Example usage for weka.core Instances deleteWithMissingClass

List of usage examples for weka.core Instances deleteWithMissingClass

Introduction

In this page you can find the example usage for weka.core Instances deleteWithMissingClass.

Prototype

public void deleteWithMissingClass() 

Source Link

Document

Removes all instances with a missing class value from the dataset.

Usage

From source file:ann.SingleLayerPerceptron.java

@Override
public void buildClassifier(Instances data) throws Exception {
    // can classifier handle the data?
    getCapabilities().testWithFail(data);
    annOptions = new ANNOptions();
    annOptions = annOptions.loadConfiguration();
    output = new ArrayList<Neuron>();
    normalize = new Normalize();
    ntb = new NominalToBinary();
    output = annOptions.output;/* w  w w  .j a  v  a  2 s .c o  m*/

    // remove instances with missing class
    data = new Instances(data);
    data.deleteWithMissingClass();

    //nominal to binary filter
    ntb.setInputFormat(data);
    data = new Instances(Filter.useFilter(data, ntb));

    //normalize filter
    normalize.setInputFormat(data);
    data = new Instances(Filter.useFilter(data, normalize));

    // do main function
    doPerceptron(data);
}

From source file:ann.SingleLayerPerceptron.java

public int[] classifyInstances(Instances data) throws Exception {
    int[] classValue = new int[data.numInstances()];
    // remove instances with missing class
    data = new Instances(data);
    data.deleteWithMissingClass();

    //nominal to binary filter
    ntb.setInputFormat(data);/* w  w w .  j  av a2  s. c o m*/
    data = new Instances(Filter.useFilter(data, ntb));
    int right = 0;

    for (int i = 0; i < data.numInstances(); i++) {
        int outputSize = output.size();
        double[] result = new double[outputSize];
        for (int j = 0; j < outputSize; j++) {
            result[j] = 0.0;
            for (int k = 0; k < data.numAttributes(); k++) {
                double input = 1;
                if (k < data.numAttributes() - 1) {
                    input = data.instance(i).value(k);
                }
                result[j] += output.get(j).weights.get(k) * input;
            }
            result[j] = Util.activationFunction(result[j], annOptions);
        }

        if (outputSize >= 2) {
            for (int j = 0; j < outputSize; j++) {
                if (result[j] > result[classValue[i]]) {
                    classValue[i] = j;
                }
            }
        } else {
            classValue[i] = (int) result[0];
        }
        double target = data.instance(i).classValue();
        double output = classValue[i];
        System.out.println("Intance-" + i + " target: " + target + " output: " + output);
        if (target == output) {
            right = right + 1;
        }
    }

    System.out.println("Percentage: " + ((double) right / (double) data.numInstances()));

    return classValue;
}

From source file:boosting.classifiers.DecisionStumpWritable.java

License:Open Source License

/**
 * Generates the classifier.//  w w  w  .j  a v a  2s  .co m
 *
 * @param instances set of instances serving as training data 
 * @throws Exception if the classifier has not been generated successfully
 */
public void buildClassifier(Instances instances) throws Exception {

    double bestVal = Double.MAX_VALUE, currVal;
    double bestPoint = -Double.MAX_VALUE;
    int bestAtt = -1, numClasses;

    // can classifier handle the data?
    getCapabilities().testWithFail(instances);

    // remove instances with missing class
    instances = new Instances(instances);
    instances.deleteWithMissingClass();

    // only class? -> build ZeroR model
    if (instances.numAttributes() == 1) {
        System.err.println(
                "Cannot build model (only class attribute present in data!), " + "using ZeroR model instead!");
        m_ZeroR = new weka.classifiers.rules.ZeroR();
        m_ZeroR.buildClassifier(instances);
        return;
    } else {
        m_ZeroR = null;
    }

    double[][] bestDist = new double[3][instances.numClasses()];

    m_Instances = new Instances(instances);

    if (m_Instances.classAttribute().isNominal()) {
        numClasses = m_Instances.numClasses();
    } else {
        numClasses = 1;
    }

    // For each attribute
    boolean first = true;
    for (int i = 0; i < m_Instances.numAttributes(); i++) {
        if (i != m_Instances.classIndex()) {

            // Reserve space for distribution.
            m_Distribution = new double[3][numClasses];

            // Compute value of criterion for best split on attribute
            if (m_Instances.attribute(i).isNominal()) {
                currVal = findSplitNominal(i);
            } else {
                currVal = findSplitNumeric(i);
            }
            if ((first) || (currVal < bestVal)) {
                bestVal = currVal;
                bestAtt = i;
                bestPoint = m_SplitPoint;
                for (int j = 0; j < 3; j++) {
                    System.arraycopy(m_Distribution[j], 0, bestDist[j], 0, numClasses);
                }
            }

            // First attribute has been investigated
            first = false;
        }
    }

    // Set attribute, split point and distribution.
    m_AttIndex = bestAtt;
    m_SplitPoint = bestPoint;
    m_Distribution = bestDist;
    if (m_Instances.classAttribute().isNominal()) {
        for (int i = 0; i < m_Distribution.length; i++) {
            double sumCounts = Utils.sum(m_Distribution[i]);
            if (sumCounts == 0) { // This means there were only missing attribute values
                System.arraycopy(m_Distribution[2], 0, m_Distribution[i], 0, m_Distribution[2].length);
                Utils.normalize(m_Distribution[i]);
            } else {
                Utils.normalize(m_Distribution[i], sumCounts);
            }
        }
    }

    // Save memory
    m_Instances = new Instances(m_Instances, 0);
}

From source file:br.com.ufu.lsi.rebfnetwork.RBFModel.java

License:Open Source License

/**
 * Method used to pre-process the data, perform clustering, and
 * set the initial parameter vector.//from ww w .j  ava2  s.c o m
 */
protected Instances initializeClassifier(Instances data) throws Exception {

    // can classifier handle the data?
    getCapabilities().testWithFail(data);

    data = new Instances(data);
    data.deleteWithMissingClass();

    // Make sure data is shuffled
    Random random = new Random(m_Seed);
    if (data.numInstances() > 2) {
        random = data.getRandomNumberGenerator(m_Seed);
    }
    data.randomize(random);

    double y0 = data.instance(0).classValue(); // This stuff is not relevant in classification case
    int index = 1;
    while (index < data.numInstances() && data.instance(index).classValue() == y0) {
        index++;
    }
    if (index == data.numInstances()) {
        // degenerate case, all class values are equal
        // we don't want to deal with this, too much hassle
        throw new Exception("All class values are the same. At least two class values should be different");
    }
    double y1 = data.instance(index).classValue();

    // Replace missing values   
    m_ReplaceMissingValues = new ReplaceMissingValues();
    m_ReplaceMissingValues.setInputFormat(data);
    data = Filter.useFilter(data, m_ReplaceMissingValues);

    // Remove useless attributes
    m_AttFilter = new RemoveUseless();
    m_AttFilter.setInputFormat(data);
    data = Filter.useFilter(data, m_AttFilter);

    // only class? -> build ZeroR model
    if (data.numAttributes() == 1) {
        System.err.println(
                "Cannot build model (only class attribute present in data after removing useless attributes!), "
                        + "using ZeroR model instead!");
        m_ZeroR = new weka.classifiers.rules.ZeroR();
        m_ZeroR.buildClassifier(data);
        return data;
    } else {
        m_ZeroR = null;
    }

    // Transform attributes
    m_NominalToBinary = new NominalToBinary();
    m_NominalToBinary.setInputFormat(data);
    data = Filter.useFilter(data, m_NominalToBinary);

    m_Filter = new Normalize();
    ((Normalize) m_Filter).setIgnoreClass(true);
    m_Filter.setInputFormat(data);
    data = Filter.useFilter(data, m_Filter);
    double z0 = data.instance(0).classValue(); // This stuff is not relevant in classification case
    double z1 = data.instance(index).classValue();
    m_x1 = (y0 - y1) / (z0 - z1); // no division by zero, since y0 != y1 guaranteed => z0 != z1 ???
    m_x0 = (y0 - m_x1 * z0); // = y1 - m_x1 * z1

    m_classIndex = data.classIndex();
    m_numClasses = data.numClasses();
    m_numAttributes = data.numAttributes();

    // Run k-means
    SimpleKMeans skm = new SimpleKMeans();
    skm.setMaxIterations(10000);
    skm.setNumClusters(m_numUnits);
    Remove rm = new Remove();
    data.setClassIndex(-1);
    rm.setAttributeIndices((m_classIndex + 1) + "");
    rm.setInputFormat(data);
    Instances dataRemoved = Filter.useFilter(data, rm);
    data.setClassIndex(m_classIndex);
    skm.buildClusterer(dataRemoved);
    Instances centers = skm.getClusterCentroids();

    if (centers.numInstances() < m_numUnits) {
        m_numUnits = centers.numInstances();
    }

    // Set up arrays
    OFFSET_WEIGHTS = 0;
    if (m_useAttributeWeights) {
        OFFSET_ATTRIBUTE_WEIGHTS = (m_numUnits + 1) * m_numClasses;
        OFFSET_CENTERS = OFFSET_ATTRIBUTE_WEIGHTS + m_numAttributes;
    } else {
        OFFSET_ATTRIBUTE_WEIGHTS = -1;
        OFFSET_CENTERS = (m_numUnits + 1) * m_numClasses;
    }
    OFFSET_SCALES = OFFSET_CENTERS + m_numUnits * m_numAttributes;

    switch (m_scaleOptimizationOption) {
    case USE_GLOBAL_SCALE:
        m_RBFParameters = new double[OFFSET_SCALES + 1];
        break;
    case USE_SCALE_PER_UNIT_AND_ATTRIBUTE:
        m_RBFParameters = new double[OFFSET_SCALES + m_numUnits * m_numAttributes];
        break;
    default:
        m_RBFParameters = new double[OFFSET_SCALES + m_numUnits];
        break;
    }

    // Set initial radius based on distance to nearest other basis function
    double maxMinDist = -1;
    for (int i = 0; i < centers.numInstances(); i++) {
        double minDist = Double.MAX_VALUE;
        for (int j = i + 1; j < centers.numInstances(); j++) {
            double dist = 0;
            for (int k = 0; k < centers.numAttributes(); k++) {
                if (k != centers.classIndex()) {
                    double diff = centers.instance(i).value(k) - centers.instance(j).value(k);
                    dist += diff * diff;
                }
            }
            if (dist < minDist) {
                minDist = dist;
            }
        }
        if ((minDist != Double.MAX_VALUE) && (minDist > maxMinDist)) {
            maxMinDist = minDist;
        }
    }

    // Initialize parameters
    if (m_scaleOptimizationOption == USE_GLOBAL_SCALE) {
        m_RBFParameters[OFFSET_SCALES] = Math.sqrt(maxMinDist);
    }
    for (int i = 0; i < m_numUnits; i++) {
        if (m_scaleOptimizationOption == USE_SCALE_PER_UNIT) {
            m_RBFParameters[OFFSET_SCALES + i] = Math.sqrt(maxMinDist);
        }
        int k = 0;
        for (int j = 0; j < m_numAttributes; j++) {
            if (k == centers.classIndex()) {
                k++;
            }
            if (j != data.classIndex()) {
                if (m_scaleOptimizationOption == USE_SCALE_PER_UNIT_AND_ATTRIBUTE) {
                    m_RBFParameters[OFFSET_SCALES + (i * m_numAttributes + j)] = Math.sqrt(maxMinDist);
                }
                m_RBFParameters[OFFSET_CENTERS + (i * m_numAttributes) + j] = centers.instance(i).value(k);
                k++;
            }
        }
    }

    if (m_useAttributeWeights) {
        for (int j = 0; j < m_numAttributes; j++) {
            if (j != data.classIndex()) {
                m_RBFParameters[OFFSET_ATTRIBUTE_WEIGHTS + j] = 1.0;
            }
        }
    }

    initializeOutputLayer(random);

    return data;
}

From source file:br.com.ufu.lsi.rebfnetwork.RBFNetwork.java

License:Open Source License

/**
 * Builds the classifier/*from  w  w  w .  ja  va  2 s . co m*/
 *
 * @param instances the training data
 * @throws Exception if the classifier could not be built successfully
 */
public void buildClassifier(Instances instances) throws Exception {

    // can classifier handle the data?
    getCapabilities().testWithFail(instances);

    // remove instances with missing class
    instances = new Instances(instances);
    instances.deleteWithMissingClass();

    // only class? -> build ZeroR model
    if (instances.numAttributes() == 1) {
        System.err.println(
                "Cannot build model (only class attribute present in data!), " + "using ZeroR model instead!");
        m_ZeroR = new weka.classifiers.rules.ZeroR();
        m_ZeroR.buildClassifier(instances);
        return;
    } else {
        m_ZeroR = null;
    }

    m_standardize = new Standardize();
    m_standardize.setInputFormat(instances);
    instances = Filter.useFilter(instances, m_standardize);

    SimpleKMeans sk = new SimpleKMeans();
    sk.setNumClusters(m_numClusters);
    sk.setSeed(m_clusteringSeed);
    MakeDensityBasedClusterer dc = new MakeDensityBasedClusterer();
    dc.setClusterer(sk);
    dc.setMinStdDev(m_minStdDev);
    m_basisFilter = new ClusterMembership();
    m_basisFilter.setDensityBasedClusterer(dc);
    m_basisFilter.setInputFormat(instances);
    Instances transformed = Filter.useFilter(instances, m_basisFilter);

    if (instances.classAttribute().isNominal()) {
        m_linear = null;
        m_logistic = new Logistic();
        m_logistic.setRidge(m_ridge);
        m_logistic.setMaxIts(m_maxIts);
        m_logistic.buildClassifier(transformed);
    } else {
        m_logistic = null;
        m_linear = new LinearRegression();
        m_linear.setAttributeSelectionMethod(
                new SelectedTag(LinearRegression.SELECTION_NONE, LinearRegression.TAGS_SELECTION));
        m_linear.setRidge(m_ridge);
        m_linear.buildClassifier(transformed);
    }
}

From source file:CGLSMethod.LinearRegression.java

License:Open Source License

/**
 * Builds a regression model for the given data.
 *
 * @param data the training data to be used for generating the
 * linear regression function/*w  w w.  j a v a2 s .c o  m*/
 * @throws Exception if the classifier could not be built successfully
 */
public void buildClassifier(Instances data) throws Exception {

    // Preprocess instances
    if (!m_checksTurnedOff) {
        m_TransformFilter = new NominalToBinary();
        m_TransformFilter.setInputFormat(data);
        data = Filter.useFilter(data, m_TransformFilter);
        m_MissingFilter = new ReplaceMissingValues();
        m_MissingFilter.setInputFormat(data);
        data = Filter.useFilter(data, m_MissingFilter);
        data.deleteWithMissingClass();
    } else {
        m_TransformFilter = null;
        m_MissingFilter = null;
    }

    m_ClassIndex = data.classIndex();
    m_TransformedData = data;

    // Turn all attributes on for a start
    m_SelectedAttributes = new boolean[data.numAttributes()];
    for (int i = 0; i < data.numAttributes(); i++) {
        if (i != m_ClassIndex) {
            m_SelectedAttributes[i] = true;
        }
    }
    m_Coefficients = null;

    // Compute means and standard deviations
    m_Means = new double[data.numAttributes()];
    m_StdDevs = new double[data.numAttributes()];
    for (int j = 0; j < data.numAttributes(); j++) {
        if (j != data.classIndex()) {
            m_Means[j] = data.meanOrMode(j);
            m_StdDevs[j] = Math.sqrt(data.variance(j));
            if (m_StdDevs[j] == 0) {
                m_SelectedAttributes[j] = false;
            }
        }
    }

    m_ClassStdDev = Math.sqrt(data.variance(m_TransformedData.classIndex()));
    m_ClassMean = data.meanOrMode(m_TransformedData.classIndex());

    // Perform the regression
    findBestModel();

    // Save memory
    m_TransformedData = new Instances(data, 0);
}

From source file:Classifier.supervised.LinearRegression.java

License:Open Source License

/**
 * Builds a regression model for the given data.
 *
 * @param data the training data to be used for generating the
 * linear regression function/*from w  w w . ja va2 s  . com*/
 * @throws Exception if the classifier could not be built successfully
 */
public void buildClassifier(Instances data) throws Exception {
    m_ModelBuilt = false;

    if (!m_checksTurnedOff) {
        // can classifier handle the data?
        getCapabilities().testWithFail(data);

        // remove instances with missing class
        data = new Instances(data);
        data.deleteWithMissingClass();
    }

    // Preprocess instances
    if (!m_checksTurnedOff) {
        m_TransformFilter = new NominalToBinary();
        m_TransformFilter.setInputFormat(data);
        data = Filter.useFilter(data, m_TransformFilter);
        m_MissingFilter = new ReplaceMissingValues();
        m_MissingFilter.setInputFormat(data);
        data = Filter.useFilter(data, m_MissingFilter);
        data.deleteWithMissingClass();
    } else {
        m_TransformFilter = null;
        m_MissingFilter = null;
    }

    m_ClassIndex = data.classIndex();
    m_TransformedData = data;

    // Turn all attributes on for a start
    m_SelectedAttributes = new boolean[data.numAttributes()];
    for (int i = 0; i < data.numAttributes(); i++) {
        if (i != m_ClassIndex) {
            m_SelectedAttributes[i] = true;
        }
    }
    m_Coefficients = null;

    // Compute means and standard deviations
    m_Means = new double[data.numAttributes()];
    m_StdDevs = new double[data.numAttributes()];
    for (int j = 0; j < data.numAttributes(); j++) {
        if (j != data.classIndex()) {
            m_Means[j] = data.meanOrMode(j);
            m_StdDevs[j] = Math.sqrt(data.variance(j));
            if (m_StdDevs[j] == 0) {
                m_SelectedAttributes[j] = false;
            }
        }
    }

    m_ClassStdDev = Math.sqrt(data.variance(m_TransformedData.classIndex()));
    m_ClassMean = data.meanOrMode(m_TransformedData.classIndex());

    // Perform the regression
    findBestModel();

    // Save memory
    if (m_Minimal) {
        m_TransformedData = null;
        m_Means = null;
        m_StdDevs = null;
    } else {
        m_TransformedData = new Instances(data, 0);
    }

    m_ModelBuilt = true;
}

From source file:classifiers.mlp.MultilayerPerceptronCustom.java

License:Open Source License

/**
 * Call this function to build and train a neural network for the training
 * data provided./* w ww  .  j  a va2  s .  c o m*/
 * @param i The training data.
 * @throws Exception if can't build classification properly.
 */
public void buildClassifier(Instances i) throws Exception {

    // can classifier handle the data?
    getCapabilities().testWithFail(i);

    // remove instances with missing class
    i = new Instances(i);
    i.deleteWithMissingClass();

    m_ZeroR = new weka.classifiers.rules.ZeroR();
    m_ZeroR.buildClassifier(i);
    // only class? -> use ZeroR model
    if (i.numAttributes() == 1) {
        System.err.println(
                "Cannot build model (only class attribute present in data!), " + "using ZeroR model instead!");
        m_useDefaultModel = true;
        return;
    } else {
        m_useDefaultModel = false;
    }

    m_epoch = 0;
    m_error = 0;
    m_instances = null;
    m_currentInstance = null;
    m_controlPanel = null;
    m_nodePanel = null;

    m_outputs = new NeuralEnd[0];
    m_inputs = new NeuralEnd[0];
    m_numAttributes = 0;
    m_numClasses = 0;
    m_neuralNodes = new NeuralConnection[0];

    m_selected = new FastVector(4);
    m_graphers = new FastVector(2);
    m_nextId = 0;
    m_stopIt = true;
    m_stopped = true;
    m_accepted = false;
    m_instances = new Instances(i);
    m_random = new Random(m_randomSeed);
    m_instances.randomize(m_random);

    if (m_useNomToBin) {
        m_nominalToBinaryFilter = new NominalToBinary();
        m_nominalToBinaryFilter.setInputFormat(m_instances);
        m_instances = Filter.useFilter(m_instances, m_nominalToBinaryFilter);
    }
    m_numAttributes = m_instances.numAttributes() - 1;
    m_numClasses = m_instances.numClasses();

    setClassType(m_instances);

    //this sets up the validation set.
    Instances valSet = null;
    //numinval is needed later
    int numInVal = (int) (m_valSize / 100.0 * m_instances.numInstances());
    if (m_valSize > 0) {
        if (numInVal == 0) {
            numInVal = 1;
        }
        valSet = new Instances(m_instances, 0, numInVal);
    }
    ///////////

    setupInputs();

    setupOutputs();
    if (m_autoBuild) {
        setupHiddenLayer();
    }

    /////////////////////////////
    //this sets up the gui for usage
    if (m_gui) {
        m_win = new JFrame();

        m_win.addWindowListener(new WindowAdapter() {
            public void windowClosing(WindowEvent e) {
                boolean k = m_stopIt;
                m_stopIt = true;
                int well = JOptionPane
                        .showConfirmDialog(m_win,
                                "Are You Sure...\n" + "Click Yes To Accept" + " The Neural Network"
                                        + "\n Click No To Return",
                                "Accept Neural Network", JOptionPane.YES_NO_OPTION);

                if (well == 0) {
                    m_win.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
                    m_accepted = true;
                    blocker(false);
                } else {
                    m_win.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
                }
                m_stopIt = k;
            }
        });

        m_win.getContentPane().setLayout(new BorderLayout());
        m_win.setTitle("Neural Network");
        m_nodePanel = new NodePanel();
        // without the following two lines, the NodePanel.paintComponents(Graphics) 
        // method will go berserk if the network doesn't fit completely: it will
        // get called on a constant basis, using 100% of the CPU
        // see the following forum thread:
        // http://forum.java.sun.com/thread.jspa?threadID=580929&messageID=2945011
        m_nodePanel.setPreferredSize(new Dimension(640, 480));
        m_nodePanel.revalidate();

        JScrollPane sp = new JScrollPane(m_nodePanel, JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
                JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);
        m_controlPanel = new ControlPanel();

        m_win.getContentPane().add(sp, BorderLayout.CENTER);
        m_win.getContentPane().add(m_controlPanel, BorderLayout.SOUTH);
        m_win.setSize(640, 480);
        m_win.setVisible(true);
    }

    //This sets up the initial state of the gui
    if (m_gui) {
        blocker(true);
        m_controlPanel.m_changeEpochs.setEnabled(false);
        m_controlPanel.m_changeLearning.setEnabled(false);
        m_controlPanel.m_changeMomentum.setEnabled(false);
    }

    //For silly situations in which the network gets accepted before training
    //commenses
    if (m_numeric) {
        setEndsToLinear();
    }
    if (m_accepted) {
        m_win.dispose();
        m_controlPanel = null;
        m_nodePanel = null;
        m_instances = new Instances(m_instances, 0);
        m_currentInstance = null;
        return;
    }

    //connections done.
    double right = 0;
    double driftOff = 0;
    double lastRight = Double.POSITIVE_INFINITY;
    double bestError = Double.POSITIVE_INFINITY;
    double tempRate;
    double totalWeight = 0;
    double totalValWeight = 0;
    double origRate = m_learningRate; //only used for when reset

    //ensure that at least 1 instance is trained through.
    if (numInVal == m_instances.numInstances()) {
        numInVal--;
    }
    if (numInVal < 0) {
        numInVal = 0;
    }
    for (int noa = numInVal; noa < m_instances.numInstances(); noa++) {
        if (!m_instances.instance(noa).classIsMissing()) {
            totalWeight += m_instances.instance(noa).weight();
        }
    }
    if (m_valSize != 0) {
        for (int noa = 0; noa < valSet.numInstances(); noa++) {
            if (!valSet.instance(noa).classIsMissing()) {
                totalValWeight += valSet.instance(noa).weight();
            }
        }
    }
    m_stopped = false;

    for (int noa = 1; noa < m_numEpochs + 1; noa++) {
        right = 0;
        for (int nob = numInVal; nob < m_instances.numInstances(); nob++) {
            m_currentInstance = m_instances.instance(nob);

            if (!m_currentInstance.classIsMissing()) {

                //this is where the network updating (and training occurs, for the
                //training set
                resetNetwork();
                calculateOutputs();
                tempRate = m_learningRate * m_currentInstance.weight();
                if (m_decay) {
                    tempRate /= noa;
                }

                right += (calculateErrors() / m_instances.numClasses()) * m_currentInstance.weight();
                updateNetworkWeights(tempRate, m_momentum);

            }

        }
        right /= totalWeight;
        if (Double.isInfinite(right) || Double.isNaN(right)) {
            if (!m_reset) {
                m_instances = null;
                throw new Exception("Network cannot train. Try restarting with a" + " smaller learning rate.");
            } else {
                //reset the network if possible
                if (m_learningRate <= Utils.SMALL)
                    throw new IllegalStateException(
                            "Learning rate got too small (" + m_learningRate + " <= " + Utils.SMALL + ")!");
                m_learningRate /= 2;
                buildClassifier(i);
                m_learningRate = origRate;
                m_instances = new Instances(m_instances, 0);
                m_currentInstance = null;
                return;
            }
        }

        ////////////////////////do validation testing if applicable
        if (m_valSize != 0) {
            right = 0;
            for (int nob = 0; nob < valSet.numInstances(); nob++) {
                m_currentInstance = valSet.instance(nob);
                if (!m_currentInstance.classIsMissing()) {
                    //this is where the network updating occurs, for the validation set
                    resetNetwork();
                    calculateOutputs();
                    right += (calculateErrors() / valSet.numClasses()) * m_currentInstance.weight();
                    //note 'right' could be calculated here just using
                    //the calculate output values. This would be faster.
                    //be less modular
                }

            }

            if (right < lastRight) {

                if (right < bestError) {
                    bestError = right;
                    // save the network weights at this point
                    for (int noc = 0; noc < m_numClasses; noc++) {
                        m_outputs[noc].saveWeights();
                    }
                    driftOff = 0;
                }
            } else {
                driftOff++;
            }
            lastRight = right;
            if (driftOff > m_driftThreshold || noa + 1 >= m_numEpochs) {
                for (int noc = 0; noc < m_numClasses; noc++) {
                    m_outputs[noc].restoreWeights();
                }
                m_accepted = true;
            }
            right /= totalValWeight;
        }
        m_epoch = noa;
        m_error = right;
        //shows what the neuralnet is upto if a gui exists. 
        updateDisplay();
        //This junction controls what state the gui is in at the end of each
        //epoch, Such as if it is paused, if it is resumable etc...
        if (m_gui) {
            while ((m_stopIt || (m_epoch >= m_numEpochs && m_valSize == 0)) && !m_accepted) {
                m_stopIt = true;
                m_stopped = true;
                if (m_epoch >= m_numEpochs && m_valSize == 0) {

                    m_controlPanel.m_startStop.setEnabled(false);
                } else {
                    m_controlPanel.m_startStop.setEnabled(true);
                }
                m_controlPanel.m_startStop.setText("Start");
                m_controlPanel.m_startStop.setActionCommand("Start");
                m_controlPanel.m_changeEpochs.setEnabled(true);
                m_controlPanel.m_changeLearning.setEnabled(true);
                m_controlPanel.m_changeMomentum.setEnabled(true);

                blocker(true);
                if (m_numeric) {
                    setEndsToLinear();
                }
            }
            m_controlPanel.m_changeEpochs.setEnabled(false);
            m_controlPanel.m_changeLearning.setEnabled(false);
            m_controlPanel.m_changeMomentum.setEnabled(false);

            m_stopped = false;
            //if the network has been accepted stop the training loop
            if (m_accepted) {
                m_win.dispose();
                m_controlPanel = null;
                m_nodePanel = null;
                m_instances = new Instances(m_instances, 0);
                m_currentInstance = null;
                return;
            }
        }
        if (m_accepted) {
            m_instances = new Instances(m_instances, 0);
            m_currentInstance = null;
            return;
        }

        //TODO:
        // Customization: store the model created after this epoch
        ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("mlp/temp/" + noa + ".model"));
        oos.writeObject(this);
        oos.flush();
        oos.close();
    }

    if (m_gui) {
        m_win.dispose();
        m_controlPanel = null;
        m_nodePanel = null;
    }
    m_instances = new Instances(m_instances, 0);
    m_currentInstance = null;
}

From source file:cn.edu.xjtu.dbmine.source.NaiveBayes.java

License:Open Source License

/**
 * Generates the classifier.// www.  ja v a2  s .c  om
 *
 * @param instances set of instances serving as training data 
 * @exception Exception if the classifier has not been generated 
 * successfully
 */
public void buildClassifier(Instances instances) throws Exception {

    // can classifier handle the data?
    getCapabilities().testWithFail(instances);

    // remove instances with missing class
    instances = new Instances(instances);
    instances.deleteWithMissingClass();

    m_NumClasses = instances.numClasses();

    // Copy the instances
    m_Instances = new Instances(instances);

    // Discretize instances if required
    if (m_UseDiscretization) {
        m_Disc = new weka.filters.supervised.attribute.Discretize();
        m_Disc.setInputFormat(m_Instances);
        m_Instances = weka.filters.Filter.useFilter(m_Instances, m_Disc);
    } else {
        m_Disc = null;
    }

    // Reserve space for the distributions
    m_Distributions = new Estimator[m_Instances.numAttributes() - 1][m_Instances.numClasses()];
    m_ClassDistribution = new DiscreteEstimator(m_Instances.numClasses(), true);
    int attIndex = 0;
    Enumeration enu = m_Instances.enumerateAttributes();
    while (enu.hasMoreElements()) {
        Attribute attribute = (Attribute) enu.nextElement();

        // If the attribute is numeric, determine the estimator 
        // numeric precision from differences between adjacent values
        double numPrecision = DEFAULT_NUM_PRECISION;
        if (attribute.type() == Attribute.NUMERIC) {
            m_Instances.sort(attribute);
            if ((m_Instances.numInstances() > 0) && !m_Instances.instance(0).isMissing(attribute)) {
                double lastVal = m_Instances.instance(0).value(attribute);
                double currentVal, deltaSum = 0;
                int distinct = 0;
                for (int i = 1; i < m_Instances.numInstances(); i++) {
                    Instance currentInst = m_Instances.instance(i);
                    if (currentInst.isMissing(attribute)) {
                        break;
                    }
                    currentVal = currentInst.value(attribute);
                    if (currentVal != lastVal) {
                        deltaSum += currentVal - lastVal;
                        lastVal = currentVal;
                        distinct++;
                    }
                }
                if (distinct > 0) {
                    numPrecision = deltaSum / distinct;
                }
            }
        }

        for (int j = 0; j < m_Instances.numClasses(); j++) {
            switch (attribute.type()) {
            case Attribute.NUMERIC:
                if (m_UseKernelEstimator) {
                    m_Distributions[attIndex][j] = new KernelEstimator(numPrecision);
                } else {
                    m_Distributions[attIndex][j] = new NormalEstimator(numPrecision);
                }
                break;
            case Attribute.NOMINAL:
                m_Distributions[attIndex][j] = new DiscreteEstimator(attribute.numValues(), true);
                break;
            default:
                throw new Exception("Attribute type unknown to NaiveBayes");
            }
        }
        attIndex++;
    }

    // Compute counts
    Enumeration enumInsts = m_Instances.enumerateInstances();
    while (enumInsts.hasMoreElements()) {
        Instance instance = (Instance) enumInsts.nextElement();
        updateClassifier(instance);
    }

    // Save space
    m_Instances = new Instances(m_Instances, 0);
}

From source file:com.ifmo.recommendersystem.metafeatures.classifierbased.internal.extractors.MultilayerPerceptron.java

License:Open Source License

/**
 * Call this function to build and train a neural network for the training
 * data provided.//w w  w  .  j a  v a 2 s.  c o m
 *
 * @param i The training data.
 * @throws Exception if can't build classification properly.
 */
@Override
public void buildClassifier(Instances i) throws Exception {

    // can classifier handle the data?
    getCapabilities().testWithFail(i);

    // remove instances with missing class
    i = new Instances(i);
    i.deleteWithMissingClass();

    m_ZeroR = new weka.classifiers.rules.ZeroR();
    m_ZeroR.buildClassifier(i);
    // only class? -> use ZeroR model
    if (i.numAttributes() == 1) {
        System.err.println(
                "Cannot build model (only class attribute present in data!), " + "using ZeroR model instead!");
        m_useDefaultModel = true;
        return;
    } else {
        m_useDefaultModel = false;
    }

    m_epoch = 0;
    m_error = 0;
    m_instances = null;
    m_currentInstance = null;
    m_controlPanel = null;
    m_nodePanel = null;

    m_outputs = new NeuralEnd[0];
    m_inputs = new NeuralEnd[0];
    m_numAttributes = 0;
    m_numClasses = 0;
    m_neuralNodes = new NeuralConnection[0];

    m_selected = new ArrayList<NeuralConnection>(4);
    m_nextId = 0;
    m_stopIt = true;
    m_stopped = true;
    m_accepted = false;
    m_instances = new Instances(i);
    m_random = new Random(m_randomSeed);
    m_instances.randomize(m_random);

    if (m_useNomToBin) {
        m_nominalToBinaryFilter = new NominalToBinary();
        m_nominalToBinaryFilter.setInputFormat(m_instances);
        m_instances = Filter.useFilter(m_instances, m_nominalToBinaryFilter);
    }
    m_numAttributes = m_instances.numAttributes() - 1;
    m_numClasses = m_instances.numClasses();

    setClassType(m_instances);

    // this sets up the validation set.
    Instances valSet = null;
    // numinval is needed later
    int numInVal = (int) (m_valSize / 100.0 * m_instances.numInstances());
    if (m_valSize > 0) {
        if (numInVal == 0) {
            numInVal = 1;
        }
        valSet = new Instances(m_instances, 0, numInVal);
    }
    // /////////

    setupInputs();

    setupOutputs();
    if (m_autoBuild) {
        setupHiddenLayer();
    }

    // ///////////////////////////
    // this sets up the gui for usage
    if (m_gui) {
        m_win = new JFrame();

        m_win.addWindowListener(new WindowAdapter() {
            @Override
            public void windowClosing(WindowEvent e) {
                boolean k = m_stopIt;
                m_stopIt = true;
                int well = JOptionPane
                        .showConfirmDialog(m_win,
                                "Are You Sure...\n" + "Click Yes To Accept" + " The Neural Network"
                                        + "\n Click No To Return",
                                "Accept Neural Network", JOptionPane.YES_NO_OPTION);

                if (well == 0) {
                    m_win.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
                    m_accepted = true;
                    blocker(false);
                } else {
                    m_win.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
                }
                m_stopIt = k;
            }
        });

        m_win.getContentPane().setLayout(new BorderLayout());
        m_win.setTitle("Neural Network");
        m_nodePanel = new NodePanel();
        // without the following two lines, the
        // NodePanel.paintComponents(Graphics)
        // method will go berserk if the network doesn't fit completely: it will
        // get called on a constant basis, using 100% of the CPU
        // see the following forum thread:
        // http://forum.java.sun.com/thread.jspa?threadID=580929&messageID=2945011
        m_nodePanel.setPreferredSize(new Dimension(640, 480));
        m_nodePanel.revalidate();

        JScrollPane sp = new JScrollPane(m_nodePanel, JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
                JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);
        m_controlPanel = new ControlPanel();

        m_win.getContentPane().add(sp, BorderLayout.CENTER);
        m_win.getContentPane().add(m_controlPanel, BorderLayout.SOUTH);
        m_win.setSize(640, 480);
        m_win.setVisible(true);
    }

    // This sets up the initial state of the gui
    if (m_gui) {
        blocker(true);
        m_controlPanel.m_changeEpochs.setEnabled(false);
        m_controlPanel.m_changeLearning.setEnabled(false);
        m_controlPanel.m_changeMomentum.setEnabled(false);
    }

    // For silly situations in which the network gets accepted before training
    // commenses
    if (m_numeric) {
        setEndsToLinear();
    }
    if (m_accepted) {
        m_win.dispose();
        m_controlPanel = null;
        m_nodePanel = null;
        m_instances = new Instances(m_instances, 0);
        m_currentInstance = null;
        return;
    }

    // connections done.
    double right = 0;
    double driftOff = 0;
    double lastRight = Double.POSITIVE_INFINITY;
    double bestError = Double.POSITIVE_INFINITY;
    double tempRate;
    double totalWeight = 0;
    double totalValWeight = 0;
    double origRate = m_learningRate; // only used for when reset

    // ensure that at least 1 instance is trained through.
    if (numInVal == m_instances.numInstances()) {
        numInVal--;
    }
    if (numInVal < 0) {
        numInVal = 0;
    }
    for (int noa = numInVal; noa < m_instances.numInstances(); noa++) {
        if (!m_instances.instance(noa).classIsMissing()) {
            totalWeight += m_instances.instance(noa).weight();
        }
    }
    if (m_valSize != 0) {
        for (int noa = 0; noa < valSet.numInstances(); noa++) {
            if (!valSet.instance(noa).classIsMissing()) {
                totalValWeight += valSet.instance(noa).weight();
            }
        }
    }
    m_stopped = false;

    for (int noa = 1; noa < m_numEpochs + 1; noa++) {
        right = 0;
        for (int nob = numInVal; nob < m_instances.numInstances(); nob++) {
            m_currentInstance = m_instances.instance(nob);

            if (!m_currentInstance.classIsMissing()) {

                // this is where the network updating (and training occurs, for the
                // training set
                resetNetwork();
                calculateOutputs();
                tempRate = m_learningRate * m_currentInstance.weight();
                if (m_decay) {
                    tempRate /= noa;
                }

                right += (calculateErrors() / m_instances.numClasses()) * m_currentInstance.weight();
                updateNetworkWeights(tempRate, m_momentum);

            }

        }
        right /= totalWeight;
        if (Double.isInfinite(right) || Double.isNaN(right)) {
            if (!m_reset) {
                m_instances = null;
                throw new Exception("Network cannot train. Try restarting with a" + " smaller learning rate.");
            } else {
                // reset the network if possible
                if (m_learningRate <= Utils.SMALL) {
                    throw new IllegalStateException(
                            "Learning rate got too small (" + m_learningRate + " <= " + Utils.SMALL + ")!");
                }
                m_learningRate /= 2;
                buildClassifier(i);
                m_learningRate = origRate;
                m_instances = new Instances(m_instances, 0);
                m_currentInstance = null;
                return;
            }
        }

        // //////////////////////do validation testing if applicable
        if (m_valSize != 0) {
            right = 0;
            for (int nob = 0; nob < valSet.numInstances(); nob++) {
                m_currentInstance = valSet.instance(nob);
                if (!m_currentInstance.classIsMissing()) {
                    // this is where the network updating occurs, for the validation set
                    resetNetwork();
                    calculateOutputs();
                    right += (calculateErrors() / valSet.numClasses()) * m_currentInstance.weight();
                    // note 'right' could be calculated here just using
                    // the calculate output values. This would be faster.
                    // be less modular
                }

            }

            if (right < lastRight) {
                if (right < bestError) {
                    bestError = right;
                    // save the network weights at this point
                    for (int noc = 0; noc < m_numClasses; noc++) {
                        m_outputs[noc].saveWeights();
                    }
                    driftOff = 0;
                }
            } else {
                driftOff++;
            }
            lastRight = right;
            if (driftOff > m_driftThreshold || noa + 1 >= m_numEpochs) {
                for (int noc = 0; noc < m_numClasses; noc++) {
                    m_outputs[noc].restoreWeights();
                }
                m_accepted = true;
            }
            right /= totalValWeight;
        }
        m_epoch = noa;
        m_error = right;
        // shows what the neuralnet is upto if a gui exists.
        updateDisplay();
        // This junction controls what state the gui is in at the end of each
        // epoch, Such as if it is paused, if it is resumable etc...
        if (m_gui) {
            while ((m_stopIt || (m_epoch >= m_numEpochs && m_valSize == 0)) && !m_accepted) {
                m_stopIt = true;
                m_stopped = true;
                if (m_epoch >= m_numEpochs && m_valSize == 0) {

                    m_controlPanel.m_startStop.setEnabled(false);
                } else {
                    m_controlPanel.m_startStop.setEnabled(true);
                }
                m_controlPanel.m_startStop.setText("Start");
                m_controlPanel.m_startStop.setActionCommand("Start");
                m_controlPanel.m_changeEpochs.setEnabled(true);
                m_controlPanel.m_changeLearning.setEnabled(true);
                m_controlPanel.m_changeMomentum.setEnabled(true);

                blocker(true);
                if (m_numeric) {
                    setEndsToLinear();
                }
            }
            m_controlPanel.m_changeEpochs.setEnabled(false);
            m_controlPanel.m_changeLearning.setEnabled(false);
            m_controlPanel.m_changeMomentum.setEnabled(false);

            m_stopped = false;
            // if the network has been accepted stop the training loop
            if (m_accepted) {
                m_win.dispose();
                m_controlPanel = null;
                m_nodePanel = null;
                m_instances = new Instances(m_instances, 0);
                m_currentInstance = null;
                return;
            }
        }
        if (m_accepted) {
            m_instances = new Instances(m_instances, 0);
            m_currentInstance = null;
            return;
        }
    }
    if (m_gui) {
        m_win.dispose();
        m_controlPanel = null;
        m_nodePanel = null;
    }
    m_instances = new Instances(m_instances, 0);
    m_currentInstance = null;
}