List of usage examples for weka.core Instances numInstances
publicint numInstances()
From source file:ffnn.FFNNTubesAI.java
@Override public void buildClassifier(Instances i) throws Exception { Instance temp_instance = null;/* w w w . j av a2s . com*/ RealMatrix error_output; RealMatrix error_hidden; RealMatrix input_matrix; RealMatrix hidden_matrix; RealMatrix output_matrix; Instances temp_instances; int r = 0; Scanner scan = new Scanner(System.in); output_layer = i.numDistinctValues(i.classIndex()); //3 temp_instances = filterNominalNumeric(i); if (output_layer == 2) { Add filter = new Add(); filter.setAttributeIndex("last"); filter.setAttributeName("dummy"); filter.setInputFormat(temp_instances); temp_instances = Filter.useFilter(temp_instances, filter); // System.out.println(temp_instances); for (int j = 0; j < temp_instances.numInstances(); j++) { if (temp_instances.instance(j).value(temp_instances.numAttributes() - 2) == 0) { temp_instances.instance(j).setValue(temp_instances.numAttributes() - 2, 1); temp_instances.instance(j).setValue(temp_instances.numAttributes() - 1, 0); } else { temp_instances.instance(j).setValue(temp_instances.numAttributes() - 2, 0); temp_instances.instance(j).setValue(temp_instances.numAttributes() - 1, 1); } } } //temp_instances.randomize(temp_instances.getRandomNumberGenerator(1)); //System.out.println(temp_instances); input_layer = temp_instances.numAttributes() - output_layer; //4 hidden_layer = 0; while (hidden_layer < 1) { System.out.print("Hidden layer : "); hidden_layer = scan.nextInt(); } int init_hidden = hidden_layer; error_hidden = new BlockRealMatrix(1, hidden_layer); error_output = new BlockRealMatrix(1, output_layer); input_matrix = new BlockRealMatrix(1, input_layer + 1); //Menambahkan bias buildWeight(input_layer, hidden_layer, output_layer); long last_time = System.nanoTime(); double last_error_rate = 1; double best_error_rate = 1; double last_update = System.nanoTime(); // brp iterasi // for( long itr = 0; last_error_rate > 0.001; ++ itr ){ for (long itr = 0; itr < 50000; ++itr) { if (r == 10) { break; } long time = System.nanoTime(); if (time - last_time > 2000000000) { Evaluation eval = new Evaluation(i); eval.evaluateModel(this, i); double accry = eval.correct() / eval.numInstances(); if (eval.errorRate() < last_error_rate) { last_update = System.nanoTime(); if (eval.errorRate() < best_error_rate) SerializationHelper.write(accry + "-" + time + ".model", this); } if (accry > 0) last_error_rate = eval.errorRate(); // 2 minute without improvement restart if (time - last_update > 30000000000L) { last_update = System.nanoTime(); learning_rate = random() * 0.05; hidden_layer = (int) (10 + floor(random() * 15)); hidden_layer = (int) floor((hidden_layer / 25) * init_hidden); if (hidden_layer == 0) { hidden_layer = 1; } itr = 0; System.out.println("RESTART " + learning_rate + " " + hidden_layer); buildWeight(input_layer, hidden_layer, output_layer); r++; } System.out.println(accry + " " + itr); last_time = time; } for (int j = 0; j < temp_instances.numInstances(); j++) { // foward !! temp_instance = temp_instances.instance(j); for (int k = 0; k < input_layer; k++) { input_matrix.setEntry(0, k, temp_instance.value(k)); } input_matrix.setEntry(0, input_layer, 1.0); // bias hidden_matrix = input_matrix.multiply(weight1); for (int y = 0; y < hidden_layer; ++y) { hidden_matrix.setEntry(0, y, sig(hidden_matrix.getEntry(0, y))); } output_matrix = hidden_matrix.multiply(weight2).add(bias2); for (int y = 0; y < output_layer; ++y) { output_matrix.setEntry(0, y, sig(output_matrix.getEntry(0, y))); } // backward << // error layer 2 double total_err = 0; for (int k = 0; k < output_layer; k++) { double o = output_matrix.getEntry(0, k); double t = temp_instance.value(input_layer + k); double err = o * (1 - o) * (t - o); total_err += err * err; error_output.setEntry(0, k, err); } // back propagation layer 2 for (int y = 0; y < hidden_layer; y++) { for (int x = 0; x < output_layer; ++x) { double wold = weight2.getEntry(y, x); double correction = learning_rate * error_output.getEntry(0, x) * hidden_matrix.getEntry(0, y); weight2.setEntry(y, x, wold + correction); } } for (int x = 0; x < output_layer; ++x) { double correction = learning_rate * error_output.getEntry(0, x); // anggap 1 inputnya bias2.setEntry(0, x, bias2.getEntry(0, x) + correction); } // error layer 1 for (int k = 0; k < hidden_layer; ++k) { double o = hidden_matrix.getEntry(0, k); double t = 0; for (int x = 0; x < output_layer; ++x) { t += error_output.getEntry(0, x) * weight2.getEntry(k, x); } double err = o * (1 - o) * t; error_hidden.setEntry(0, k, err); } // back propagation layer 1 for (int y = 0; y < input_layer + 1; ++y) { for (int x = 0; x < hidden_layer; ++x) { double wold = weight1.getEntry(y, x); double correction = learning_rate * error_hidden.getEntry(0, x) * input_matrix.getEntry(0, y); weight1.setEntry(y, x, wold + correction); } } } } }
From source file:ffnn.MultilayerPerceptron.java
License:Open Source License
/** * This function sets what the m_numeric flag to represent the passed class it * also performs the normalization of the attributes if applicable and sets up * the info to normalize the class. (note that regardless of the options it * will fill an array with the range and base, set to normalize all attributes * and the class to be between -1 and 1) * //from w ww . ja v a2 s . com * @param inst the instances. * @return The modified instances. This needs to be done. If the attributes * are normalized then deep copies will be made of all the instances * which will need to be passed back out. */ private Instances setClassType(Instances inst) throws Exception { if (inst != null) { // x bounds m_attributeRanges = new double[inst.numAttributes()]; m_attributeBases = new double[inst.numAttributes()]; for (int noa = 0; noa < inst.numAttributes(); noa++) { double min = Double.POSITIVE_INFINITY; double max = Double.NEGATIVE_INFINITY; for (int i = 0; i < inst.numInstances(); i++) { if (!inst.instance(i).isMissing(noa)) { double value = inst.instance(i).value(noa); if (value < min) { min = value; } if (value > max) { max = value; } } } m_attributeRanges[noa] = (max - min) / 2; m_attributeBases[noa] = (max + min) / 2; } if (m_normalizeAttributes) { for (int i = 0; i < inst.numInstances(); i++) { Instance currentInstance = inst.instance(i); double[] instance = new double[inst.numAttributes()]; for (int noa = 0; noa < inst.numAttributes(); noa++) { if (noa != inst.classIndex()) { if (m_attributeRanges[noa] != 0) { instance[noa] = (currentInstance.value(noa) - m_attributeBases[noa]) / m_attributeRanges[noa]; } else { instance[noa] = currentInstance.value(noa) - m_attributeBases[noa]; } } else { instance[noa] = currentInstance.value(noa); } } inst.set(i, new DenseInstance(currentInstance.weight(), instance)); } } if (inst.classAttribute().isNumeric()) { m_numeric = true; } else { m_numeric = false; } } return inst; }
From source file:FFNN.MultiplePerceptron.java
public MultiplePerceptron(int itt, double learn, int numHLayer, Instances i) { listNodeHidden = new ArrayList<>();//inisialisasis listNodeHidden listNodeOutput = new ArrayList<>(); itteration = itt;/*from ww w . j av a 2s . c om*/ learningRate = learn; numHiddenLayer = numHLayer; for (int hiddenLayer = 0; hiddenLayer < numHiddenLayer + 1; hiddenLayer++) {//buat neuron untuk hidden layer //ditambah 1 untuk neuron bias listNodeHidden.add(new Node(i.numAttributes())); } for (int numInstance = 0; numInstance < i.numClasses(); numInstance++) {//buat neuron untuk output listNodeOutput.add(new Node(listNodeHidden.size())); } target = new ArrayList<>(); instancesToDouble = new double[i.numInstances()]; for (int numIns = 0; numIns < i.numInstances(); numIns++) { instancesToDouble[numIns] = i.instance(numIns).toDoubleArray()[i.classIndex()]; } }
From source file:FFNN.MultiplePerceptron.java
@Override public void buildClassifier(Instances i) { //iterasi// w w w .ja v a 2 s . co m for (int itt = 0; itt < itteration; itt++) { // System.out.println("Iterasi ke "+ itt); for (int indexInstance = 0; indexInstance < i.numInstances(); indexInstance++) { ArrayList<Double> listInput = new ArrayList<>(); //mengisi nilai listInput dengan nilai di instances listInput.add(1.0);//ini bias input for (int index = 0; index < i.numAttributes() - 1; index++) listInput.add(i.get(indexInstance).value(index)); ArrayList<Double> listOutputHidden = new ArrayList<>(); listOutputHidden.add(1.0);//input bias // System.out.println(); // System.out.println("Hidden layer"); listNodeHidden.get(0).setValue(1.0);//bias gak boleh ganti output //menghitung output hidden layer for (int index = 1; index < listNodeHidden.size(); index++) {//output bias tidak boleh ganti double value = listNodeHidden.get(index).output(listInput); listNodeHidden.get(index).setValue(value); listOutputHidden.add(value); // System.out.println("neuron "+index+" "+value); } // System.out.println(); // System.out.println("Output layer"); //menghitung output output layer for (int index = 0; index < listNodeOutput.size(); index++) { double value = listNodeOutput.get(index).output(listOutputHidden); listNodeOutput.get(index).setValue(value); // System.out.print(value+" "); } // System.out.println(listNodeHidden.get(1).getWeightFromList(0)); calculateError(indexInstance); updateBobot(i.instance(indexInstance)); } } for (int idx = 0; idx < listNodeHidden.size(); idx++) { System.out.println("Hidden value " + listNodeHidden.get(idx).getValue()); System.out.println("Hidden error " + listNodeHidden.get(idx).getError()); for (int idx2 = 0; idx2 < listNodeHidden.get(idx).getWeightSize(); idx2++) System.out.println("Hidden weight" + listNodeHidden.get(idx).getWeightFromList(idx2)); } System.out.println(); for (int idx = 0; idx < listNodeOutput.size(); idx++) { System.out.println("Output value " + listNodeOutput.get(idx).getValue()); System.out.println("Output error " + listNodeOutput.get(idx).getError()); for (int idx2 = 0; idx2 < listNodeOutput.get(idx).getWeightSize(); idx2++) System.out.println("Output weight" + listNodeOutput.get(idx).getWeightFromList(idx2)); } }
From source file:FinalMineria.Reconocimiento.java
/** * Processes requests for both HTTP <code>GET</code> and <code>POST</code> * methods./* w w w .jav a2 s . c o m*/ * * @param request servlet request * @param response servlet response * @throws ServletException if a servlet-specific error occurs * @throws IOException if an I/O error occurs */ protected void processRequest(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException, Exception { String accion = request.getParameter("accion"); BufferedReader br = null; String ruta = request.getServletContext().getRealPath("/Recursos"); br = new BufferedReader(new FileReader(ruta + "/nombres.txt")); linea = br.readLine(); br.close(); if ("Detener".equals(accion)) { grabar.finish(); try { Thread.sleep(4000); } catch (InterruptedException ex) { Logger.getLogger(GrabarAudio.class.getName()).log(Level.SEVERE, null, ex); } String comando = "cmd /c " + request.getServletContext().getRealPath("/Recursos/OpenSmile") + "\\SMILExtract_Release.exe -C " + request.getServletContext().getRealPath("/Recursos/config") + "\\IS12_speaker_trait.conf -I " + request.getServletContext().getRealPath("/Recursos/audios") + "\\prueba.wav -O " + request.getServletContext().getRealPath("/Recursos/arff") + "\\prueba.arff -classes {" + linea + "} -classlabel ?"; Process proceso = Runtime.getRuntime().exec(comando); proceso.waitFor(); Instances prueba, conocimiento; try (BufferedReader archivoBase = new BufferedReader(new FileReader( request.getServletContext().getRealPath("/Recursos/arff") + "\\baseDatos.arff"))) { conocimiento = new Instances(archivoBase); } try (BufferedReader archivoPrueba = new BufferedReader( new FileReader(request.getServletContext().getRealPath("/Recursos/arff") + "\\prueba.arff"))) { prueba = new Instances(archivoPrueba); } conocimiento.deleteStringAttributes(); conocimiento.setClassIndex(981); prueba.deleteStringAttributes(); prueba.setClassIndex(981); Classifier clasificadorModelo = (Classifier) new NaiveBayes(); clasificadorModelo.buildClassifier(conocimiento); double valorP = clasificadorModelo.classifyInstance(prueba.instance(prueba.numInstances() - 1)); String prediccion = prueba.classAttribute().value((int) valorP); System.out.println(prediccion); request.setAttribute("prediccion", prediccion); RequestDispatcher dispatcher = request.getRequestDispatcher("./Hablante.jsp"); dispatcher.forward(request, response); } else if ("Grabar".equals(accion)) { ruta = request.getServletContext().getRealPath("/Recursos/audios"); grabar = new Grabador(ruta + "\\" + "prueba"); Thread stopper = new Thread(new Runnable() { public void run() { try { Thread.sleep(tiempo); } catch (InterruptedException ex) { ex.printStackTrace(); } grabar.finish(); } }); stopper.start(); // start recording grabar.start(); response.sendRedirect("./grabar.jsp"); } }
From source file:fr.loria.synalp.jtrans.phonetiseur.Classifieurs.java
License:Open Source License
private Instances appliquerFiltre(Filter filtre, Instances instances) throws Exception { Instances newInstances;//from ww w . j a va2 s . c om Instance temp; filtre.setInputFormat(instances); for (int i = 0; i < instances.numInstances(); i++) { filtre.input(instances.instance(i)); } filtre.batchFinished(); newInstances = filtre.getOutputFormat(); while ((temp = filtre.output()) != null) { newInstances.add(temp); } return newInstances; }
From source file:fr.loria.synalp.jtrans.phonetiseur.Classifieurs.java
License:Open Source License
private double tester(Classifier res, String fichierTestARFF, Filter filtre) throws Exception { double nbOk = 0; double nbTotal = 0; if (res == null) { System.out.println("===============>" + fichierTestARFF); return -1; }//from ww w . j a v a2 s.co m DataSource source = new DataSource(fichierTestARFF); Instances instances = source.getDataSet(); nbTotal = instances.numInstances(); instances.setClassIndex(instances.numAttributes() - 1); instances = appliquerFiltre(filtre, instances); // !!!!!!!!!!!!!!!!! SUPER IMPORTANT !!!!!!!!!!!!! for (int i = 0; i < instances.numInstances(); i++) { double numeroClass = res.classifyInstance(instances.instance(i)); if (numeroClass == instances.instance(i).classValue()) { nbOk++; } } return nbOk / nbTotal * 100; }
From source file:fr.unice.i3s.rockflows.experiments.main.IntermediateExecutor.java
private boolean checkMinInstances(Instances data, int min) { for (int iii = 0; iii < 4; iii++) { Instances train4 = data.trainCV(4, iii); if (train4.numInstances() < min) { return false; }//from w w w .j a v a2s . c o m } for (int iii = 0; iii < 10; iii++) { Instances train10 = data.trainCV(10, iii); if (train10.numInstances() < min) { return false; } } return true; }
From source file:function.PercentageSplit.java
public static void percentageSplit(Instances data, Classifier cls) throws Exception { int trainSize = (int) Math.round(data.numInstances() * 0.8); int testSize = data.numInstances() - trainSize; Instances train = new Instances(data, 0, trainSize); Instances test = new Instances(data, trainSize, testSize); Evaluation eval = new Evaluation(train); eval.evaluateModel(cls, test);//from w w w . j ava 2s . c o m System.out.println(eval.toSummaryString()); }
From source file:function.PercentageSplit.java
public static double percentageSplitRate(Instances data, Classifier cls) throws Exception { int trainSize = (int) Math.round(data.numInstances() * 0.8); int testSize = data.numInstances() - trainSize; Instances train = new Instances(data, 0, trainSize); Instances test = new Instances(data, trainSize, testSize); Evaluation eval = new Evaluation(train); eval.evaluateModel(cls, test);//from w ww.j av a 2 s . c o m return eval.pctCorrect(); }