List of usage examples for weka.core Instances numAttributes
publicint numAttributes()
From source file:classifyfromimage.java
private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton1ActionPerformed this.name3 = IJ.getImage().getTitle(); this.name4 = this.name3.replaceFirst("[.][^.]+$", ""); System.out.println("hola " + this.name4); selectWindow(this.name3); System.out.println(this.name4); System.out.println(this.name3); RoiManager rm = RoiManager.getInstance(); IJ.run("Duplicate...", this.name3); IJ.run("Set Measurements...", "area perimeter fit shape limit scientific redirect=None decimal=5"); selectWindow(this.name3); IJ.run("Subtract Background...", "rolling=1.5"); IJ.run("Enhance Contrast...", "saturated=25 equalize"); IJ.run("Subtract Background...", "rolling=1.5"); IJ.run("Convolve...", "text1=[-1 -3 -4 -3 -1\n-3 0 6 0 -3\n-4 6 50 6 -4\n-3 0 6 0 -3\n-1 -3 -4 -3 -1\n] normalize"); IJ.run("8-bit", ""); IJ.run("Restore Selection", ""); IJ.run("Make Binary", ""); Prefs.blackBackground = false;/*from ww w. ja v a 2 s . com*/ IJ.run("Convert to Mask", ""); IJ.run("Restore Selection", ""); this.valor1 = this.interval3.getText(); this.valor2 = this.interval4.getText(); System.out.println("VECTOR-> punctua: " + this.valor1 + " " + this.valor2); this.text = "size=" + this.valor1 + "-" + this.valor2 + " pixel show=Outlines display include summarize add"; IJ.run("Analyze Particles...", this.text); IJ.saveAs("tif", this.name3 + "_processed"); String dest_filename1, dest_filename2, full; selectWindow("Results"); //dest_filename1 = this.name2 + "_complete.txt"; dest_filename2 = this.name3 + "_complete.csv"; //IJ.saveAs("Results", prova + File.separator + dest_filename1); IJ.run("Input/Output...", "jpeg=85 gif=-1 file=.csv copy_row save_column save_row"); //IJ.saveAs("Results", dir + File.separator + dest_filename2); IJ.saveAs("Results", this.name3 + "_complete.csv"); IJ.run("Restore Selection"); IJ.run("Clear Results"); //txtarea.setText("Converting, please wait... "); try { CSVLoader loader = new CSVLoader(); loader.setSource(new File(this.name3 + "_complete.csv")); Instances data = loader.getDataSet(); System.out.println(data); // save ARFF String arffile = this.name3 + ".arff"; System.out.println(arffile); ArffSaver saver = new ArffSaver(); saver.setInstances(data); saver.setFile(new File(arffile)); saver.writeBatch(); } catch (IOException ex) { Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex); } //txtdata2.setText(this.name3); //txtarea.setText("Succesfully converted " + this.name3); //txtarea.setText("Analysing your data, please wait... "); Instances data; try { data = new Instances(new BufferedReader(new FileReader(this.name3 + ".arff"))); Instances newData = null; Add filter; newData = new Instances(data); filter = new Add(); filter.setAttributeIndex("last"); filter.setNominalLabels("rods,punctua,networks"); filter.setAttributeName("target"); filter.setInputFormat(newData); newData = Filter.useFilter(newData, filter); System.out.print(newData); Vector vec = new Vector(); newData.setClassIndex(newData.numAttributes() - 1); if (!newData.equalHeaders(newData)) { throw new IllegalArgumentException("Train and test are not compatible!"); } URL urlToModel = this.getClass().getResource("/" + "Final.model"); InputStream stream = urlToModel.openStream(); Classifier cls = (Classifier) weka.core.SerializationHelper.read(stream); System.out.println("PROVANT MODEL.classifyInstance"); for (int i = 0; i < newData.numInstances(); i++) { double pred = cls.classifyInstance(newData.instance(i)); double[] dist = cls.distributionForInstance(newData.instance(i)); System.out.print((i + 1) + " - "); System.out.print(newData.classAttribute().value((int) pred) + " - "); //txtarea2.setText(Utils.arrayToString(dist)); System.out.println(Utils.arrayToString(dist)); vec.add(newData.classAttribute().value((int) pred)); } int p = 0, n = 0, r = 0; //txtarea2.append(Utils.arrayToString(this.target)); for (Object vec1 : vec) { if ("rods".equals(vec1.toString())) { r = r + 1; } if ("punctua".equals(vec1.toString())) { p = p + 1; } if ("networks".equals(vec1.toString())) { n = n + 1; } PrintWriter out = null; try { out = new PrintWriter(this.name3 + "_morphology.txt"); out.println(vec); out.close(); } catch (Exception ex) { ex.printStackTrace(); } //System.out.println(vec.get(i)); } System.out.println("VECTOR-> punctua: " + p + ", rods: " + r + ", networks: " + n); IJ.showMessage( "Your file:" + this.name3 + "arff" + "\nhas been analysed, and it is composed by-> punctua: " + p + ", rods: " + r + ", networks: " + n); this.txtarea2.setText( "Your file:" + this.name3 + ".arff" + "\nhas been analysed, and it is composed by-> punctua: " + p + ", rods: " + r + ", networks: " + n); A_MachineLearning nf1 = new A_MachineLearning(); A_MachineLearning.txtresults1.setText(this.txtarea2.getText()); A_MachineLearning.txtresults1.setText(this.txtarea2.getText()); A_MachineLearning.txtresults1.setText(this.txtarea2.getText()); A_MachineLearning.txtresults1.append(this.txtarea2.getText()); A_MachineLearning.txtresults1.append(this.txtarea2.getText()); A_MachineLearning.txtresults1.append(this.txtarea2.getText()); nf1.setVisible(true); } catch (IOException ex) { Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex); } catch (Exception ex) { Logger.getLogger(MachinLearningInterface.class.getName()).log(Level.SEVERE, null, ex); } IJ.run("Clear Results"); //IJ.RoiManager("Delete"); IJ.run("Clear Results"); IJ.run("Close All", ""); if (WindowManager.getFrame("Results") != null) { IJ.selectWindow("Results"); IJ.run("Close"); } if (WindowManager.getFrame("Summary") != null) { IJ.selectWindow("Summary"); IJ.run("Close"); } if (WindowManager.getFrame("Results") != null) { IJ.selectWindow("Results"); IJ.run("Close"); } if (WindowManager.getFrame("ROI Manager") != null) { IJ.selectWindow("ROI Manager"); IJ.run("Close"); } IJ.run("Close All", "roiManager"); IJ.run("Close All", ""); setVisible(false); dispose();// TODO add your handling code here: setVisible(false); dispose();// TODO add your handling code here: // TODO add your handling code here: }
From source file:PrincipalComponents.java
License:Open Source License
/** * Return a summary of the analysis//www . j a va 2 s . c om * * @return a summary of the analysis. */ private String principalComponentsSummary() { StringBuffer result = new StringBuffer(); double cumulative = 0.0; Instances output = null; int numVectors = 0; try { output = setOutputFormat(); numVectors = (output.classIndex() < 0) ? output.numAttributes() : output.numAttributes() - 1; } catch (Exception ex) { } // tomorrow String corrCov = (m_center) ? "Covariance " : "Correlation "; result.append(corrCov + "matrix\n" + matrixToString(Matrices.getArray(m_correlation)) + "\n\n"); result.append("eigenvalue\tproportion\tcumulative\n"); for (int i = m_numAttribs - 1; i > (m_numAttribs - numVectors - 1); i--) { cumulative += m_eigenvalues[m_sortedEigens[i]]; result.append(Utils.doubleToString(m_eigenvalues[m_sortedEigens[i]], 9, 5) + "\t" + Utils.doubleToString((m_eigenvalues[m_sortedEigens[i]] / m_sumOfEigenValues), 9, 5) + "\t" + Utils.doubleToString((cumulative / m_sumOfEigenValues), 9, 5) + "\t" + output.attribute(m_numAttribs - i - 1).name() + "\n"); } result.append("\nEigenvectors\n"); for (int j = 1; j <= numVectors; j++) { result.append(" V" + j + '\t'); } result.append("\n"); for (int j = 0; j < m_numAttribs; j++) { for (int i = m_numAttribs - 1; i > (m_numAttribs - numVectors - 1); i--) { result.append(Utils.doubleToString(m_eigenvectors[j][m_sortedEigens[i]], 7, 4) + "\t"); } result.append(m_trainInstances.attribute(j).name() + '\n'); } if (m_transBackToOriginal) { result.append("\nPC space transformed back to original space.\n" + "(Note: can't evaluate attributes in the original " + "space)\n"); } return result.toString(); }
From source file:PrincipalComponents.java
License:Open Source License
/** * Set up the header for the PC->original space dataset * * @return the output format/*from www .ja va 2s .c o m*/ * @throws Exception if something goes wrong */ private Instances setOutputFormatOriginal() throws Exception { ArrayList<Attribute> attributes = new ArrayList<Attribute>(); for (int i = 0; i < m_numAttribs; i++) { String att = m_trainInstances.attribute(i).name(); attributes.add(new Attribute(att)); } if (m_hasClass) { attributes.add((Attribute) m_trainHeader.classAttribute().copy()); } Instances outputFormat = new Instances(m_trainHeader.relationName() + "->PC->original space", attributes, 0); // set the class to be the last attribute if necessary if (m_hasClass) { outputFormat.setClassIndex(outputFormat.numAttributes() - 1); } return outputFormat; }
From source file:PrincipalComponents.java
License:Open Source License
/** * Set the format for the transformed data * * @return a set of empty Instances (header only) in the new format * @throws Exception if the output format can't be set */// w w w . j a va 2 s .co m private Instances setOutputFormat() throws Exception { if (m_eigenvalues == null) { return null; } double cumulative = 0.0; ArrayList<Attribute> attributes = new ArrayList<Attribute>(); for (int i = m_numAttribs - 1; i >= 0; i--) { StringBuffer attName = new StringBuffer(); // build array of coefficients double[] coeff_mags = new double[m_numAttribs]; for (int j = 0; j < m_numAttribs; j++) { coeff_mags[j] = -Math.abs(m_eigenvectors[j][m_sortedEigens[i]]); } int num_attrs = (m_maxAttrsInName > 0) ? Math.min(m_numAttribs, m_maxAttrsInName) : m_numAttribs; // this array contains the sorted indices of the coefficients int[] coeff_inds; if (m_numAttribs > 0) { // if m_maxAttrsInName > 0, sort coefficients by decreasing // magnitude coeff_inds = Utils.sort(coeff_mags); } else { // if m_maxAttrsInName <= 0, use all coeffs in original order coeff_inds = new int[m_numAttribs]; for (int j = 0; j < m_numAttribs; j++) { coeff_inds[j] = j; } } // build final attName string for (int j = 0; j < num_attrs; j++) { double coeff_value = m_eigenvectors[coeff_inds[j]][m_sortedEigens[i]]; if (j > 0 && coeff_value >= 0) { attName.append("+"); } attName.append( Utils.doubleToString(coeff_value, 5, 3) + m_trainInstances.attribute(coeff_inds[j]).name()); } if (num_attrs < m_numAttribs) { attName.append("..."); } attributes.add(new Attribute(attName.toString())); cumulative += m_eigenvalues[m_sortedEigens[i]]; if ((cumulative / m_sumOfEigenValues) >= m_coverVariance) { break; } } if (m_hasClass) { attributes.add((Attribute) m_trainHeader.classAttribute().copy()); } Instances outputFormat = new Instances(m_trainInstances.relationName() + "_principal components", attributes, 0); // set the class to be the last attribute if necessary if (m_hasClass) { outputFormat.setClassIndex(outputFormat.numAttributes() - 1); } m_outputNumAtts = outputFormat.numAttributes(); return outputFormat; }
From source file:PreparingSteps.java
public Instances getReadFileData(String path) { ConverterUtils.DataSource source; Instances data = null; try {/*from w ww . ja va 2 s . c om*/ source = new ConverterUtils.DataSource(path); data = source.getDataSet(); data.setClassIndex(data.numAttributes() - 1); // class indexi belirleniyor } catch (Exception ex) { Logger.getLogger(PreparingSteps.class.getName()).log(Level.SEVERE, null, ex); } return data; }
From source file:PreparingSteps.java
public Instances deleteattributefromData(Instances data, double[] food_source) { int girildi = 0; int N = data.numAttributes(); for (int j = 0; j < food_source.length; j++) { if (food_source[j] == 0) { data.deleteAttributeAt(j - girildi); girildi += 1;// ww w .j a v a 2s.com } } return data; }
From source file:ArrayLoader.java
License:Open Source License
/** * Return the full data set. If the structure hasn't yet been determined * by a call to getStructure then method should do so before processing * the rest of the data set.//from www . ja v a2 s.c o m * * @return the structure of the data set as an empty set of Instances * @exception IOException if there is no source or parsing fails */ public Instances getDataSet() throws IOException { if (m_data == null) { throw new IOException("No source has been specified"); } if (m_structure == null) { getStructure(); } m_cumulativeStructure = new FastVector(m_structure.numAttributes()); for (int i = 0; i < m_structure.numAttributes(); i++) { m_cumulativeStructure.addElement(new Hashtable()); } m_cumulativeInstances = new FastVector(); FastVector current; for (int i = 0; i < m_data.length; i++) { current = getInstance(m_data[i]); m_cumulativeInstances.addElement(current); } FastVector atts = new FastVector(m_structure.numAttributes()); for (int i = 0; i < m_structure.numAttributes(); i++) { String attname = m_structure.attribute(i).name(); Hashtable tempHash = ((Hashtable) m_cumulativeStructure.elementAt(i)); if (tempHash.size() == 0) { atts.addElement(new Attribute(attname)); } else { if (m_StringAttributes.isInRange(i)) { atts.addElement(new Attribute(attname, (FastVector) null)); } else { FastVector values = new FastVector(tempHash.size()); // add dummy objects in order to make the FastVector's size == capacity for (int z = 0; z < tempHash.size(); z++) { values.addElement("dummy"); } Enumeration e = tempHash.keys(); while (e.hasMoreElements()) { Object ob = e.nextElement(); // if (ob instanceof Double) { int index = ((Integer) tempHash.get(ob)).intValue(); String s = ob.toString(); if (s.startsWith("'") || s.startsWith("\"")) s = s.substring(1, s.length() - 1); values.setElementAt(new String(s), index); // } } atts.addElement(new Attribute(attname, values)); } } } // make the instances String relationName; relationName = "ArrayData"; Instances dataSet = new Instances(relationName, atts, m_cumulativeInstances.size()); for (int i = 0; i < m_cumulativeInstances.size(); i++) { current = ((FastVector) m_cumulativeInstances.elementAt(i)); double[] vals = new double[dataSet.numAttributes()]; for (int j = 0; j < current.size(); j++) { Object cval = current.elementAt(j); if (cval instanceof String) { if (((String) cval).compareTo(m_MissingValue) == 0) { vals[j] = Instance.missingValue(); } else { if (dataSet.attribute(j).isString()) { vals[j] = dataSet.attribute(j).addStringValue((String) cval); } else if (dataSet.attribute(j).isNominal()) { // find correct index Hashtable lookup = (Hashtable) m_cumulativeStructure.elementAt(j); int index = ((Integer) lookup.get(cval)).intValue(); vals[j] = index; } else { throw new IllegalStateException("Wrong attribute type at position " + (i + 1) + "!!!"); } } } else if (dataSet.attribute(j).isNominal()) { // find correct index Hashtable lookup = (Hashtable) m_cumulativeStructure.elementAt(j); int index = ((Integer) lookup.get(cval)).intValue(); vals[j] = index; } else if (dataSet.attribute(j).isString()) { vals[j] = dataSet.attribute(j).addStringValue("" + cval); } else { vals[j] = ((Double) cval).doubleValue(); } } dataSet.add(new Instance(1.0, vals)); } m_structure = new Instances(dataSet, 0); m_cumulativeStructure = null; // conserve memory return dataSet; }
From source file:FlexDMThread.java
License:Open Source License
public void run() { try {/*from w ww .j av a 2 s . c o m*/ //Get the data from the source FlexDM.getMainData.acquire(); Instances data = dataset.getSource().getDataSet(); FlexDM.getMainData.release(); //Set class attribute if undefined if (data.classIndex() == -1) { data.setClassIndex(data.numAttributes() - 1); } //Process hyperparameters for classifier String temp = ""; for (int i = 0; i < classifier.getNumParams(); i++) { temp += classifier.getParameter(i).getName(); temp += " "; if (classifier.getParameter(i).getValue() != null) { temp += classifier.getParameter(i).getValue(); temp += " "; } } String[] options = weka.core.Utils.splitOptions(temp); //Print to console- experiment is starting if (temp.equals("")) { //no parameters temp = "results_no_parameters"; try { System.out.println("STARTING CLASSIFIER " + cNum + " - " + classifier.getName() + " on dataset " + dataset.getName().substring(dataset.getName().lastIndexOf("\\") + 1) + " with no parameters"); } catch (Exception e) { System.out.println("STARTING CLASSIFIER " + cNum + " - " + classifier.getName() + " on dataset " + dataset.getName() + " with no parameters"); } } else { //parameters try { System.out.println("STARTING CLASSIFIER " + cNum + " - " + classifier.getName() + " on dataset " + dataset.getName().substring(dataset.getName().lastIndexOf("\\") + 1) + " with parameters " + temp); } catch (Exception e) { System.out.println("STARTING CLASSIFIER " + cNum + " - " + classifier.getName() + " on dataset " + dataset.getName() + " with parameters " + temp); } } //Create classifier, setting parameters weka.classifiers.Classifier x = createObject(classifier.getName()); x.setOptions(options); x.buildClassifier(data); //Process the test selection String[] tempTest = dataset.getTest().split("\\s"); //Create evaluation object for training and testing classifiers Evaluation eval = new Evaluation(data); StringBuffer predictions = new StringBuffer(); //Train and evaluate classifier if (tempTest[0].equals("testset")) { //specified test file //Build classifier x.buildClassifier(data); //Open test file, load data //DataSource testFile = new DataSource(dataset.getTest().substring(7).trim()); // Instances testSet = testFile.getDataSet(); FlexDM.getTestData.acquire(); Instances testSet = dataset.getTestFile().getDataSet(); FlexDM.getTestData.release(); //Set class attribute if undefined if (testSet.classIndex() == -1) { testSet.setClassIndex(testSet.numAttributes() - 1); } //Evaluate model Object[] array = { predictions, new Range(), new Boolean(true) }; eval.evaluateModel(x, testSet, array); } else if (tempTest[0].equals("xval")) { //Cross validation //Build classifier x.buildClassifier(data); //Cross validate eval.crossValidateModel(x, data, Integer.parseInt(tempTest[1]), new Random(1), predictions, new Range(), true); } else if (tempTest[0].equals("leavexval")) { //Leave one out cross validation //Build classifier x.buildClassifier(data); //Cross validate eval.crossValidateModel(x, data, data.numInstances() - 1, new Random(1), predictions, new Range(), true); } else if (tempTest[0].equals("percent")) { //Percentage split of single data set //Set training and test sizes from percentage int trainSize = (int) Math.round(data.numInstances() * Double.parseDouble(tempTest[1])); int testSize = data.numInstances() - trainSize; //Load specified data Instances train = new Instances(data, 0, trainSize); Instances testSet = new Instances(data, trainSize, testSize); //Build classifier x.buildClassifier(train); //Train and evaluate model Object[] array = { predictions, new Range(), new Boolean(true) }; eval.evaluateModel(x, testSet, array); } else { //Evaluate on training data //Test and evaluate model Object[] array = { predictions, new Range(), new Boolean(true) }; eval.evaluateModel(x, data, array); } //create datafile for results String filename = dataset.getDir() + "/" + classifier.getDirName() + "/" + temp + ".txt"; PrintWriter writer = new PrintWriter(filename, "UTF-8"); //Print classifier, dataset, parameters info to file try { writer.println("CLASSIFIER: " + classifier.getName() + "\n DATASET: " + dataset.getName() + "\n PARAMETERS: " + temp); } catch (Exception e) { writer.println("CLASSIFIER: " + classifier.getName() + "\n DATASET: " + dataset.getName() + "\n PARAMETERS: " + temp); } //Add evaluation string to file writer.println(eval.toSummaryString()); //Process result options if (checkResults("stats")) { //Classifier statistics writer.println(eval.toClassDetailsString()); } if (checkResults("model")) { //The model writer.println(x.toString()); } if (checkResults("matrix")) { //Confusion matrix writer.println(eval.toMatrixString()); } if (checkResults("entropy")) { //Entropy statistics //Set options req'd to get the entropy stats String[] opt = new String[4]; opt[0] = "-t"; opt[1] = dataset.getName(); opt[2] = "-k"; opt[3] = "-v"; //Evaluate model String entropy = Evaluation.evaluateModel(x, opt); //Grab the relevant info from the results, print to file entropy = entropy.substring(entropy.indexOf("=== Stratified cross-validation ===") + 35, entropy.indexOf("=== Confusion Matrix ===")); writer.println("=== Entropy Statistics ==="); writer.println(entropy); } if (checkResults("predictions")) { //The models predictions writer.println("=== Predictions ===\n"); if (!dataset.getTest().contains("xval")) { //print header of predictions table if req'd writer.println(" inst# actual predicted error distribution ()"); } writer.println(predictions.toString()); //print predictions to file } writer.close(); //Summary file is semaphore controlled to ensure quality try { //get a permit //grab the summary file, write the classifiers details to it FlexDM.writeFile.acquire(); PrintWriter p = new PrintWriter(new FileWriter(summary, true)); if (temp.equals("results_no_parameters")) { //change output based on parameters temp = temp.substring(8); } //write percent correct, classifier name, dataset name to summary file p.write(dataset.getName() + ", " + classifier.getName() + ", " + temp + ", " + eval.correct() + ", " + eval.incorrect() + ", " + eval.unclassified() + ", " + eval.pctCorrect() + ", " + eval.pctIncorrect() + ", " + eval.pctUnclassified() + ", " + eval.kappa() + ", " + eval.meanAbsoluteError() + ", " + eval.rootMeanSquaredError() + ", " + eval.relativeAbsoluteError() + ", " + eval.rootRelativeSquaredError() + ", " + eval.SFPriorEntropy() + ", " + eval.SFSchemeEntropy() + ", " + eval.SFEntropyGain() + ", " + eval.SFMeanPriorEntropy() + ", " + eval.SFMeanSchemeEntropy() + ", " + eval.SFMeanEntropyGain() + ", " + eval.KBInformation() + ", " + eval.KBMeanInformation() + ", " + eval.KBRelativeInformation() + ", " + eval.weightedTruePositiveRate() + ", " + eval.weightedFalsePositiveRate() + ", " + eval.weightedTrueNegativeRate() + ", " + eval.weightedFalseNegativeRate() + ", " + eval.weightedPrecision() + ", " + eval.weightedRecall() + ", " + eval.weightedFMeasure() + ", " + eval.weightedAreaUnderROC() + "\n"); p.close(); //release semaphore FlexDM.writeFile.release(); } catch (InterruptedException e) { //bad things happened System.err.println("FATAL ERROR OCCURRED: Classifier: " + cNum + " - " + classifier.getName() + " on dataset " + dataset.getName()); } //output we have successfully finished processing classifier if (temp.equals("no_parameters")) { //no parameters try { System.out.println("FINISHED CLASSIFIER " + cNum + " - " + classifier.getName() + " on dataset " + dataset.getName().substring(dataset.getName().lastIndexOf("\\") + 1) + " with no parameters"); } catch (Exception e) { System.out.println("FINISHED CLASSIFIER " + cNum + " - " + classifier.getName() + " on dataset " + dataset.getName() + " with no parameters"); } } else { //with parameters try { System.out.println("FINISHED CLASSIFIER " + cNum + " - " + classifier.getName() + " on dataset " + dataset.getName().substring(dataset.getName().lastIndexOf("\\") + 1) + " with parameters " + temp); } catch (Exception e) { System.out.println("FINISHED CLASSIFIER " + cNum + " - " + classifier.getName() + " on dataset " + dataset.getName() + " with parameters " + temp); } } try { //get a permit //grab the log file, write the classifiers details to it FlexDM.writeLog.acquire(); PrintWriter p = new PrintWriter(new FileWriter(log, true)); Date date = new Date(); Format formatter = new SimpleDateFormat("dd/MM/YYYY HH:mm:ss"); //formatter.format(date) if (temp.equals("results_no_parameters")) { //change output based on parameters temp = temp.substring(8); } //write details to log file p.write(dataset.getName() + ", " + dataset.getTest() + ", \"" + dataset.getResult_string() + "\", " + classifier.getName() + ", " + temp + ", " + formatter.format(date) + "\n"); p.close(); //release semaphore FlexDM.writeLog.release(); } catch (InterruptedException e) { //bad things happened System.err.println("FATAL ERROR OCCURRED: Classifier: " + cNum + " - " + classifier.getName() + " on dataset " + dataset.getName()); } s.release(); } catch (Exception e) { //an error occurred System.err.println("FATAL ERROR OCCURRED: " + e.toString() + "\nClassifier: " + cNum + " - " + classifier.getName() + " on dataset " + dataset.getName()); s.release(); } }
From source file:CrossValidationMultipleRuns.java
License:Open Source License
/** * Performs the cross-validation. See Javadoc of class for information * on command-line parameters.//from w w w.ja v a 2 s . co m * * @param args the command-line parameters * @throws Exception if something goes wrong */ public static void main(String[] args) throws Exception { // loads data and set class index Instances data = DataSource.read(Utils.getOption("t", args)); String clsIndex = Utils.getOption("c", args); if (clsIndex.length() == 0) clsIndex = "last"; if (clsIndex.equals("first")) data.setClassIndex(0); else if (clsIndex.equals("last")) data.setClassIndex(data.numAttributes() - 1); else data.setClassIndex(Integer.parseInt(clsIndex) - 1); // classifier String[] tmpOptions; String classname; tmpOptions = Utils.splitOptions(Utils.getOption("W", args)); classname = tmpOptions[0]; tmpOptions[0] = ""; Classifier cls = (Classifier) Utils.forName(Classifier.class, classname, tmpOptions); // other options int runs = Integer.parseInt(Utils.getOption("r", args)); int folds = Integer.parseInt(Utils.getOption("x", args)); // perform cross-validation for (int i = 0; i < runs; i++) { // randomize data int seed = i + 1; Random rand = new Random(seed); Instances randData = new Instances(data); randData.randomize(rand); //if (randData.classAttribute().isNominal()) // randData.stratify(folds); Evaluation eval = new Evaluation(randData); StringBuilder optionsString = new StringBuilder(); for (String s : cls.getOptions()) { optionsString.append(s); optionsString.append(" "); } // output evaluation System.out.println(); System.out.println("=== Setup run " + (i + 1) + " ==="); System.out.println("Classifier: " + optionsString.toString()); System.out.println("Dataset: " + data.relationName()); System.out.println("Folds: " + folds); System.out.println("Seed: " + seed); System.out.println(); for (int n = 0; n < folds; n++) { Instances train = randData.trainCV(folds, n); Instances test = randData.testCV(folds, n); // build and evaluate classifier Classifier clsCopy = Classifier.makeCopy(cls); clsCopy.buildClassifier(train); eval.evaluateModel(clsCopy, test); System.out.println(eval.toClassDetailsString()); } System.out.println( eval.toSummaryString("=== " + folds + "-fold Cross-validation run " + (i + 1) + " ===", false)); } }
From source file:REPTree.java
License:Open Source License
/** * Builds classifier./*from w w w. java 2 s .c om*/ * * @param data the data to train with * @throws Exception if building fails */ public void buildClassifier(Instances data) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class data = new Instances(data); data.deleteWithMissingClass(); Random random = new Random(m_Seed); m_zeroR = null; if (data.numAttributes() == 1) { m_zeroR = new ZeroR(); m_zeroR.buildClassifier(data); return; } // Randomize and stratify data.randomize(random); if (data.classAttribute().isNominal()) { data.stratify(m_NumFolds); } // Split data into training and pruning set Instances train = null; Instances prune = null; if (!m_NoPruning) { train = data.trainCV(m_NumFolds, 0, random); prune = data.testCV(m_NumFolds, 0); } else { train = data; } // Create array of sorted indices and weights int[][][] sortedIndices = new int[1][train.numAttributes()][0]; double[][][] weights = new double[1][train.numAttributes()][0]; double[] vals = new double[train.numInstances()]; for (int j = 0; j < train.numAttributes(); j++) { if (j != train.classIndex()) { weights[0][j] = new double[train.numInstances()]; if (train.attribute(j).isNominal()) { // Handling nominal attributes. Putting indices of // instances with missing values at the end. sortedIndices[0][j] = new int[train.numInstances()]; int count = 0; for (int i = 0; i < train.numInstances(); i++) { Instance inst = train.instance(i); if (!inst.isMissing(j)) { sortedIndices[0][j][count] = i; weights[0][j][count] = inst.weight(); count++; } } for (int i = 0; i < train.numInstances(); i++) { Instance inst = train.instance(i); if (inst.isMissing(j)) { sortedIndices[0][j][count] = i; weights[0][j][count] = inst.weight(); count++; } } } else { // Sorted indices are computed for numeric attributes for (int i = 0; i < train.numInstances(); i++) { Instance inst = train.instance(i); vals[i] = inst.value(j); } sortedIndices[0][j] = Utils.sort(vals); for (int i = 0; i < train.numInstances(); i++) { weights[0][j][i] = train.instance(sortedIndices[0][j][i]).weight(); } } } } // Compute initial class counts double[] classProbs = new double[train.numClasses()]; double totalWeight = 0, totalSumSquared = 0; for (int i = 0; i < train.numInstances(); i++) { Instance inst = train.instance(i); if (data.classAttribute().isNominal()) { classProbs[(int) inst.classValue()] += inst.weight(); totalWeight += inst.weight(); } else { classProbs[0] += inst.classValue() * inst.weight(); totalSumSquared += inst.classValue() * inst.classValue() * inst.weight(); totalWeight += inst.weight(); } } m_Tree = new Tree(); double trainVariance = 0; if (data.classAttribute().isNumeric()) { trainVariance = m_Tree.singleVariance(classProbs[0], totalSumSquared, totalWeight) / totalWeight; classProbs[0] /= totalWeight; } // Build tree m_Tree.buildTree(sortedIndices, weights, train, totalWeight, classProbs, new Instances(train, 0), m_MinNum, m_MinVarianceProp * trainVariance, 0, m_MaxDepth); // Insert pruning data and perform reduced error pruning if (!m_NoPruning) { m_Tree.insertHoldOutSet(prune); m_Tree.reducedErrorPrune(); m_Tree.backfitHoldOutSet(); } }