List of usage examples for weka.core Instance classValue
public double classValue();
From source file:moa.classifiers.functions.NoChange.java
License:Open Source License
@Override public void trainOnInstanceImpl(Instance inst) { this.lastSeenClass = inst.classValue(); }
From source file:moa.classifiers.functions.Perceptron.java
License:Open Source License
@Override public void trainOnInstanceImpl(Instance inst) { //Init Perceptron if (this.reset == true) { this.reset = false; this.numberAttributes = inst.numAttributes(); this.numberClasses = inst.numClasses(); this.weightAttribute = new double[inst.numClasses()][inst.numAttributes()]; for (int i = 0; i < inst.numClasses(); i++) { for (int j = 0; j < inst.numAttributes(); j++) { weightAttribute[i][j] = 0.2 * this.classifierRandom.nextDouble() - 0.1; }//from ww w . j ava2 s . c o m } } double[] preds = new double[inst.numClasses()]; for (int i = 0; i < inst.numClasses(); i++) { preds[i] = prediction(inst, i); } double learningRatio = learningRatioOption.getValue(); int actualClass = (int) inst.classValue(); for (int i = 0; i < inst.numClasses(); i++) { double actual = (i == actualClass) ? 1.0 : 0.0; double delta = (actual - preds[i]) * preds[i] * (1 - preds[i]); for (int j = 0; j < inst.numAttributes() - 1; j++) { this.weightAttribute[i][j] += learningRatio * delta * inst.value(j); } this.weightAttribute[i][inst.numAttributes() - 1] += learningRatio * delta; } }
From source file:moa.classifiers.functions.SGD.java
License:Open Source License
/** * Trains the classifier with the given instance. * * @param instance the new training instance to include in the model *///from w ww. j a v a2s . c o m @Override public void trainOnInstanceImpl(Instance instance) { if (m_weights == null) { m_weights = new DoubleVector(); m_bias = 0.0; } if (!instance.classIsMissing()) { double wx = dotProd(instance, m_weights, instance.classIndex()); double y; double z; if (instance.classAttribute().isNominal()) { y = (instance.classValue() == 0) ? -1 : 1; z = y * (wx + m_bias); } else { y = instance.classValue(); z = y - (wx + m_bias); y = 1; } // Compute multiplier for weight decay double multiplier = 1.0; if (m_numInstances == 0) { multiplier = 1.0 - (m_learningRate * m_lambda) / m_t; } else { multiplier = 1.0 - (m_learningRate * m_lambda) / m_numInstances; } for (int i = 0; i < m_weights.numValues(); i++) { m_weights.setValue(i, m_weights.getValue(i) * multiplier); } // Only need to do the following if the loss is non-zero if (m_loss != HINGE || (z < 1)) { // Compute Factor for updates double factor = m_learningRate * y * dloss(z); // Update coefficients for attributes int n1 = instance.numValues(); for (int p1 = 0; p1 < n1; p1++) { int indS = instance.index(p1); if (indS != instance.classIndex() && !instance.isMissingSparse(p1)) { m_weights.addToValue(indS, factor * instance.valueSparse(p1)); } } // update the bias m_bias += factor; } m_t++; } }
From source file:moa.classifiers.functions.SGDMultiClass.java
License:Open Source License
public void trainOnInstanceImpl(Instance instance, int classLabel) { if (!instance.classIsMissing()) { double wx = dotProd(instance, m_weights[classLabel], instance.classIndex()); double y; double z; if (instance.classAttribute().isNominal()) { y = (instance.classValue() != classLabel) ? -1 : 1; z = y * (wx + m_bias[classLabel]); } else {// w w w . java2 s.c om y = instance.classValue(); z = y - (wx + m_bias[classLabel]); y = 1; } // Compute multiplier for weight decay double multiplier = 1.0; if (m_numInstances == 0) { multiplier = 1.0 - (m_learningRate * m_lambda) / m_t; } else { multiplier = 1.0 - (m_learningRate * m_lambda) / m_numInstances; } for (int i = 0; i < m_weights[classLabel].numValues(); i++) { m_weights[classLabel].setValue(i, m_weights[classLabel].getValue(i) * multiplier); } // Only need to do the following if the loss is non-zero if (m_loss != HINGE || (z < 1)) { // Compute Factor for updates double factor = m_learningRate * y * dloss(z); // Update coefficients for attributes int n1 = instance.numValues(); for (int p1 = 0; p1 < n1; p1++) { int indS = instance.index(p1); if (indS != instance.classIndex() && !instance.isMissingSparse(p1)) { m_weights[classLabel].addToValue(indS, factor * instance.valueSparse(p1)); } } // update the bias m_bias[classLabel] += factor; } } }
From source file:moa.classifiers.functions.SGDOld.java
License:Open Source License
/** * Trains the classifier with the given instance. * * @param instance the new training instance to include in the model */// w w w. j a v a 2s.co m @Override public void trainOnInstanceImpl(Instance instance) { if (m_weights == null) { m_weights = new double[instance.numAttributes() + 1]; } if (!instance.classIsMissing()) { double wx = dotProd(instance, m_weights, instance.classIndex()); double y; double z; if (instance.classAttribute().isNominal()) { y = (instance.classValue() == 0) ? -1 : 1; z = y * (wx + m_weights[m_weights.length - 1]); } else { y = instance.classValue(); z = y - (wx + m_weights[m_weights.length - 1]); y = 1; } // Compute multiplier for weight decay double multiplier = 1.0; if (m_numInstances == 0) { multiplier = 1.0 - (m_learningRate * m_lambda) / m_t; } else { multiplier = 1.0 - (m_learningRate * m_lambda) / m_numInstances; } for (int i = 0; i < m_weights.length - 1; i++) { m_weights[i] *= multiplier; } // Only need to do the following if the loss is non-zero if (m_loss != HINGE || (z < 1)) { // Compute Factor for updates double factor = m_learningRate * y * dloss(z); // Update coefficients for attributes int n1 = instance.numValues(); for (int p1 = 0; p1 < n1; p1++) { int indS = instance.index(p1); if (indS != instance.classIndex() && !instance.isMissingSparse(p1)) { m_weights[indS] += factor * instance.valueSparse(p1); } } // update the bias m_weights[m_weights.length - 1] += factor; } m_t++; } }
From source file:moa.classifiers.functions.SPegasos.java
License:Open Source License
/** * Trains the classifier with the given instance. * * @param instance the new training instance to include in the model *//*w w w . j a v a 2 s .co m*/ @Override public void trainOnInstanceImpl(Instance instance) { if (m_weights == null) { m_weights = new double[instance.numAttributes() + 1]; } if (!instance.classIsMissing()) { double learningRate = 1.0 / (m_lambda * m_t); //double scale = 1.0 - learningRate * m_lambda; double scale = 1.0 - 1.0 / m_t; double y = (instance.classValue() == 0) ? -1 : 1; double wx = dotProd(instance, m_weights, instance.classIndex()); double z = y * (wx + m_weights[m_weights.length - 1]); for (int j = 0; j < m_weights.length - 1; j++) { if (j != instance.classIndex()) { m_weights[j] *= scale; } } if (m_loss == LOGLOSS || (z < 1)) { double loss = dloss(z); int n1 = instance.numValues(); for (int p1 = 0; p1 < n1; p1++) { int indS = instance.index(p1); if (indS != instance.classIndex() && !instance.isMissingSparse(p1)) { double m = learningRate * loss * (instance.valueSparse(p1) * y); m_weights[indS] += m; } } // update the bias m_weights[m_weights.length - 1] += learningRate * loss * y; } double norm = 0; for (int k = 0; k < m_weights.length - 1; k++) { if (k != instance.classIndex()) { norm += (m_weights[k] * m_weights[k]); } } double scale2 = Math.min(1.0, (1.0 / (m_lambda * norm))); if (scale2 < 1.0) { scale2 = Math.sqrt(scale2); for (int j = 0; j < m_weights.length - 1; j++) { if (j != instance.classIndex()) { m_weights[j] *= scale2; } } } m_t++; } }
From source file:moa.classifiers.lazy.kNN.java
License:Open Source License
@Override public void trainOnInstanceImpl(Instance inst) { if (inst.classValue() > C) C = (int) inst.classValue(); if (this.window == null) { this.window = new Instances(inst.dataset()); }// w w w . j ava 2s . co m if (this.limitOption.getValue() <= this.window.numInstances()) { this.window.delete(0); } this.window.add(inst); }
From source file:moa.classifiers.lazy.kNNwithPAW.java
License:Open Source License
@Override public void trainOnInstanceImpl(Instance inst) { if (inst.classValue() > C) { C = (int) inst.classValue(); }//from ww w .ja v a2 s .c om if (this.window == null) { this.window = new Instances(inst.dataset()); } for (int i = 0; i < this.window.size(); i++) { if (this.classifierRandom.nextDouble() > this.prob) { this.window.delete(i); } } this.window.add(inst); }
From source file:moa.classifiers.lazy.kNNwithPAWandADWIN.java
License:Open Source License
@Override public void trainOnInstanceImpl(Instance inst) { if (inst.classValue() > C) { C = (int) inst.classValue(); }/* ww w.j a v a2 s . c o m*/ // ADWIN if (this.window == null) { this.window = new Instances(inst.dataset()); } if (this.timeStamp == null) { this.timeStamp = new ArrayList<Integer>(10); } for (int i = 0; i < this.window.size(); i++) { if (this.classifierRandom.nextDouble() > this.prob) { this.window.delete(i); this.timeStamp.remove(i); } } this.window.add(inst); this.timeStamp.add(this.time); this.time++; boolean correctlyClassifies = this.correctlyClassifies(inst); if (this.adwin.setInput(correctlyClassifies ? 0 : 1)) { //Change int size = (int) this.adwin.getWidth(); for (int i = 0; i < this.window.size(); i++) { if (this.timeStamp.get(i) < this.time - size) { this.window.delete(i); this.timeStamp.remove(i); } } } }
From source file:moa.classifiers.LeveragingBag.java
License:Open Source License
@Override public void trainOnInstanceImpl(Instance inst) { int numClasses = inst.numClasses(); //Output Codes if (this.initMatrixCodes == true) { this.matrixCodes = new int[this.ensemble.length][inst.numClasses()]; for (int i = 0; i < this.ensemble.length; i++) { int numberOnes; int numberZeros; do { // until we have the same number of zeros and ones numberOnes = 0;//from w ww .j ava 2s .c om numberZeros = 0; for (int j = 0; j < numClasses; j++) { int result = 0; if (j == 1 && numClasses == 2) { result = 1 - this.matrixCodes[i][0]; } else { result = (this.classifierRandom.nextBoolean() ? 1 : 0); } this.matrixCodes[i][j] = result; if (result == 1) { numberOnes++; } else { numberZeros++; } } } while ((numberOnes - numberZeros) * (numberOnes - numberZeros) > (this.ensemble.length % 2)); } this.initMatrixCodes = false; } boolean Change = false; double w = 1.0; double mt = 0.0; Instance weightedInst = (Instance) inst.copy(); /*for (int i = 0; i < this.ensemble.length; i++) { if (this.outputCodesOption.isSet()) { weightedInst.setClassValue((double) this.matrixCodes[i][(int) inst.classValue()] ); } if(!this.ensemble[i].correctlyClassifies(weightedInst)) { mt++; } }*/ //update w w = this.weightShrinkOption.getValue(); //1.0 +mt/2.0; //Train ensemble of classifiers for (int i = 0; i < this.ensemble.length; i++) { int k = MiscUtils.poisson(w, this.classifierRandom); if (k > 0) { if (this.outputCodesOption.isSet()) { weightedInst.setClassValue((double) this.matrixCodes[i][(int) inst.classValue()]); } weightedInst.setWeight(inst.weight() * k); this.ensemble[i].trainOnInstance(weightedInst); } boolean correctlyClassifies = this.ensemble[i].correctlyClassifies(weightedInst); double ErrEstim = this.ADError[i].getEstimation(); if (this.ADError[i].setInput(correctlyClassifies ? 0 : 1)) { if (this.ADError[i].getEstimation() > ErrEstim) { Change = true; } } } if (Change) { numberOfChangesDetected++; double max = 0.0; int imax = -1; for (int i = 0; i < this.ensemble.length; i++) { if (max < this.ADError[i].getEstimation()) { max = this.ADError[i].getEstimation(); imax = i; } } if (imax != -1) { this.ensemble[imax].resetLearning(); //this.ensemble[imax].trainOnInstance(inst); this.ADError[imax] = new ADWIN((double) this.deltaAdwinOption.getValue()); } } }