List of usage examples for weka.filters.unsupervised.attribute Discretize input
@Override public boolean input(Instance instance)
From source file:NaiveBayesPckge.NaiveBayesMain.java
public static void addNewInstance(Instances instances) throws Exception { Scanner scan = new Scanner(System.in); ArrayList<Attribute> atts = new ArrayList<Attribute>(); ArrayList<String> classVal = new ArrayList<String>(); int nConclus = instances.attribute(instances.numAttributes() - 1).numValues(); int numAttribut = instances.numAttributes(); //buat nambah kesimpulan. Misal T dan F for (int i = 0; i < nConclus; i++) { classVal.add(instances.attribute(instances.numAttributes() - 1).value(i)); }/*from ww w. java 2 s .c o m*/ //buat nambahin attribut for (int i = 0; i < numAttribut - 1; i++) { atts.add(new Attribute(instances.attribute(i).name())); } atts.add(new Attribute(instances.attribute(numAttribut - 1).name(), classVal)); double[] attValues = new double[numAttribut]; System.out.print("Masukkan nilai : "); for (int i = 0; i < numAttribut - 1; i++) { attValues[i] = scan.nextDouble(); } Discretize discretize = new Discretize(); String s = scan.nextLine(); Instance instance = new DenseInstance(1.0, attValues); instance.setDataset(instances); discretize.setInputFormat(instances); discretize.input(instance); int classify1 = (int) naive.classifyInstance(instance); System.out.print("Prediction Class : "); System.out.println(classVal.get(classify1)); }