Example usage for weka.core Instance numAttributes

List of usage examples for weka.core Instance numAttributes

Introduction

In this page you can find the example usage for weka.core Instance numAttributes.

Prototype

public int numAttributes();

Source Link

Document

Returns the number of attributes.

Usage

From source file:de.ugoe.cs.cpdp.dataprocessing.TransferComponentAnalysis.java

License:Apache License

/**
 * <p>/*from   w  w w.  jav  a  2s  .c  o  m*/
 * calculates the linear kernel function between two instances
 * </p>
 *
 * @param x1
 *            first instance
 * @param x2
 *            second instance
 * @return kernel value
 */
private double linearKernel(Instance x1, Instance x2) {
    double value = 0.0d;
    for (int j = 0; j < x1.numAttributes(); j++) {
        if (j != x1.classIndex()) {
            value += x1.value(j) * x2.value(j);
        }
    }
    return value;
}

From source file:de.ugoe.cs.cpdp.util.WekaUtils.java

License:Apache License

/**
 * <p>/* w  w  w . j a v a2  s .  c  o  m*/
 * Adoption of the Hamming difference to numerical values, i.e., basically a count of different
 * metric values.
 * </p>
 *
 * @param inst1
 *            first instance to be compared
 * @param inst2
 *            second instance to be compared
 * @return the distance
 */
public static double hammingDistance(Instance inst1, Instance inst2) {
    double distance = 0.0;
    for (int j = 0; j < inst1.numAttributes(); j++) {
        if (j != inst1.classIndex()) {
            if (inst1.value(j) != inst2.value(j)) {
                distance += 1.0;
            }
        }
    }
    return distance;
}

From source file:de.ugoe.cs.cpdp.util.WekaUtils.java

License:Apache License

/**
 * <p>//  w  ww.j  a  v a  2s . c o  m
 * Returns a double array of the values without the classification.
 * </p>
 *
 * @param instance
 *            the instance
 * @return double array
 */
public static double[] instanceValues(Instance instance) {
    double[] values = new double[instance.numAttributes() - 1];
    int k = 0;
    for (int j = 0; j < instance.numAttributes(); j++) {
        if (j != instance.classIndex()) {
            values[k] = instance.value(j);
            k++;
        }
    }
    return values;
}

From source file:de.unidue.langtech.grading.tc.ClusterExemplarTask.java

License:Open Source License

private double distance(Instance i1, Instance i2) {
    double dist = 0.0;
    for (int i = 0; i < i1.numAttributes(); i++) {
        dist += Math.abs(i1.value(i) - i2.value(i));
    }//from  w w  w.  j a v a2  s.  com
    return dist / i1.numAttributes();
}

From source file:de.uniheidelberg.cl.swp.mlprocess.AblationTesting.java

License:Apache License

/**
 * Determines the attribute value for a Instance object and the specified attribute name.
 * /*from   w w  w .j a  va 2s . c  om*/
 * @param inst The instance object from which the value is extracted.
 * @param featureName The name of the attribute.
 * @return A double representation of the value used by WEKA.
 */
private double getAttributeValue(Instance inst, String featureName) {
    for (int i = 0; i < inst.numAttributes(); i++) {
        if (inst.attribute(i).name().equals(featureName))
            return inst.value(i);
    }
    return 0;
}

From source file:de.uniheidelberg.cl.swp.mlprocess.MLProcess.java

License:Apache License

/**
 * Creates the classifications of the test-{@link CoreferencePair}s by using the classifier
 * trained on the test-{@link CoreferencePair}s.
 * /*from   www  .  j  ava 2  s  . co m*/
 * @param testCorefs {@link CoreferencePair}s extraced from the test corpus by the ACR-Systems.
 * @return {@link CoreferencePair} which are predicted by our classifier to be correct.
 */
private List<CoreferencePair> createPrediction(Map<String, List<CoreferencePair>> testCorefs) throws Exception {
    List<CoreferencePair> predictions = new ArrayList<CoreferencePair>();
    for (String s : testCorefs.keySet()) {
        for (final CoreferencePair cp : testCorefs.get(s)) {
            Instance ini = ic.addCorefInstance(cp, s);
            ini.setDataset(ic.getInstances());

            /* use the classifier to select a label */
            if (wr.labelUnknownInstance(ini) == 0.0) {
                cp.setAcrSystem(ini.stringValue(ini.numAttributes() - 2));
                predictions.add(cp);
            }
        }
    }
    predictions = removeDuplicates(predictions);
    return predictions;
}

From source file:dkpro.similarity.experiments.sts2013.filter.LogFilter.java

License:Open Source License

@Override
protected Instance process(Instance inst) throws Exception {
    Instance newInst = new DenseInstance(inst.numAttributes());

    newInst.setValue(0, inst.value(0));/*from w  w  w . j  a  va  2s .c o m*/

    for (int i = 1; i < inst.numAttributes() - 1; i++) {
        double newVal = Math.log(inst.value(i) + 1);
        newInst.setValue(i, newVal);
    }

    newInst.setValue(inst.numAttributes() - 1, inst.value(inst.numAttributes() - 1));

    return newInst;
}

From source file:edu.drexel.psal.jstylo.verifiers.WLSVM.java

License:Open Source License

/**
 * Converts an ARFF Instance into a string in the sparse format accepted by
 * LIBSVM//  w  ww.  j  ava2s.  co  m
 * 
 * @param instance
 * @return
 */
protected String InstanceToSparse(Instance instance) {
    String line = new String();
    int c = (int) instance.classValue();
    if (c == 0)
        c = -1;
    line = c + " ";
    for (int j = 1; j < instance.numAttributes(); j++) {
        if (j - 1 == instance.classIndex()) {
            continue;
        }
        if (instance.isMissing(j - 1))
            continue;
        if (instance.value(j - 1) != 0)
            line += " " + j + ":" + instance.value(j - 1);
    }
    // LOG.info(line); 
    return (line + "\n");
}

From source file:edu.oregonstate.eecs.mcplan.abstraction.WekaUtil.java

License:Open Source License

public static double[] unlabeledFeatures(final Instance i) {
    assert (i.dataset() != null);
    assert (i.dataset().classIndex() == i.numAttributes() - 1);
    final double[] phi = new double[i.numAttributes() - 1];
    for (int j = 0; j < i.numAttributes() - 1; ++j) {
        phi[j] = i.value(j);//from  ww  w . j a va  2 s .c o  m
    }
    return phi;
}

From source file:edu.oregonstate.eecs.mcplan.ml.WekaGlue.java

License:Open Source License

public static RealVector toRealVector(final Instance inst) {
    final RealVector v = new ArrayRealVector(inst.numAttributes());
    for (int i = 0; i < inst.numAttributes(); ++i) {
        v.setEntry(i, inst.value(i));/* w  w w.j a  va  2s . c  o  m*/
    }
    return v;
}