Example usage for org.apache.hadoop.io Text set

List of usage examples for org.apache.hadoop.io Text set

Introduction

In this page you can find the example usage for org.apache.hadoop.io Text set.

Prototype

public void set(byte[] utf8, int start, int len) 

Source Link

Document

Set the Text to range of bytes

Usage

From source file:com.huayu.metis.flume.sink.hdfs.HDFSTextSerializer.java

License:Apache License

private Text makeText(Event e) {
    Text textObject = new Text();
    textObject.set(e.getBody(), 0, e.getBody().length);
    return textObject;
}

From source file:com.ibm.jaql.lang.expr.del.JsonToDel.java

License:Apache License

/**
 * Converts the given JSON value for a del line into a Text.
 * //from   www .  ja  va 2  s.  c o m
 * @param src JSON value
 * @return text text
 * @throws IOException
 * @throws IllegalArgumentException If no field names are provided for JSON
 *           record.
 */
public void convert(JsonValue src, Text text) throws IOException {
    /*
     * 1. If quoted is false and src can be extract as a JSON string, its   
     *    internal UTF-8 byte array is set to text.
     * 2. Extract JSON values into an array list. Looping the JSON values in the
     *    array list:
     * 2.1 quotes is false: If the value is a JSON string, its internal
     *     UTF-8 byte array is written to out. Otherwise, it is serialized
     *     to out.
     * 2.2 quoted is true: If the value does not contain characters which 
     *     need double-quote escaping or backslash escaping, it is 
     *     serialized to out. For JSON string, its internal UTF-8 byte array is 
     *     written to out byte-by-byte after escaping. For the value of other
     *     types, it is serialized to a field buffer. Then the array backing the
     *     field buffer is written to out byte-by-bye after escaping.
     * 2.3 Set the content of the buffer backing out to text.
     */
    try {
        if (!quoted) {
            if (src instanceof JsonRecord && fieldNames.length == 1) {
                JsonRecord rec = (JsonRecord) src;
                JsonValue only = rec.get(fieldNames[0]);
                if (only instanceof JsonString) {
                    JsonString js = (JsonString) only;
                    text.set(js.getInternalBytes(), js.bytesOffset(), js.bytesLength());
                    return;
                }
            } else if (src instanceof JsonArray) {
                JsonArray arr = (JsonArray) src;
                if (arr.count() == 1) {
                    JsonValue only = arr.get(0);
                    if (only instanceof JsonString) {
                        JsonString js = (JsonString) only;
                        text.set(js.getInternalBytes(), js.bytesOffset(), js.bytesLength());
                        return;
                    }
                }
            } else if (src instanceof JsonString) {
                JsonString js = (JsonString) src;
                text.set(js.getInternalBytes(), js.bytesOffset(), js.bytesLength());
                return;
            }
        }
    } catch (Exception e) {
        throw new RuntimeException(e);
    }

    values.clear();
    if (src instanceof JsonRecord) {
        JsonRecord rec = (JsonRecord) src;
        if (fieldNames.length < 1)
            throw new IllegalArgumentException("fields are required to convert A JSON record into a del line.");
        for (JsonString n : fieldNames)
            values.add(rec.get(n));
    } else if (src instanceof JsonArray) {
        JsonArray arr = (JsonArray) src;
        for (JsonValue value : arr)
            values.add(value);
    } else {
        // If the value is not JsonRecord or JsonArray, then write it directly.
        values.add(src);
    }

    out.reset();
    for (int i = 0; i < values.size(); i++) {
        JsonValue value = values.get(i);
        if (i != 0)
            out.write(delimiter);
        if (value == null)
            continue;
        if (quoted)
            printFieldQuoted(out, value, escape);
        else
            printFieldUnquoted(out, value);
    }
    out.flush();
    text.set(out.toString());
}

From source file:com.kylinolap.job.hadoop.cube.CubeReducerTest.java

License:Apache License

private Text newValueText(MeasureCodec codec, String sum, String min, String max, int count) {
    Object[] values = new Object[] { new BigDecimal(sum), new BigDecimal(min), new BigDecimal(max),
            new LongWritable(count) };

    buf.clear();/*from  ww  w  .  j av a2 s .  c  om*/
    codec.encode(values, buf);

    Text t = new Text();
    t.set(buf.array(), 0, buf.position());
    return t;
}

From source file:com.ricemap.spateDB.core.RTree.java

License:Apache License

/**
 * Builds the RTree given a serialized list of elements. It uses the given
 * stockObject to deserialize these elements and build the tree. Also writes
 * the created tree to the disk directly.
 * //from w w  w .j av a2s .co  m
 * @param elements
 *            - serialization of elements to be written
 * @param offset
 *            - index of the first element to use in the elements array
 * @param len
 *            - number of bytes to user from the elements array
 * @param bytesAvailable
 *            - size available (in bytes) to store the tree structures
 * @param dataOut
 *            - an output to use for writing the tree to
 * @param fast_sort
 *            - setting this to <code>true</code> allows the method to run
 *            faster by materializing the offset of each element in the list
 *            which speeds up the comparison. However, this requires an
 *            additional 16 bytes per element. So, for each 1M elements, the
 *            method will require an additional 16 M bytes (approximately).
 */
public void bulkLoadWrite(final byte[] element_bytes, final int offset, final int len, final int degree,
        DataOutput dataOut, final boolean fast_sort, final boolean columnarStorage) {
    try {
        columnar = columnarStorage;
        //TODO: the order of fields should be stable under Oracle JVM, but not guaranteed
        Field[] fields = stockObject.getClass().getDeclaredFields();

        // Count number of elements in the given text
        int i_start = offset;
        final Text line = new Text();
        while (i_start < offset + len) {
            int i_end = skipToEOL(element_bytes, i_start);
            // Extract the line without end of line character
            line.set(element_bytes, i_start, i_end - i_start - 1);
            stockObject.fromText(line);

            elementCount++;
            i_start = i_end;
        }
        LOG.info("Bulk loading an RTree with " + elementCount + " elements");

        // It turns out the findBestDegree returns the best degree when the
        // whole
        // tree is loaded to memory when processed. However, as current
        // algorithms
        // process the tree while it's on disk, a higher degree should be
        // selected
        // such that a node fits one file block (assumed to be 4K).
        // final int degree = findBestDegree(bytesAvailable, elementCount);
        LOG.info("Writing an RTree with degree " + degree);

        int height = Math.max(1, (int) Math.ceil(Math.log(elementCount) / Math.log(degree)));
        int leafNodeCount = (int) Math.pow(degree, height - 1);
        if (elementCount < 2 * leafNodeCount && height > 1) {
            height--;
            leafNodeCount = (int) Math.pow(degree, height - 1);
        }
        int nodeCount = (int) ((Math.pow(degree, height) - 1) / (degree - 1));
        int nonLeafNodeCount = nodeCount - leafNodeCount;

        // Keep track of the offset of each element in the text
        final int[] offsets = new int[elementCount];
        final int[] ids = new int[elementCount];
        final double[] ts = fast_sort ? new double[elementCount] : null;
        final double[] xs = fast_sort ? new double[elementCount] : null;
        final double[] ys = fast_sort ? new double[elementCount] : null;

        //initialize columnar data output
        ByteArrayOutputStream index_bos = new ByteArrayOutputStream();
        DataOutputStream index_dos = new DataOutputStream(index_bos);
        ByteArrayOutputStream[] bos = new ByteArrayOutputStream[fields.length];
        DataOutputStream[] dos = new DataOutputStream[fields.length];
        for (int i = 0; i < bos.length; i++) {
            bos[i] = new ByteArrayOutputStream();
            dos[i] = new DataOutputStream(bos[i]);
        }

        i_start = offset;
        line.clear();
        for (int i = 0; i < elementCount; i++) {
            offsets[i] = i_start;
            ids[i] = i;
            int i_end = skipToEOL(element_bytes, i_start);
            if (xs != null) {
                // Extract the line with end of line character
                line.set(element_bytes, i_start, i_end - i_start - 1);
                stockObject.fromText(line);
                // Sample center of the shape
                ts[i] = (stockObject.getMBR().t1 + stockObject.getMBR().t2) / 2;
                xs[i] = (stockObject.getMBR().x1 + stockObject.getMBR().x2) / 2;
                ys[i] = (stockObject.getMBR().y1 + stockObject.getMBR().y2) / 2;

                //build columnar storage
                if (stockObject instanceof Point3d) {
                    index_dos.writeDouble(ts[i]);
                    index_dos.writeDouble(xs[i]);
                    index_dos.writeDouble(ys[i]);
                } else {
                    throw new RuntimeException("Indexing non-point shape with RTREE is not supported yet");
                }

                for (int j = 0; j < fields.length; j++) {
                    if (fields[j].getType().equals(Integer.TYPE)) {
                        dos[j].writeInt(fields[j].getInt(stockObject));
                    } else if (fields[j].getType().equals(Double.TYPE)) {
                        dos[j].writeDouble(fields[j].getDouble(stockObject));
                    } else if (fields[j].getType().equals(Long.TYPE)) {
                        dos[j].writeLong(fields[j].getLong(stockObject));
                    } else {
                        continue;
                        //throw new RuntimeException("Field type is not supported yet");
                    }
                }
            }
            i_start = i_end;
        }
        index_dos.close();
        for (int i = 0; i < dos.length; i++) {
            dos[i].close();
        }

        /** A struct to store information about a split */
        class SplitStruct extends Prism {
            /** Start and end index for this split */
            int index1, index2;
            /** Direction of this split */
            byte direction;
            /** Index of first element on disk */
            int offsetOfFirstElement;

            static final byte DIRECTION_T = 0;
            static final byte DIRECTION_X = 1;
            static final byte DIRECTION_Y = 2;

            SplitStruct(int index1, int index2, byte direction) {
                this.index1 = index1;
                this.index2 = index2;
                this.direction = direction;
            }

            @Override
            public void write(DataOutput out) throws IOException {
                //
                if (columnarStorage)
                    out.writeInt(index1);
                else
                    out.writeInt(offsetOfFirstElement);
                super.write(out);
            }

            void partition(Queue<SplitStruct> toBePartitioned) {
                IndexedSortable sortableT;
                IndexedSortable sortableX;
                IndexedSortable sortableY;

                if (fast_sort) {
                    // Use materialized xs[] and ys[] to do the comparisons
                    sortableT = new IndexedSortable() {
                        @Override
                        public void swap(int i, int j) {
                            // Swap ts
                            double tempt = ts[i];
                            ts[i] = ts[j];
                            ts[j] = tempt;
                            // Swap xs
                            double tempx = xs[i];
                            xs[i] = xs[j];
                            xs[j] = tempx;
                            // Swap ys
                            double tempY = ys[i];
                            ys[i] = ys[j];
                            ys[j] = tempY;
                            // Swap id
                            int tempid = offsets[i];
                            offsets[i] = offsets[j];
                            offsets[j] = tempid;

                            tempid = ids[i];
                            ids[i] = ids[j];
                            ids[j] = tempid;
                        }

                        @Override
                        public int compare(int i, int j) {
                            if (ts[i] < ts[j])
                                return -1;
                            if (ts[i] > ts[j])
                                return 1;
                            return 0;
                        }
                    };
                    sortableX = new IndexedSortable() {
                        @Override
                        public void swap(int i, int j) {
                            // Swap ts
                            double tempt = ts[i];
                            ts[i] = ts[j];
                            ts[j] = tempt;
                            // Swap xs
                            double tempx = xs[i];
                            xs[i] = xs[j];
                            xs[j] = tempx;
                            // Swap ys
                            double tempY = ys[i];
                            ys[i] = ys[j];
                            ys[j] = tempY;
                            // Swap id
                            int tempid = offsets[i];
                            offsets[i] = offsets[j];
                            offsets[j] = tempid;
                            tempid = ids[i];
                            ids[i] = ids[j];
                            ids[j] = tempid;
                        }

                        @Override
                        public int compare(int i, int j) {
                            if (ts[i] < ts[j])
                                return -1;
                            if (xs[i] < xs[j])
                                return -1;
                            if (xs[i] > xs[j])
                                return 1;
                            return 0;
                        }
                    };

                    sortableY = new IndexedSortable() {
                        @Override
                        public void swap(int i, int j) {
                            // Swap ts
                            double tempt = ts[i];
                            ts[i] = ts[j];
                            ts[j] = tempt;
                            // Swap xs
                            double tempx = xs[i];
                            xs[i] = xs[j];
                            xs[j] = tempx;
                            // Swap ys
                            double tempY = ys[i];
                            ys[i] = ys[j];
                            ys[j] = tempY;
                            // Swap id
                            int tempid = offsets[i];
                            offsets[i] = offsets[j];
                            offsets[j] = tempid;

                            tempid = ids[i];
                            ids[i] = ids[j];
                            ids[j] = tempid;
                        }

                        @Override
                        public int compare(int i, int j) {
                            if (ys[i] < ys[j])
                                return -1;
                            if (ys[i] > ys[j])
                                return 1;
                            return 0;
                        }
                    };
                } else {
                    // No materialized xs and ys. Always deserialize objects
                    // to compare
                    sortableT = new IndexedSortable() {
                        @Override
                        public void swap(int i, int j) {
                            // Swap id
                            int tempid = offsets[i];
                            offsets[i] = offsets[j];
                            offsets[j] = tempid;

                            tempid = ids[i];
                            ids[i] = ids[j];
                            ids[j] = tempid;
                        }

                        @Override
                        public int compare(int i, int j) {
                            // Get end of line
                            int eol = skipToEOL(element_bytes, offsets[i]);
                            line.set(element_bytes, offsets[i], eol - offsets[i] - 1);
                            stockObject.fromText(line);
                            double ti = (stockObject.getMBR().t1 + stockObject.getMBR().t2) / 2;

                            eol = skipToEOL(element_bytes, offsets[j]);
                            line.set(element_bytes, offsets[j], eol - offsets[j] - 1);
                            stockObject.fromText(line);
                            double tj = (stockObject.getMBR().t1 + stockObject.getMBR().t2) / 2;
                            if (ti < tj)
                                return -1;
                            if (ti > tj)
                                return 1;
                            return 0;
                        }
                    };
                    sortableX = new IndexedSortable() {
                        @Override
                        public void swap(int i, int j) {
                            // Swap id
                            int tempid = offsets[i];
                            offsets[i] = offsets[j];
                            offsets[j] = tempid;

                            tempid = ids[i];
                            ids[i] = ids[j];
                            ids[j] = tempid;
                        }

                        @Override
                        public int compare(int i, int j) {
                            // Get end of line
                            int eol = skipToEOL(element_bytes, offsets[i]);
                            line.set(element_bytes, offsets[i], eol - offsets[i] - 1);
                            stockObject.fromText(line);
                            double xi = (stockObject.getMBR().x1 + stockObject.getMBR().x2) / 2;

                            eol = skipToEOL(element_bytes, offsets[j]);
                            line.set(element_bytes, offsets[j], eol - offsets[j] - 1);
                            stockObject.fromText(line);
                            double xj = (stockObject.getMBR().x1 + stockObject.getMBR().x2) / 2;
                            if (xi < xj)
                                return -1;
                            if (xi > xj)
                                return 1;
                            return 0;
                        }
                    };

                    sortableY = new IndexedSortable() {
                        @Override
                        public void swap(int i, int j) {
                            // Swap id
                            int tempid = offsets[i];
                            offsets[i] = offsets[j];
                            offsets[j] = tempid;

                            tempid = ids[i];
                            ids[i] = ids[j];
                            ids[j] = tempid;
                        }

                        @Override
                        public int compare(int i, int j) {
                            int eol = skipToEOL(element_bytes, offsets[i]);
                            line.set(element_bytes, offsets[i], eol - offsets[i] - 1);
                            stockObject.fromText(line);
                            double yi = (stockObject.getMBR().y1 + stockObject.getMBR().y2) / 2;

                            eol = skipToEOL(element_bytes, offsets[j]);
                            line.set(element_bytes, offsets[j], eol - offsets[j] - 1);
                            stockObject.fromText(line);
                            double yj = (stockObject.getMBR().y1 + stockObject.getMBR().y2) / 2;
                            if (yi < yj)
                                return -1;
                            if (yi > yj)
                                return 1;
                            return 0;
                        }
                    };
                }

                final IndexedSorter sorter = new QuickSort();

                final IndexedSortable[] sortables = new IndexedSortable[3];
                sortables[SplitStruct.DIRECTION_T] = sortableT;
                sortables[SplitStruct.DIRECTION_X] = sortableX;
                sortables[SplitStruct.DIRECTION_Y] = sortableY;

                sorter.sort(sortables[direction], index1, index2);

                // Partition into maxEntries partitions (equally) and
                // create a SplitStruct for each partition
                int i1 = index1;
                for (int iSplit = 0; iSplit < degree; iSplit++) {
                    int i2 = index1 + (index2 - index1) * (iSplit + 1) / degree;
                    SplitStruct newSplit;
                    if (direction == 0) {
                        newSplit = new SplitStruct(i1, i2, (byte) 1);
                    } else if (direction == 1) {
                        newSplit = new SplitStruct(i1, i2, (byte) 2);
                    } else {
                        newSplit = new SplitStruct(i1, i2, (byte) 0);
                    }
                    toBePartitioned.add(newSplit);
                    i1 = i2;
                }
            }
        }

        // All nodes stored in level-order traversal
        Vector<SplitStruct> nodes = new Vector<SplitStruct>();
        final Queue<SplitStruct> toBePartitioned = new LinkedList<SplitStruct>();
        toBePartitioned.add(new SplitStruct(0, elementCount, SplitStruct.DIRECTION_X));

        while (!toBePartitioned.isEmpty()) {
            SplitStruct split = toBePartitioned.poll();
            if (nodes.size() < nonLeafNodeCount) {
                // This is a non-leaf
                split.partition(toBePartitioned);
            }
            nodes.add(split);
        }

        if (nodes.size() != nodeCount) {
            throw new RuntimeException(
                    "Expected node count: " + nodeCount + ". Real node count: " + nodes.size());
        }

        // Now we have our data sorted in the required order. Start building
        // the tree.
        // Store the offset of each leaf node in the tree
        FSDataOutputStream fakeOut = new FSDataOutputStream(new java.io.OutputStream() {
            // Null output stream
            @Override
            public void write(int b) throws IOException {
                // Do nothing
            }

            @Override
            public void write(byte[] b, int off, int len) throws IOException {
                // Do nothing
            }

            @Override
            public void write(byte[] b) throws IOException {
                // Do nothing
            }
        }, null, TreeHeaderSize + nodes.size() * NodeSize);
        for (int i_leaf = nonLeafNodeCount, i = 0; i_leaf < nodes.size(); i_leaf++) {
            nodes.elementAt(i_leaf).offsetOfFirstElement = (int) fakeOut.getPos();
            if (i != nodes.elementAt(i_leaf).index1)
                throw new RuntimeException();
            double t1, x1, y1, t2, x2, y2;

            // Initialize MBR to first object
            int eol = skipToEOL(element_bytes, offsets[i]);
            fakeOut.write(element_bytes, offsets[i], eol - offsets[i]);
            line.set(element_bytes, offsets[i], eol - offsets[i] - 1);
            stockObject.fromText(line);
            Prism mbr = stockObject.getMBR();
            t1 = mbr.t1;
            x1 = mbr.x1;
            y1 = mbr.y1;
            t2 = mbr.t2;
            x2 = mbr.x2;
            y2 = mbr.y2;
            i++;

            while (i < nodes.elementAt(i_leaf).index2) {
                eol = skipToEOL(element_bytes, offsets[i]);
                fakeOut.write(element_bytes, offsets[i], eol - offsets[i]);
                line.set(element_bytes, offsets[i], eol - offsets[i] - 1);
                stockObject.fromText(line);
                mbr = stockObject.getMBR();
                if (mbr.t1 < t1)
                    t1 = mbr.t1;
                if (mbr.x1 < x1)
                    x1 = mbr.x1;
                if (mbr.y1 < y1)
                    y1 = mbr.y1;
                if (mbr.t2 > t2)
                    t2 = mbr.t2;
                if (mbr.x2 > x2)
                    x2 = mbr.x2;
                if (mbr.y2 > y2)
                    y2 = mbr.y2;
                i++;
            }
            nodes.elementAt(i_leaf).set(t1, x1, y1, t2, x2, y2);
        }
        fakeOut.close();
        fakeOut = null;

        // Calculate MBR and offsetOfFirstElement for non-leaves
        for (int i_node = nonLeafNodeCount - 1; i_node >= 0; i_node--) {
            int i_first_child = i_node * degree + 1;
            nodes.elementAt(i_node).offsetOfFirstElement = nodes.elementAt(i_first_child).offsetOfFirstElement;
            int i_child = 0;
            Prism mbr;
            mbr = nodes.elementAt(i_first_child + i_child);
            double t1 = mbr.t1;
            double x1 = mbr.x1;
            double y1 = mbr.y1;
            double t2 = mbr.t2;
            double x2 = mbr.x2;
            double y2 = mbr.y2;
            i_child++;

            while (i_child < degree) {
                mbr = nodes.elementAt(i_first_child + i_child);
                if (mbr.t1 < t1)
                    t1 = mbr.t1;
                if (mbr.x1 < x1)
                    x1 = mbr.x1;
                if (mbr.y1 < y1)
                    y1 = mbr.y1;
                if (mbr.t2 > t2)
                    t2 = mbr.t2;
                if (mbr.x2 > x2)
                    x2 = mbr.x2;
                if (mbr.y2 > y2)
                    y2 = mbr.y2;
                i_child++;
            }
            nodes.elementAt(i_node).set(t1, x1, y1, t2, x2, y2);
        }

        // Start writing the tree
        // write tree header (including size)
        // Total tree size. (== Total bytes written - 8 bytes for the size
        // itself)
        dataOut.writeInt(TreeHeaderSize + NodeSize * nodeCount + len);
        // Tree height
        dataOut.writeInt(height);
        // Degree
        dataOut.writeInt(degree);
        dataOut.writeInt(elementCount);

        //isColumnar
        dataOut.writeInt(columnarStorage ? 1 : 0);

        // write nodes
        for (SplitStruct node : nodes) {
            node.write(dataOut);
        }
        // write elements
        if (columnarStorage) {
            byte[] index_bs = index_bos.toByteArray();
            byte[][] bss = new byte[bos.length][];
            for (int i = 0; i < bss.length; i++) {
                bss[i] = bos[i].toByteArray();
            }
            for (int element_i = 0; element_i < elementCount; element_i++) {
                //int eol = skipToEOL(element_bytes, offsets[element_i]);
                //dataOut.write(element_bytes, offsets[element_i], eol - offsets[element_i]);
                dataOut.write(index_bs, ids[element_i] * IndexUnitSize, IndexUnitSize);
            }

            for (int i = 0; i < fields.length; i++) {
                int fieldSize = 0;
                if (fields[i].getType().equals(Integer.TYPE)) {
                    fieldSize = 4;
                } else if (fields[i].getType().equals(Long.TYPE)) {
                    fieldSize = 8;
                } else if (fields[i].getType().equals(Double.TYPE)) {
                    fieldSize = 8;
                } else {
                    //throw new RuntimeException("Unsupported field type: " + fields[i].getType().getName());
                    continue;
                }
                for (int element_i = 0; element_i < elementCount; element_i++) {
                    //int eol = skipToEOL(element_bytes, offsets[element_i]);
                    //dataOut.write(element_bytes, offsets[element_i], eol - offsets[element_i]);
                    dataOut.write(bss[i], ids[element_i] * fieldSize, fieldSize);
                }
            }
        } else {
            for (int element_i = 0; element_i < elementCount; element_i++) {
                int eol = skipToEOL(element_bytes, offsets[element_i]);
                dataOut.write(element_bytes, offsets[element_i], eol - offsets[element_i]);
            }
        }

    } catch (IOException e) {
        e.printStackTrace();
    } catch (IllegalArgumentException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    } catch (IllegalAccessException e) {
        // TODO Auto-generated catch block
        e.printStackTrace();
    }
}

From source file:com.ricemap.spateDB.io.TextSerializerHelper.java

License:Apache License

/**
 * Deserializes and consumes a long from the given text. Consuming means all
 * characters read for deserialization are removed from the given text.
 * If separator is non-zero, a long is read and consumed up to the first
 * occurrence of this separator. The separator is also consumed.
 * @param text/*from  w ww.  j a v a 2s .  c o m*/
 * @param separator
 * @return
 */
public static long consumeHexLong(Text text, char separator) {
    int i = 0;
    byte[] bytes = text.getBytes();
    // Skip until the separator or end of text
    while (i < text.getLength() && HexadecimalChars[bytes[i]])
        i++;
    long l = deserializeHexLong(bytes, 0, i);
    // If the first char after the long is the separator, skip it
    if (i < text.getLength() && bytes[i] == separator)
        i++;
    // Shift bytes after the long
    System.arraycopy(bytes, i, bytes, 0, text.getLength() - i);
    text.set(bytes, 0, text.getLength() - i);
    return l;
}

From source file:com.ricemap.spateDB.io.TextSerializerHelper.java

License:Apache License

/**
 * Deserializes and consumes a double from the given text. Consuming means all
 * characters read for deserialization are removed from the given text.
 * If separator is non-zero, a double is read and consumed up to the first
 * occurrence of this separator. The separator is also consumed.
 * @param text/*from  w  ww  .j a va2 s  .  c  om*/
 * @param separator
 * @return
 */
public static double consumeDouble(Text text, char separator) {
    int i = 0;
    byte[] bytes = text.getBytes();
    // Skip until the separator or end of text
    while (i < text.getLength() && ((bytes[i] >= '0' && bytes[i] <= '9') || bytes[i] == 'e' || bytes[i] == 'E'
            || bytes[i] == '-' || bytes[i] == '+' || bytes[i] == '.'))
        i++;
    double d = deserializeDouble(bytes, 0, i);
    if (i < text.getLength() && bytes[i] == separator)
        i++;
    System.arraycopy(bytes, i, bytes, 0, text.getLength() - i);
    text.set(bytes, 0, text.getLength() - i);
    return d;
}

From source file:com.ricemap.spateDB.io.TextSerializerHelper.java

License:Apache License

public static long consumeLong(Text text, char separator) {
    int i = 0;//from ww w  .j a v  a2  s .c om
    byte[] bytes = text.getBytes();
    // Skip until the separator or end of text
    while (i < text.getLength() && DecimalChars[bytes[i]])
        i++;
    long l = deserializeLong(bytes, 0, i);
    // If the first char after the long is the separator, skip it
    if (i < text.getLength() && bytes[i] == separator)
        i++;
    // Shift bytes after the long
    System.arraycopy(bytes, i, bytes, 0, text.getLength() - i);
    text.set(bytes, 0, text.getLength() - i);
    return l;
}

From source file:com.ricemap.spateDB.io.TextSerializerHelper.java

License:Apache License

public static int consumeInt(Text text, char separator) {
    int i = 0;//from   w  w w.j a  v a  2s .c om
    byte[] bytes = text.getBytes();
    // Skip until the separator or end of text
    while (i < text.getLength() && DecimalChars[bytes[i]])
        i++;
    int l = deserializeInt(bytes, 0, i);
    // If the first char after the long is the separator, skip it
    if (i < text.getLength() && bytes[i] == separator)
        i++;
    // Shift bytes after the long
    System.arraycopy(bytes, i, bytes, 0, text.getLength() - i);
    text.set(bytes, 0, text.getLength() - i);
    return l;
}

From source file:com.ricemap.spateDB.io.TextSerializerHelper.java

License:Apache License

public static void consumeMap(Text text, Map<String, String> tags) {
    tags.clear();//  w  ww  .jav a2s . c  o m
    if (text.getLength() > 0) {
        byte[] tagsBytes = text.getBytes();
        if (tagsBytes[0] != Separators[MapStart])
            return;
        int i1 = 1;
        while (i1 < text.getLength() && tagsBytes[i1] != Separators[MapEnd]) {
            int i2 = i1 + 1;
            while (i2 < text.getLength() && tagsBytes[i2] != Separators[KeyValueSeparator])
                i2++;
            String key = new String(tagsBytes, i1, i2 - i1);
            i1 = i2 + 1;

            i2 = i1 + 1;
            while (i2 < text.getLength() && tagsBytes[i2] != Separators[FieldSeparator]
                    && tagsBytes[i2] != Separators[MapEnd])
                i2++;
            String value = new String(tagsBytes, i1, i2 - i1);
            tags.put(key, value);
            i1 = i2;
            if (i1 < text.getLength() && tagsBytes[i1] == Separators[FieldSeparator])
                i1++;
        }
        text.set(tagsBytes, i1, text.getLength() - i1);
    }
}

From source file:de.l3s.streamcorpus.terrier.ThriftFileCollectionRecordReader.java

License:Apache License

/** 
 * Reading a bunch of lines of file paths in a list.
 * The code in this method is redistributed from Hadoop LineRecordReader
 * // www  .ja va  2  s. c  o  m
 * @throws IOException 
 */
private void loadPathsFromInputSplit(InputSplit split, Configuration conf) throws IOException {
    FileSplit fileSplit = (FileSplit) split;
    Path path = fileSplit.getPath();

    long begin = fileSplit.getStart();
    long end = begin + fileSplit.getLength();

    LOG.info("Reading paths in file " + path.getName());

    // First check the compression codec
    CompressionCodecFactory compressionCodec = new CompressionCodecFactory(conf);
    CompressionCodec codec = compressionCodec.getCodec(path);
    FSDataInputStream fis = fs.open(path);
    SplitLineReader in;

    Seekable filePosition;

    boolean compressed = false;
    Decompressor decompressor = null;
    if (null != codec) {
        compressed = true;
        decompressor = CodecPool.getDecompressor(codec);
        if (codec instanceof SplittableCompressionCodec) {
            final SplitCompressionInputStream cIn = ((SplittableCompressionCodec) codec).createInputStream(fis,
                    decompressor, begin, end, SplittableCompressionCodec.READ_MODE.BYBLOCK);
            in = new CompressedSplitLineReader(cIn, conf, (byte[]) null);
            begin = cIn.getAdjustedStart();
            end = cIn.getAdjustedEnd();
            filePosition = cIn;
        } else {
            in = new SplitLineReader(codec.createInputStream(fis, decompressor), conf, null);
            filePosition = fis;
        }
    } else {
        fis.seek(begin);
        in = new SplitLineReader(fis, conf, (byte[]) null);
        filePosition = fis;
    }
    // If this is not the first split, we always throw away first record
    // because we always (except the last split) read one extra line in
    // next() method.
    if (begin != 0) {
        begin += in.readLine(new Text(), 0, maxBytesToConsume(compressed, begin, end));
    }
    long pos = begin;

    int newSize = 0;
    final Text nextLine = new Text();
    paths = new ArrayList<>();
    while (getFilePosition(compressed, filePosition, pos) <= end || in.needAdditionalRecordAfterSplit()) {

        if (pos == 0) {
            // Strip BOM(Byte Order Mark)
            // Text only support UTF-8, we only need to check UTF-8 BOM
            // (0xEF,0xBB,0xBF) at the start of the text stream.
            newSize = in.readLine(nextLine, Integer.MAX_VALUE, Integer.MAX_VALUE);
            pos += newSize;
            int textLength = nextLine.getLength();
            byte[] textBytes = nextLine.getBytes();
            if ((textLength >= 3) && (textBytes[0] == (byte) 0xEF) && (textBytes[1] == (byte) 0xBB)
                    && (textBytes[2] == (byte) 0xBF)) {
                // find UTF-8 BOM, strip it.
                LOG.info("Found UTF-8 BOM and skipped it");
                textLength -= 3;
                newSize -= 3;
                if (textLength > 0) {
                    // It may work to use the same buffer and 
                    // not do the copyBytes
                    textBytes = nextLine.copyBytes();
                    nextLine.set(textBytes, 3, textLength);
                } else {
                    nextLine.clear();
                }
            }
        } else {
            newSize = in.readLine(nextLine, Integer.MAX_VALUE, maxBytesToConsume(compressed, pos, end));
            pos += newSize;
        }

        paths.add(nextLine.toString());
        // line too long. try again
        LOG.info("Skipped line of size " + newSize + " at pos " + (pos - newSize));
    }

    try {
        if (in != null) {
            in.close();
        }
        if (fis != null) {
            fis.close();
        }
    } finally {
        if (decompressor != null) {
            CodecPool.returnDecompressor(decompressor);
        }
    }
}