapperEndMax - AggregateMapperStartMin));
    long[] AggregateMapperRunTimes = new long[AggregateMapperStartTimes.length];
    long AggregateMapperRunTimesSum = 0;
    for (int l = 0; l < AggregateMapperStartTimes.length; l++) {
        AggregateMapperRunTimes[l] = AggregateMapperEndTimes[l] - AggregateMapperStartTimes[l];
        AggregateMapperRunTimesSum += AggregateMapperRunTimes[l];
    }
    System.out.println("AggregateMapper average task runtime (milliseconds): "
            + AggregateMapperRunTimesSum / AggregateMapperStartTimes.length);
    long AggregateMapperRunTimesMin = AggregateMapperRunTimes[0];
    long AggregateMapperRunTimesMax = AggregateMapperRunTimes[0];
    for (long l : AggregateMapperRunTimes) {
        if (l < AggregateMapperRunTimesMin) {
            AggregateMapperRunTimesMin = l;
        }
        if (l > AggregateMapperRunTimesMax) {
            AggregateMapperRunTimesMax = l;
        }
    }
    System.out.println("AggregateMapper minimum task runtime (milliseconds): " + AggregateMapperRunTimesMin);
    System.out.println("AggregateMapper maximum task runtime (milliseconds): " + AggregateMapperRunTimesMax);

    long AggregateReducerStartMin = AggregateReducerStartTimes[0];
    for (long l : AggregateReducerStartTimes) {
        if (l < AggregateReducerStartMin) {
            AggregateReducerStartMin = l;
        }
    }
    long AggregateReducerEndMax = AggregateReducerEndTimes[0];
    for (long l : AggregateReducerEndTimes) {
        if (l > AggregateReducerEndMax) {
            AggregateReducerEndMax = l;
        }
    }
    System.out.println("Aggregate job round shuffle phase runtime (milliseconds): "
            + (AggregateReducerStartMin - AggregateMapperEndMax));
    System.out.println("AggregateReducer total runtime (milliseconds): "
            + (AggregateReducerEndMax - AggregateReducerStartMin));
    long[] AggregateReducerRunTimes = new long[AggregateReducerStartTimes.length];
    long AggregateReducerRunTimesSum = 0;
    for (int l = 0; l < AggregateReducerStartTimes.length; l++) {
        AggregateReducerRunTimes[l] = AggregateReducerEndTimes[l] - AggregateReducerStartTimes[l];
        AggregateReducerRunTimesSum += AggregateReducerRunTimes[l];
    }
    System.out.println("AggregateReducer average task runtime (milliseconds): "
            + AggregateReducerRunTimesSum / AggregateReducerStartTimes.length);
    long AggregateReducerRunTimesMin = AggregateReducerRunTimes[0];
    long AggregateReducerRunTimesMax = AggregateReducerRunTimes[0];
    for (long l : AggregateReducerRunTimes) {
        if (l < AggregateReducerRunTimesMin) {
            AggregateReducerRunTimesMin = l;
        }
        if (l > AggregateReducerRunTimesMax) {
            AggregateReducerRunTimesMax = l;
        }
    }
    System.out.println("AggregateReducer minimum task runtime (milliseconds): " + AggregateReducerRunTimesMin);
    System.out.println("AggregateReducer maximum task runtime (milliseconds): " + AggregateReducerRunTimesMax);

    System.out.println(
            "Aggregation job cooldown time (milliseconds): " + (aggrJob_end_time - AggregateReducerEndMax));

    System.out
            .println("total runtime (all inclusive) (milliseconds): " + (aggrJob_end_time - FIMjob_start_time));
    System.out.println("total runtime (no FIM job setup, no aggregation job cooldown) (milliseconds): "
            + (AggregateReducerEndMax - FIMMapperStartMin));
    System.out.println("total runtime (no setups, no cooldowns) (milliseconds): "
            + (FIMReducerEndMax - FIMMapperStartMin + AggregateReducerEndMax - AggregateMapperStartMin));
    System.out.println("FIM job runtime (including setup and cooldown) (milliseconds): " + FIMjob_runtime);
    System.out.println("FIM job runtime (no setup, no cooldown) (milliseconds): "
            + (FIMReducerEndMax - FIMMapperStartMin));
    System.out.println(
            "Aggregation job runtime (including setup and cooldown) (milliseconds): " + aggrJob_runtime);
    System.out.println("Aggregation job runtime (no setup, no cooldown) (milliseconds): "
            + (AggregateReducerEndMax - AggregateMapperStartMin));

    return 0;
}

From source file:io.druid.indexer.InputRowSerde.java

License:Apache License

public static final byte[] toBytes(final InputRow row, AggregatorFactory[] aggs) {
    try {//from   www  . ja v a2  s.c  o m
        ByteArrayDataOutput out = ByteStreams.newDataOutput();

        //write timestamp
        out.writeLong(row.getTimestampFromEpoch());

        //writing all dimensions
        List<String> dimList = row.getDimensions();

        Text[] dims = EMPTY_TEXT_ARRAY;
        if (dimList != null) {
            dims = new Text[dimList.size()];
            for (int i = 0; i < dims.length; i++) {
                dims[i] = new Text(dimList.get(i));
            }
        }
        StringArrayWritable sw = new StringArrayWritable(dims);
        sw.write(out);

        MapWritable mw = new MapWritable();

        if (dimList != null) {
            for (String dim : dimList) {
                List<String> dimValue = row.getDimension(dim);

                if (dimValue == null || dimValue.size() == 0) {
                    continue;
                }

                if (dimValue.size() == 1) {
                    mw.put(new Text(dim), new Text(dimValue.get(0)));
                } else {
                    Text[] dimValueArr = new Text[dimValue.size()];
                    for (int i = 0; i < dimValueArr.length; i++) {
                        dimValueArr[i] = new Text(dimValue.get(i));
                    }
                    mw.put(new Text(dim), new StringArrayWritable(dimValueArr));
                }
            }
        }

        //writing all metrics
        Supplier<InputRow> supplier = new Supplier<InputRow>() {
            @Override
            public InputRow get() {
                return row;
            }
        };
        for (AggregatorFactory aggFactory : aggs) {
            String k = aggFactory.getName();

            Aggregator agg = aggFactory
                    .factorize(IncrementalIndex.makeColumnSelectorFactory(aggFactory, supplier, true));
            agg.aggregate();

            String t = aggFactory.getTypeName();

            if (t.equals("float")) {
                mw.put(new Text(k), new FloatWritable(agg.getFloat()));
            } else if (t.equals("long")) {
                mw.put(new Text(k), new LongWritable(agg.getLong()));
            } else {
                //its a complex metric
                Object val = agg.get();
                ComplexMetricSerde serde = getComplexMetricSerde(t);
                mw.put(new Text(k), new BytesWritable(serde.toBytes(val)));
            }
        }

        mw.write(out);
        return out.toByteArray();
    } catch (IOException ex) {
        throw Throwables.propagate(ex);
    }
}

From source file:org.apache.accumulo.core.client.mapreduce.lib.impl.InputConfigurator.java

License:Apache License

/**
 * Sets configurations for multiple tables at a time.
 *
 * @param implementingClass// w w w .j  a  v  a 2s . c o  m
 *          the class whose name will be used as a prefix for the property configuration key
 * @param conf
 *          the Hadoop configuration object to configure
 * @param configs
 *          an array of {@link InputTableConfig} objects to associate with the job
 * @since 1.6.0
 */
public static void setInputTableConfigs(Class<?> implementingClass, Configuration conf,
        Map<String, InputTableConfig> configs) {
    MapWritable mapWritable = new MapWritable();
    for (Map.Entry<String, InputTableConfig> tableConfig : configs.entrySet())
        mapWritable.put(new Text(tableConfig.getKey()), tableConfig.getValue());

    ByteArrayOutputStream baos = new ByteArrayOutputStream();
    try {
        mapWritable.write(new DataOutputStream(baos));
    } catch (IOException e) {
        throw new IllegalStateException("Table configuration could not be serialized.");
    }

    String confKey = enumToConfKey(implementingClass, ScanOpts.TABLE_CONFIGS);
    conf.set(confKey, Base64.getEncoder().encodeToString(baos.toByteArray()));
}

From source file:org.apache.accumulo.core.clientImpl.mapreduce.lib.InputConfigurator.java

License:Apache License

/**
 * Sets configurations for multiple tables at a time.
 *
 * @param implementingClass/*from www  .  j a  v  a  2 s . c o m*/
 *          the class whose name will be used as a prefix for the property configuration key
 * @param conf
 *          the Hadoop configuration object to configure
 * @param configs
 *          an array of InputTableConfig objects to associate with the job
 * @since 1.6.0
 */
public static void setInputTableConfigs(Class<?> implementingClass, Configuration conf,
        Map<String, org.apache.accumulo.core.client.mapreduce.InputTableConfig> configs) {
    MapWritable mapWritable = new MapWritable();
    for (Map.Entry<String, org.apache.accumulo.core.client.mapreduce.InputTableConfig> tableConfig : configs
            .entrySet())
        mapWritable.put(new Text(tableConfig.getKey()), tableConfig.getValue());

    ByteArrayOutputStream baos = new ByteArrayOutputStream();
    try {
        mapWritable.write(new DataOutputStream(baos));
    } catch (IOException e) {
        throw new IllegalStateException("Table configuration could not be serialized.");
    }

    String confKey = enumToConfKey(implementingClass, ScanOpts.TABLE_CONFIGS);
    conf.set(confKey, Base64.getEncoder().encodeToString(baos.toByteArray()));
}

From source file:org.apache.flume.channel.file.FlumeEvent.java

License:Apache License

@Override
public void write(DataOutput out) throws IOException {
    MapWritable map = toMapWritable(getHeaders());
    map.write(out);
    byte[] body = getBody();
    if (body == null) {
        out.writeInt(-1);/*from   www  .j  av  a2s.  c o  m*/
    } else {
        out.writeInt(body.length);
        out.write(body);
    }
}

From source file:org.apache.flume.channel.recoverable.memory.RecoverableMemoryChannelEvent.java

License:Apache License

@Override
public void write(DataOutput out) throws IOException {
    out.writeLong(sequenceId);//from  w w w. ja va  2s .c o  m
    MapWritable map = toMapWritable(getHeaders());
    map.write(out);
    byte[] body = getBody();
    if (body == null) {
        out.writeInt(-1);
    } else {
        out.writeInt(body.length);
        out.write(body);
    }
}

From source file:org.apache.gora.util.WritableUtils.java

License:Apache License

public static final void writeProperties(DataOutput out, Properties props) throws IOException {
    MapWritable propsWritable = new MapWritable();
    for (Entry<Object, Object> prop : props.entrySet()) {
        Writable key = new Text(prop.getKey().toString());
        Writable value = new Text(prop.getValue().toString());
        propsWritable.put(key, value);/*  w  w w  . java  2  s  .  c  o  m*/
    }
    propsWritable.write(out);
}