Example usage for weka.filters.unsupervised.attribute Discretize Discretize

List of usage examples for weka.filters.unsupervised.attribute Discretize Discretize

Introduction

In this page you can find the example usage for weka.filters.unsupervised.attribute Discretize Discretize.

Prototype

public Discretize() 

Source Link

Document

Constructor - initialises the filter

Usage

From source file:org.uclab.mm.kcl.ddkat.datapreprocessor.DataDiscretizer.java

License:Apache License

/**
 * Method to discretize the input data using equal-width binning approach.
 *
 * @throws Exception the exception//from   w  w  w  .j a  v a 2  s.  c  o  m
 */
public void discretizeData() throws Exception {

    this.confirmationMessage = new ArrayList<String>();

    Instances inputData, outputData;
    String inputFile = BASE_DIR + "OriginalDataSet.csv";

    // load CSV file
    CSVLoader fileLoader = new CSVLoader();
    fileLoader.setSource(new File(inputFile));
    inputData = fileLoader.getDataSet();

    Discretize discrete = new Discretize();
    discrete.setInputFormat(inputData);
    outputData = Filter.useFilter(inputData, discrete);

    saveDiscretizedData(inputFile, outputData);

}

From source file:tubes2ai.DriverNB.java

public static void run(String data) throws Exception {
    //System.out.println("tes driver");

    ConverterUtils.DataSource source = new ConverterUtils.DataSource(data);
    Instances dataTrain = source.getDataSet();
    //if (dataTrain.classIndex() == -1)
    dataTrain.setClassIndex(0);//from w  ww .  j a v  a2 s . co  m
    ArffSaver saver = new ArffSaver();

    //        dataTrain.setClassIndex();
    Discretize discretize = new Discretize();
    discretize.setInputFormat(dataTrain);
    Instances dataTrainDisc = Filter.useFilter(dataTrain, discretize);

    //NaiveBayes NB = new NaiveBayes();
    AIJKNaiveBayes NB = new AIJKNaiveBayes();
    NB.buildClassifier(dataTrainDisc);

    Evaluation eval = new Evaluation(dataTrainDisc);
    eval.evaluateModel(NB, dataTrainDisc);

    System.out.println(eval.toSummaryString());
    System.out.println(eval.toClassDetailsString());
    System.out.println(eval.toMatrixString());
    /*Instance inst = new DenseInstance(5);
            
    inst.setDataset(dataTrain);
    inst.setValue(0, "sunny");
    inst.setValue(1, "hot");
    inst.setValue(2, "high");
    inst.setValue(3, "FALSE");
    inst.setValue(4, "yes");
    double a = NB.classifyInstance(inst);
    String hasil="";
    if(a==0.0){
    hasil="YES";
    } else{
    hasil="NO";
    }
    //double[] b = NB.distributionForInstance(inst);
    System.out.println("Hasil klasifikasi: "+hasil);
    //System.out.println(b);*/
}