Example usage for org.opencv.core Core subtract

List of usage examples for org.opencv.core Core subtract

Introduction

In this page you can find the example usage for org.opencv.core Core subtract.

Prototype

public static void subtract(Mat src1, Scalar src2, Mat dst) 

Source Link

Usage

From source file:Questao1.java

void subtracao() {
    System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

    Core.subtract(image1, image2, output);
    Imgcodecs.imwrite("subtracao.jpg", output);
    showResult("subtracao.jpg");
}

From source file:ch.zhaw.facerecognitionlibrary.Helpers.FaceDetection.java

License:Open Source License

public Eyes getEyes(Mat img) {
    double halfWidth = img.cols() / 2;
    double height = img.rows();
    double[] values = new double[4];
    values[0] = 0;//from  w  w w . java2 s  . com
    values[1] = 0;
    values[2] = halfWidth;
    values[3] = height;
    Rect rightHalf = new Rect(values);
    values[0] = halfWidth;
    Rect leftHalf = new Rect(values);
    MatOfRect rightEyes = new MatOfRect();
    MatOfRect leftEyes = new MatOfRect();

    Mat rightHalfImg = img.submat(rightHalf);
    rightEyeDetector.detectMultiScale(rightHalfImg, rightEyes);
    Mat leftHalfImg = img.submat(leftHalf);
    leftEyeDetector.detectMultiScale(leftHalfImg, leftEyes);

    if (rightEyes.empty() || leftEyes.empty() || rightEyes.toArray().length > 1
            || leftEyes.toArray().length > 1) {
        return null;
    }

    Rect rightEye = rightEyes.toArray()[0];
    Rect leftEye = leftEyes.toArray()[0];

    MatOfFloat rightPoint = new MatOfFloat(rightEye.x + rightEye.width / 2, rightEye.y + rightEye.height / 2);
    MatOfFloat leftPoint = new MatOfFloat(img.cols() / 2 + leftEye.x + leftEye.width / 2,
            leftEye.y + leftEye.height / 2);

    MatOfFloat diff = new MatOfFloat();
    Core.subtract(leftPoint, rightPoint, diff);
    double angle = Core.fastAtan2(diff.toArray()[1], diff.toArray()[0]);
    double dist = Core.norm(leftPoint, rightPoint, Core.NORM_L2);
    Eyes eyes = new Eyes(dist, rightPoint, leftPoint, angle);
    return eyes;
}

From source file:ch.zhaw.facerecognitionlibrary.PreProcessor.PreProcessor.java

License:Open Source License

public void normalize01(Mat norm) {
    Core.normalize(norm, norm, 0.0, 1.0, Core.NORM_MINMAX, CvType.CV_64FC1);
    Core.MinMaxLocResult minmax = Core.minMaxLoc(norm);
    Scalar min = new Scalar(minmax.minVal);
    Core.subtract(norm, min, norm);
    minmax = Core.minMaxLoc(norm);//w  w w. ja  v a  2  s . c  om
    Scalar max = new Scalar(minmax.maxVal);
    Core.divide(norm, max, norm);
}

From source file:ch.zhaw.facerecognitionlibrary.Recognition.Eigenfaces.java

License:Open Source License

public String recognize(Mat img, String expectedLabel) {
    // Ignore/*ww  w .jav a  2s.  c om*/
    img = img.reshape(1, 1);
    // Subtract mean
    img.convertTo(img, CvType.CV_32F);
    Core.subtract(img, Psi, img);
    // Project to subspace
    Mat projected = getFeatureVector(img);
    // Save all points of image for tSNE
    img.convertTo(img, CvType.CV_8U);
    addImage(projected, expectedLabel, true);
    //addImage(projected, expectedLabel);
    Mat distance = new Mat(Omega.rows(), 1, CvType.CV_64FC1);
    for (int i = 0; i < Omega.rows(); i++) {
        double dist = Core.norm(projected.row(0), Omega.row(i), Core.NORM_L2);
        distance.put(i, 0, dist);
    }
    Mat sortedDist = new Mat(Omega.rows(), 1, CvType.CV_8UC1);
    Core.sortIdx(distance, sortedDist, Core.SORT_EVERY_COLUMN + Core.SORT_ASCENDING);
    // Give back the name of the found person
    int index = (int) (sortedDist.get(0, 0)[0]);
    return labelMap.getKey(labelList.get(index));
}

From source file:ch.zhaw.facerecognitionlibrary.Recognition.Eigenfaces.java

License:Open Source License

private void computePhi() {
    Mat Psi_repeated = new Mat();
    Core.repeat(Psi, Gamma.rows(), 1, Psi_repeated);
    Core.subtract(Gamma, Psi_repeated, Phi);
}

From source file:com.shootoff.camera.Camera.java

License:Open Source License

public static Mat colorTransfer(Mat source, Mat target) {
    Mat src = new Mat();
    Mat dst = new Mat();

    Imgproc.cvtColor(source, src, Imgproc.COLOR_BGR2Lab);
    Imgproc.cvtColor(target, dst, Imgproc.COLOR_BGR2Lab);

    ArrayList<Mat> src_channels = new ArrayList<Mat>();
    ArrayList<Mat> dst_channels = new ArrayList<Mat>();
    Core.split(src, src_channels);//from ww  w  . ja  v  a 2s .c  o  m
    Core.split(dst, dst_channels);

    for (int i = 0; i < 3; i++) {
        MatOfDouble src_mean = new MatOfDouble(), src_std = new MatOfDouble();
        MatOfDouble dst_mean = new MatOfDouble(), dst_std = new MatOfDouble();
        Core.meanStdDev(src_channels.get(i), src_mean, src_std);
        Core.meanStdDev(dst_channels.get(i), dst_mean, dst_std);

        dst_channels.get(i).convertTo(dst_channels.get(i), CvType.CV_64FC1);
        Core.subtract(dst_channels.get(i), dst_mean, dst_channels.get(i));
        Core.divide(dst_std, src_std, dst_std);
        Core.multiply(dst_channels.get(i), dst_std, dst_channels.get(i));
        Core.add(dst_channels.get(i), src_mean, dst_channels.get(i));
        dst_channels.get(i).convertTo(dst_channels.get(i), CvType.CV_8UC1);
    }

    Core.merge(dst_channels, dst);

    Imgproc.cvtColor(dst, dst, Imgproc.COLOR_Lab2BGR);

    return dst;
}

From source file:com.sikulix.core.Finder.java

License:Open Source License

private Mat doFindMatch(Element target, Mat base, Mat probe) {
    if (SX.isNull(probe)) {
        probe = target.getContent();//from  w w w . j  a  v a  2s .c  o m
    }
    Mat result = new Mat();
    Mat plainBase = base;
    Mat plainProbe = probe;
    if (!target.isPlainColor()) {
        Imgproc.matchTemplate(base, probe, result, Imgproc.TM_CCOEFF_NORMED);
    } else {
        if (target.isBlack()) {
            Core.bitwise_not(base, plainBase);
            Core.bitwise_not(probe, plainProbe);
        }
        Imgproc.matchTemplate(plainBase, plainProbe, result, Imgproc.TM_SQDIFF_NORMED);
        Core.subtract(Mat.ones(result.size(), CvType.CV_32F), result, result);
    }
    return result;
}

From source file:com.trandi.opentld.tld.Tld.java

License:Apache License

/**
 * Output: resized zero-mean patch/pattern
 * @param inImg INPUT, outPattern OUTPUT
 * @return stdev//  ww  w  . ja  v  a  2s  .c  o m
 */
private static double resizeZeroMeanStdev(final Mat inImg, Mat outPattern, int patternSize) {
    if (inImg == null || outPattern == null) {
        return -1;
    }

    Imgproc.resize(inImg, outPattern, new Size(patternSize, patternSize));
    final MatOfDouble mean = new MatOfDouble();
    final MatOfDouble stdev = new MatOfDouble();
    Core.meanStdDev(outPattern, mean, stdev);
    outPattern.convertTo(outPattern, CvType.CV_32F);
    Core.subtract(outPattern, new Scalar(mean.toArray()[0]), outPattern);

    return stdev.toArray()[0];
}

From source file:com.wallerlab.compcellscope.calcDPCTask.java

License:BSD License

protected Long doInBackground(Mat... matrix_list) {
    //int count = urls.length;
    Mat in1 = matrix_list[0];//from  www  .  j  a  v  a  2 s  . c  om
    Mat in2 = matrix_list[1];
    Mat outputMat = matrix_list[2];

    Mat Mat1 = new Mat(in1.width(), in1.height(), in1.type());
    Mat Mat2 = new Mat(in2.width(), in2.height(), in2.type());
    in1.copyTo(Mat1);
    in2.copyTo(Mat2);

    Imgproc.cvtColor(Mat1, Mat1, Imgproc.COLOR_RGBA2GRAY, 1);
    Imgproc.cvtColor(Mat2, Mat2, Imgproc.COLOR_RGBA2GRAY, 1);

    Mat output = new Mat(Mat1.width(), Mat1.height(), CvType.CV_8UC4);
    Mat dpcSum = new Mat(Mat1.width(), Mat1.height(), CvType.CV_32FC1);
    Mat dpcDifference = new Mat(Mat1.width(), Mat1.height(), CvType.CV_32FC1);
    Mat dpcImgF = new Mat(Mat1.width(), Mat1.height(), CvType.CV_32FC1);

    /*
    Log.d(TAG,String.format("Mat1 format is %.1f-%.1f, type: %d",Mat1.size().width,Mat1.size().height,Mat1.type()));
    Log.d(TAG,String.format("Mat2 format is %.1f-%.1f, type: %d",Mat2.size().width,Mat2.size().height,Mat2.type()));
    */

    // Convert to Floats
    Mat1.convertTo(Mat1, CvType.CV_32FC1);
    Mat2.convertTo(Mat2, CvType.CV_32FC1);
    Core.add(Mat1, Mat2, dpcSum);
    Core.subtract(Mat1, Mat2, dpcDifference);
    Core.divide(dpcDifference, dpcSum, dpcImgF);
    Core.add(dpcImgF, new Scalar(1.0), dpcImgF); // Normalize to 0-2.0
    Core.multiply(dpcImgF, new Scalar(110), dpcImgF); // Normalize to 0-255
    dpcImgF.convertTo(output, CvType.CV_8UC1); // Convert back into RGB
    Imgproc.cvtColor(output, output, Imgproc.COLOR_GRAY2RGBA, 4);

    dpcSum.release();
    dpcDifference.release();
    dpcImgF.release();
    Mat1.release();
    Mat2.release();

    Mat maskedImg = Mat.zeros(output.rows(), output.cols(), CvType.CV_8UC4);
    int radius = maskedImg.width() / 2 + 25;
    Core.circle(maskedImg, new Point(maskedImg.width() / 2, maskedImg.height() / 2), radius,
            new Scalar(255, 255, 255), -1, 8, 0);
    output.copyTo(outputMat, maskedImg);
    output.release();
    maskedImg.release();
    return null;
}

From source file:com.wallerlab.compcellscope.MultiModeViewActivity.java

License:BSD License

public Mat calcDPC(Mat in1, Mat in2, Mat out) {
    Mat Mat1 = new Mat(in1.width(), in1.height(), in1.type());
    Mat Mat2 = new Mat(in2.width(), in2.height(), in2.type());
    in1.copyTo(Mat1);/*from w ww .  j a v  a2 s  . c  om*/
    in2.copyTo(Mat2);

    Imgproc.cvtColor(Mat1, Mat1, Imgproc.COLOR_RGBA2GRAY, 1);
    Imgproc.cvtColor(Mat2, Mat2, Imgproc.COLOR_RGBA2GRAY, 1);

    Mat output = new Mat(Mat1.width(), Mat1.height(), CvType.CV_8UC4);
    Mat dpcSum = new Mat(Mat1.width(), Mat1.height(), CvType.CV_32FC1);
    Mat dpcDifference = new Mat(Mat1.width(), Mat1.height(), CvType.CV_32FC1);
    Mat dpcImgF = new Mat(Mat1.width(), Mat1.height(), CvType.CV_32FC1);

    /*
    Log.d(TAG,String.format("Mat1 format is %.1f-%.1f, type: %d",Mat1.size().width,Mat1.size().height,Mat1.type()));
    Log.d(TAG,String.format("Mat2 format is %.1f-%.1f, type: %d",Mat2.size().width,Mat2.size().height,Mat2.type()));
    */

    // Convert to Floats
    Mat1.convertTo(Mat1, CvType.CV_32FC1);
    Mat2.convertTo(Mat2, CvType.CV_32FC1);
    Core.add(Mat1, Mat2, dpcSum);
    Core.subtract(Mat1, Mat2, dpcDifference);
    Core.divide(dpcDifference, dpcSum, dpcImgF);
    Core.add(dpcImgF, new Scalar(1.0), dpcImgF); // Normalize to 0-2.0
    Core.multiply(dpcImgF, new Scalar(110), dpcImgF); // Normalize to 0-255
    dpcImgF.convertTo(output, CvType.CV_8UC1); // Convert back into RGB
    Imgproc.cvtColor(output, output, Imgproc.COLOR_GRAY2RGBA, 4);

    dpcSum.release();
    dpcDifference.release();
    dpcImgF.release();
    Mat1.release();
    Mat2.release();

    Mat maskedImg = Mat.zeros(output.rows(), output.cols(), CvType.CV_8UC4);
    int radius = maskedImg.width() / 2 + 25;
    Core.circle(maskedImg, new Point(maskedImg.width() / 2, maskedImg.height() / 2), radius,
            new Scalar(255, 255, 255), -1, 8, 0);
    output.copyTo(out, maskedImg);
    output.release();
    maskedImg.release();
    return out;
}