ContentBasedAnalysis.java Source code

Java tutorial

Introduction

Here is the source code for ContentBasedAnalysis.java

Source

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Date;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.TermQuery;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.util.Version;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.TermFreqVector;

/** Computes TF-IDF and cosine similarities and print */
public class ContentBasedAnalysis {

    /** Simple command-line based search demo. */
    public static void main(String[] args) throws Exception {
        String usage = "Usage:\tjava QueryConvert [-index dir]";
        if (args.length > 0 && ("-h".equals(args[0]) || "-help".equals(args[0]))) {
            System.out.println(usage);
            System.exit(0);
        }

        String index = "index";
        String field = "contents";
        String queries = null;
        String queryString = null;

        for (int i = 0; i < args.length; i++) {
            if ("-index".equals(args[i])) {
                index = args[i + 1];
                i++;
            } else if ("-field".equals(args[i])) {
                field = args[i + 1];
                i++;
            }
        }

        // Creation of reader and a searcher for the index
        IndexReader reader = IndexReader.open(FSDirectory.open(new File(index)));
        IndexSearcher searcher = new IndexSearcher(reader);

        // Reader to read File Names
        BufferedReader in = null;
        if (queries != null) {
            in = new BufferedReader(new InputStreamReader(new FileInputStream(queries), "UTF-8"));
        } else {
            in = new BufferedReader(new InputStreamReader(System.in, "UTF-8"));
        }

        while (true) {
            System.out.println("Enter filename 1 (or hit <RETURN>): ");
            String f1 = in.readLine();
            if (f1 == null || f1.length() == -1)
                break;
            f1 = f1.trim();
            if (f1.length() == 0)
                break;
            System.out.println("Enter filename 2: ");
            String f2 = in.readLine();
            int id1 = findDocId(searcher, f1);
            if (id1 < 0) {
                System.out.println("No file " + f1 + " found in index!");
                break;
            }
            int id2 = findDocId(searcher, f2);
            if (id1 < 0) {
                System.out.println("No file " + f1 + " found in index!");
                break;
            }

            // Conversion to TF-IDF format
            TermWeight[] v1 = toTfIdf(reader, id1);
            TermWeight[] v2 = toTfIdf(reader, id2);

            System.out.println("The cosine similarity of the two files is: " + cosineSimilarity(v1, v2));

        }
        searcher.close();
        reader.close();
    }

    // Searches index of a searcher for a file with 'path' == filename field 
    private static int findDocId(IndexSearcher searcher, String filename) throws Exception {
        Term t = new Term("path", filename);
        Query q = new TermQuery(t);
        TopDocs td = searcher.search(q, 2);
        if (td.totalHits < 1)
            return -1;
        else
            return td.scoreDocs[0].doc;
    }

    // Count the number of times String s appears in a document 
    private static int docFreq(IndexReader reader, String s) throws Exception {
        return reader.docFreq(new Term("contents", s));
    }

    // Calculation of Term weights of documents
    private static TermWeight[] toTfIdf(IndexReader reader, int docId) throws Exception {
        // get Lucene representation of a Term-Frequency vector
        TermFreqVector tfv = reader.getTermFreqVector(docId, "contents");
        String[] terms = tfv.getTerms();
        int[] freqs = tfv.getTermFrequencies();
        TermWeight[] tw = new TermWeight[terms.length];

        // Maximum Frequency of a term in the document
        int fmax = freqs[0];
        for (int i = 1; i < freqs.length; i++) {
            if (freqs[i] > fmax)
                fmax = freqs[i];
        }

        // number of docs in the index
        int nDocs = reader.numDocs();
        for (int i = 0; i < tw.length; i++) {
            tw[i] = new TermWeight(terms[i]);
        }
        return tw;
    }

    // prints the list of pairs (term,weight) in vector v
    private static void printTermWeightVector(TermWeight[] v) {
        for (TermWeight[] array : vector) {
            for (Object obj : array) {
                System.out.println(obj);
            }
        }
    }

    // Calculation of cosine similarity of documents v1 and v2
    private static double cosineSimilarity(TermWeight[] v1, TermWeight[] v2) {
        double dotProduct = 0.0;
        double magnitude1 = 0.0;
        double magnitude2 = 0.0;
        double cosineSimilarity = 0.0;

        for (int i = 0; i < v1.length; i++) //docVector1 and docVector2 must be of same length
        {
            dotProduct += v1[i] * v2[i];
            magnitude1 += Math.pow(v1[i], 2);
            magnitude2 += Math.pow(v2[i], 2);
        }
        magnitude1 = Math.sqrt(magnitude1);
        magnitude2 = Math.sqrt(magnitude2);
        if (magnitude1 != 0.0 | magnitude2 != 0.0) {
            cosineSimilarity = dotProduct / (magnitude1 * magnitude2);
        } else {
            return 0.0;
        }
        return cosineSimilarity;
    }
}