Jpeg.java Source code

Java tutorial

Introduction

Here is the source code for Jpeg.java

Source

// Copyright (C) 1998, James R. Weeks and BioElectroMech.
// Visit BioElectroMech at www.obrador.com.  Email James@obrador.com.

// This software is based in part on the work of the Independent JPEG Group.
// See license.txt for details about the allowed used of this software.
// See IJGreadme.txt for details about the Independent JPEG Group's license.

import java.awt.AWTException;
import java.awt.Frame;
import java.awt.Image;
import java.awt.MediaTracker;
import java.awt.Toolkit;
import java.awt.image.PixelGrabber;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.Vector;

public class Jpeg {
    /** ************ Main Method *************** */
    /*****************************************************************************
     * Jpeg("Imagefile", Quality, "OutFileName") According to JAVA virtual
     * machine, the files which can be read are jpeg, tiff and gif files
     ****************************************************************************/

    public static void StandardUsage() {
        System.out.println("JpegEncoder for Java(tm) Version 0.9");
        System.out.println("");
        System.out.println("Program usage: java Jpeg \"InputImage\".\"ext\" Quality [\"OutputFile\"[.jpg]]");
        System.out.println("");
        System.out.println("Where \"InputImage\" is the name of an existing image in the current directory.");
        System.out.println("  (\"InputImage may specify a directory, too.) \"ext\" must be .tif, .gif,");
        System.out.println("  or .jpg.");
        System.out.println("Quality is an integer (0 to 100) that specifies how similar the compressed");
        System.out.println("  image is to \"InputImage.\"  100 is almost exactly like \"InputImage\" and 0 is");
        System.out.println("  most dissimilar.  In most cases, 70 - 80 gives very good results.");
        System.out.println("\"OutputFile\" is an optional argument.  If \"OutputFile\" isn't specified, then");
        System.out.println("  the input file name is adopted.  This program will NOT write over an existing");
        System.out.println("  file.  If a directory is specified for the input image, then \"OutputFile\"");
        System.out.println("  will be written in that directory.  The extension \".jpg\" may automatically be");
        System.out.println("  added.");
        System.out.println("");
        System.out.println("Copyright 1998 BioElectroMech and James R. Weeks.  Portions copyright IJG and");
        System.out.println("  Florian Raemy, LCAV.  See license.txt for details.");
        System.out.println("Visit BioElectroMech at www.obrador.com.  Email James@obrador.com.");
        System.exit(0);
    }

    public static void main(String args[]) {
        Image image = null;
        FileOutputStream dataOut = null;
        File file, outFile;
        JpegEncoder jpg;
        String string = "";
        int i, Quality = 80;
        // Check to see if the input file name has one of the extensions:
        // .tif, .gif, .jpg
        // If not, print the standard use info.
        if (args.length < 2)
            StandardUsage();
        if (!args[0].endsWith(".jpg") && !args[0].endsWith(".tif") && !args[0].endsWith(".gif"))
            StandardUsage();
        // First check to see if there is an OutputFile argument. If there isn't
        // then name the file "InputFile".jpg
        // Second check to see if the .jpg extension is on the OutputFile argument.
        // If there isn't one, add it.
        // Need to check for the existence of the output file. If it exists already,
        // rename the file with a # after the file name, then the .jpg extension.
        if (args.length < 3) {
            string = args[0].substring(0, args[0].lastIndexOf(".")) + ".jpg";
        } else {
            string = args[2];
            if (string.endsWith(".tif") || string.endsWith(".gif"))
                string = string.substring(0, string.lastIndexOf("."));
            if (!string.endsWith(".jpg"))
                string = string.concat(".jpg");
        }
        outFile = new File(string);
        i = 1;
        while (outFile.exists()) {
            outFile = new File(string.substring(0, string.lastIndexOf(".")) + (i++) + ".jpg");
            if (i > 100)
                System.exit(0);
        }
        file = new File(args[0]);
        if (file.exists()) {
            try {
                dataOut = new FileOutputStream(outFile);
            } catch (IOException e) {
            }
            try {
                Quality = Integer.parseInt(args[1]);
            } catch (NumberFormatException e) {
                StandardUsage();
            }
            image = Toolkit.getDefaultToolkit().getImage(args[0]);
            jpg = new JpegEncoder(image, Quality, dataOut);
            jpg.Compress();
            try {
                dataOut.close();
            } catch (IOException e) {
            }
        } else {
            System.out.println("I couldn't find " + args[0] + ". Is it in another directory?");
        }
        System.exit(0);
    }
}

// Version 1.0a
// Copyright (C) 1998, James R. Weeks and BioElectroMech.
// Visit BioElectroMech at www.obrador.com. Email James@obrador.com.

// See license.txt for details about the allowed used of this software.
// This software is based in part on the work of the Independent JPEG Group.
// See IJGreadme.txt for details about the Independent JPEG Group's license.

// This encoder is inspired by the Java Jpeg encoder by Florian Raemy,
// studwww.eurecom.fr/~raemy.
// It borrows a great deal of code and structure from the Independent
// Jpeg Group's Jpeg 6a library, Copyright Thomas G. Lane.
// See license.txt for details.

/*
 * JpegEncoder - The JPEG main program which performs a jpeg compression of an
 * image.
 */
class JpegEncoder extends Frame {
    Thread runner;

    BufferedOutputStream outStream;

    Image image;

    JpegInfo JpegObj;

    Huffman Huf;

    DCT dct;

    int imageHeight, imageWidth;

    int Quality;

    int code;

    public static int[] jpegNaturalOrder = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33,
            40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37,
            44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63, };

    public JpegEncoder(Image image, int quality, OutputStream out) {
        MediaTracker tracker = new MediaTracker(this);
        tracker.addImage(image, 0);
        try {
            tracker.waitForID(0);
        } catch (InterruptedException e) {
            // Got to do something?
        }
        /*
         * Quality of the image. 0 to 100 and from bad image quality, high
         * compression to good image quality low compression
         */
        Quality = quality;

        /*
         * Getting picture information It takes the Width, Height and RGB scans of
         * the image.
         */
        JpegObj = new JpegInfo(image);

        imageHeight = JpegObj.imageHeight;
        imageWidth = JpegObj.imageWidth;
        outStream = new BufferedOutputStream(out);
        dct = new DCT(Quality);
        Huf = new Huffman(imageWidth, imageHeight);
    }

    public void setQuality(int quality) {
        dct = new DCT(quality);
    }

    public int getQuality() {
        return Quality;
    }

    public void Compress() {
        WriteHeaders(outStream);
        WriteCompressedData(outStream);
        WriteEOI(outStream);
        try {
            outStream.flush();
        } catch (IOException e) {
            System.out.println("IO Error: " + e.getMessage());
        }
    }

    public void WriteCompressedData(BufferedOutputStream outStream) {
        int i, j, r, c, a, b;
        int comp, xpos, ypos, xblockoffset, yblockoffset;
        float inputArray[][];
        float dctArray1[][] = new float[8][8];
        double dctArray2[][] = new double[8][8];
        int dctArray3[] = new int[8 * 8];

        /*
         * This method controls the compression of the image. Starting at the upper
         * left of the image, it compresses 8x8 blocks of data until the entire
         * image has been compressed.
         */

        int lastDCvalue[] = new int[JpegObj.NumberOfComponents];
        // int zeroArray[] = new int[64]; // initialized to hold all zeros
        // int Width = 0, Height = 0;
        // int nothing = 0, not;
        int MinBlockWidth, MinBlockHeight;
        // This initial setting of MinBlockWidth and MinBlockHeight is done to
        // ensure they start with values larger than will actually be the case.
        MinBlockWidth = ((imageWidth % 8 != 0) ? (int) (Math.floor(imageWidth / 8.0) + 1) * 8 : imageWidth);
        MinBlockHeight = ((imageHeight % 8 != 0) ? (int) (Math.floor(imageHeight / 8.0) + 1) * 8 : imageHeight);
        for (comp = 0; comp < JpegObj.NumberOfComponents; comp++) {
            MinBlockWidth = Math.min(MinBlockWidth, JpegObj.BlockWidth[comp]);
            MinBlockHeight = Math.min(MinBlockHeight, JpegObj.BlockHeight[comp]);
        }
        xpos = 0;
        for (r = 0; r < MinBlockHeight; r++) {
            for (c = 0; c < MinBlockWidth; c++) {
                xpos = c * 8;
                ypos = r * 8;
                for (comp = 0; comp < JpegObj.NumberOfComponents; comp++) {
                    // Width = JpegObj.BlockWidth[comp];
                    // Height = JpegObj.BlockHeight[comp];
                    inputArray = (float[][]) JpegObj.Components[comp];

                    for (i = 0; i < JpegObj.VsampFactor[comp]; i++) {
                        for (j = 0; j < JpegObj.HsampFactor[comp]; j++) {
                            xblockoffset = j * 8;
                            yblockoffset = i * 8;
                            for (a = 0; a < 8; a++) {
                                for (b = 0; b < 8; b++) {

                                    // I believe this is where the dirty line at the bottom of
                                    // the image is coming from.
                                    // I need to do a check here to make sure I'm not reading past
                                    // image data.
                                    // This seems to not be a big issue right now. (04/04/98)

                                    dctArray1[a][b] = inputArray[ypos + yblockoffset + a][xpos + xblockoffset + b];
                                }
                            }
                            // The following code commented out because on some images this
                            // technique
                            // results in poor right and bottom borders.
                            // if ((!JpegObj.lastColumnIsDummy[comp] || c < Width - 1) &&
                            // (!JpegObj.lastRowIsDummy[comp] || r < Height - 1)) {
                            dctArray2 = dct.forwardDCT(dctArray1);
                            dctArray3 = dct.quantizeBlock(dctArray2, JpegObj.QtableNumber[comp]);
                            // }
                            // else {
                            // zeroArray[0] = dctArray3[0];
                            // zeroArray[0] = lastDCvalue[comp];
                            // dctArray3 = zeroArray;
                            // }
                            Huf.HuffmanBlockEncoder(outStream, dctArray3, lastDCvalue[comp],
                                    JpegObj.DCtableNumber[comp], JpegObj.ACtableNumber[comp]);
                            lastDCvalue[comp] = dctArray3[0];
                        }
                    }
                }
            }
        }
        Huf.flushBuffer(outStream);
    }

    public void WriteEOI(BufferedOutputStream out) {
        byte[] EOI = { (byte) 0xFF, (byte) 0xD9 };
        WriteMarker(EOI, out);
    }

    public void WriteHeaders(BufferedOutputStream out) {
        int i, j, index, offset, length;
        int tempArray[];

        // the SOI marker
        byte[] SOI = { (byte) 0xFF, (byte) 0xD8 };
        WriteMarker(SOI, out);

        // The order of the following headers is quiet inconsequential.
        // the JFIF header
        byte JFIF[] = new byte[18];
        JFIF[0] = (byte) 0xff;
        JFIF[1] = (byte) 0xe0;
        JFIF[2] = (byte) 0x00;
        JFIF[3] = (byte) 0x10;
        JFIF[4] = (byte) 0x4a;
        JFIF[5] = (byte) 0x46;
        JFIF[6] = (byte) 0x49;
        JFIF[7] = (byte) 0x46;
        JFIF[8] = (byte) 0x00;
        JFIF[9] = (byte) 0x01;
        JFIF[10] = (byte) 0x00;
        JFIF[11] = (byte) 0x00;
        JFIF[12] = (byte) 0x00;
        JFIF[13] = (byte) 0x01;
        JFIF[14] = (byte) 0x00;
        JFIF[15] = (byte) 0x01;
        JFIF[16] = (byte) 0x00;
        JFIF[17] = (byte) 0x00;
        WriteArray(JFIF, out);

        // Comment Header
        String comment = "";
        comment = JpegObj.getComment();
        length = comment.length();
        byte COM[] = new byte[length + 4];
        COM[0] = (byte) 0xFF;
        COM[1] = (byte) 0xFE;
        COM[2] = (byte) ((length >> 8) & 0xFF);
        COM[3] = (byte) (length & 0xFF);
        java.lang.System.arraycopy(JpegObj.Comment.getBytes(), 0, COM, 4, JpegObj.Comment.length());
        WriteArray(COM, out);

        // The DQT header
        // 0 is the luminance index and 1 is the chrominance index
        byte DQT[] = new byte[134];
        DQT[0] = (byte) 0xFF;
        DQT[1] = (byte) 0xDB;
        DQT[2] = (byte) 0x00;
        DQT[3] = (byte) 0x84;
        offset = 4;
        for (i = 0; i < 2; i++) {
            DQT[offset++] = (byte) ((0 << 4) + i);
            tempArray = (int[]) dct.quantum[i];
            for (j = 0; j < 64; j++) {
                DQT[offset++] = (byte) tempArray[jpegNaturalOrder[j]];
            }
        }
        WriteArray(DQT, out);

        // Start of Frame Header
        byte SOF[] = new byte[19];
        SOF[0] = (byte) 0xFF;
        SOF[1] = (byte) 0xC0;
        SOF[2] = (byte) 0x00;
        SOF[3] = (byte) 17;
        SOF[4] = (byte) JpegObj.Precision;
        SOF[5] = (byte) ((JpegObj.imageHeight >> 8) & 0xFF);
        SOF[6] = (byte) ((JpegObj.imageHeight) & 0xFF);
        SOF[7] = (byte) ((JpegObj.imageWidth >> 8) & 0xFF);
        SOF[8] = (byte) ((JpegObj.imageWidth) & 0xFF);
        SOF[9] = (byte) JpegObj.NumberOfComponents;
        index = 10;
        for (i = 0; i < SOF[9]; i++) {
            SOF[index++] = (byte) JpegObj.CompID[i];
            SOF[index++] = (byte) ((JpegObj.HsampFactor[i] << 4) + JpegObj.VsampFactor[i]);
            SOF[index++] = (byte) JpegObj.QtableNumber[i];
        }
        WriteArray(SOF, out);

        // The DHT Header
        byte DHT1[], DHT2[], DHT3[], DHT4[];
        int bytes, temp, oldindex, intermediateindex;
        length = 2;
        index = 4;
        oldindex = 4;
        DHT1 = new byte[17];
        DHT4 = new byte[4];
        DHT4[0] = (byte) 0xFF;
        DHT4[1] = (byte) 0xC4;
        for (i = 0; i < 4; i++) {
            bytes = 0;
            DHT1[index++ - oldindex] = (byte) ((int[]) Huf.bits.elementAt(i))[0];
            for (j = 1; j < 17; j++) {
                temp = ((int[]) Huf.bits.elementAt(i))[j];
                DHT1[index++ - oldindex] = (byte) temp;
                bytes += temp;
            }
            intermediateindex = index;
            DHT2 = new byte[bytes];
            for (j = 0; j < bytes; j++) {
                DHT2[index++ - intermediateindex] = (byte) ((int[]) Huf.val.elementAt(i))[j];
            }
            DHT3 = new byte[index];
            java.lang.System.arraycopy(DHT4, 0, DHT3, 0, oldindex);
            java.lang.System.arraycopy(DHT1, 0, DHT3, oldindex, 17);
            java.lang.System.arraycopy(DHT2, 0, DHT3, oldindex + 17, bytes);
            DHT4 = DHT3;
            oldindex = index;
        }
        DHT4[2] = (byte) (((index - 2) >> 8) & 0xFF);
        DHT4[3] = (byte) ((index - 2) & 0xFF);
        WriteArray(DHT4, out);

        // Start of Scan Header
        byte SOS[] = new byte[14];
        SOS[0] = (byte) 0xFF;
        SOS[1] = (byte) 0xDA;
        SOS[2] = (byte) 0x00;
        SOS[3] = (byte) 12;
        SOS[4] = (byte) JpegObj.NumberOfComponents;
        index = 5;
        for (i = 0; i < SOS[4]; i++) {
            SOS[index++] = (byte) JpegObj.CompID[i];
            SOS[index++] = (byte) ((JpegObj.DCtableNumber[i] << 4) + JpegObj.ACtableNumber[i]);
        }
        SOS[index++] = (byte) JpegObj.Ss;
        SOS[index++] = (byte) JpegObj.Se;
        SOS[index++] = (byte) ((JpegObj.Ah << 4) + JpegObj.Al);
        WriteArray(SOS, out);

    }

    void WriteMarker(byte[] data, BufferedOutputStream out) {
        try {
            out.write(data, 0, 2);
        } catch (IOException e) {
            System.out.println("IO Error: " + e.getMessage());
        }
    }

    void WriteArray(byte[] data, BufferedOutputStream out) {
        int length;
        try {
            length = ((data[2] & 0xFF) << 8) + (data[3] & 0xFF) + 2;
            out.write(data, 0, length);
        } catch (IOException e) {
            System.out.println("IO Error: " + e.getMessage());
        }
    }
}

// This class incorporates quality scaling as implemented in the JPEG-6a
// library.

/*
 * DCT - A Java implementation of the Discreet Cosine Transform
 */

class DCT {
    /**
     * DCT Block Size - default 8
     */
    public int N = 8;

    /**
     * Image Quality (0-100) - default 80 (good image / good compression)
     */
    public int QUALITY = 80;

    public Object quantum[] = new Object[2];

    public Object Divisors[] = new Object[2];

    /**
     * Quantitization Matrix for luminace.
     */
    public int quantum_luminance[] = new int[N * N];

    public double DivisorsLuminance[] = new double[N * N];

    /**
     * Quantitization Matrix for chrominance.
     */
    public int quantum_chrominance[] = new int[N * N];

    public double DivisorsChrominance[] = new double[N * N];

    /**
     * Constructs a new DCT object. Initializes the cosine transform matrix these
     * are used when computing the DCT and it's inverse. This also initializes the
     * run length counters and the ZigZag sequence. Note that the image quality
     * can be worse than 25 however the image will be extemely pixelated, usually
     * to a block size of N.
     * 
     * @param QUALITY
     *          The quality of the image (0 worst - 100 best)
     * 
     */
    public DCT(int QUALITY) {
        initMatrix(QUALITY);
    }

    /*
     * This method sets up the quantization matrix for luminance and chrominance
     * using the Quality parameter.
     */
    private void initMatrix(int quality) {
        double[] AANscaleFactor = { 1.0, 1.387039845, 1.306562965, 1.175875602, 1.0, 0.785694958, 0.541196100,
                0.275899379 };
        int i;
        int j;
        int index;
        int Quality;
        int temp;

        // converting quality setting to that specified in the jpeg_quality_scaling
        // method in the IJG Jpeg-6a C libraries

        Quality = quality;
        if (Quality <= 0)
            Quality = 1;
        if (Quality > 100)
            Quality = 100;
        if (Quality < 50)
            Quality = 5000 / Quality;
        else
            Quality = 200 - Quality * 2;

        // Creating the luminance matrix

        quantum_luminance[0] = 16;
        quantum_luminance[1] = 11;
        quantum_luminance[2] = 10;
        quantum_luminance[3] = 16;
        quantum_luminance[4] = 24;
        quantum_luminance[5] = 40;
        quantum_luminance[6] = 51;
        quantum_luminance[7] = 61;
        quantum_luminance[8] = 12;
        quantum_luminance[9] = 12;
        quantum_luminance[10] = 14;
        quantum_luminance[11] = 19;
        quantum_luminance[12] = 26;
        quantum_luminance[13] = 58;
        quantum_luminance[14] = 60;
        quantum_luminance[15] = 55;
        quantum_luminance[16] = 14;
        quantum_luminance[17] = 13;
        quantum_luminance[18] = 16;
        quantum_luminance[19] = 24;
        quantum_luminance[20] = 40;
        quantum_luminance[21] = 57;
        quantum_luminance[22] = 69;
        quantum_luminance[23] = 56;
        quantum_luminance[24] = 14;
        quantum_luminance[25] = 17;
        quantum_luminance[26] = 22;
        quantum_luminance[27] = 29;
        quantum_luminance[28] = 51;
        quantum_luminance[29] = 87;
        quantum_luminance[30] = 80;
        quantum_luminance[31] = 62;
        quantum_luminance[32] = 18;
        quantum_luminance[33] = 22;
        quantum_luminance[34] = 37;
        quantum_luminance[35] = 56;
        quantum_luminance[36] = 68;
        quantum_luminance[37] = 109;
        quantum_luminance[38] = 103;
        quantum_luminance[39] = 77;
        quantum_luminance[40] = 24;
        quantum_luminance[41] = 35;
        quantum_luminance[42] = 55;
        quantum_luminance[43] = 64;
        quantum_luminance[44] = 81;
        quantum_luminance[45] = 104;
        quantum_luminance[46] = 113;
        quantum_luminance[47] = 92;
        quantum_luminance[48] = 49;
        quantum_luminance[49] = 64;
        quantum_luminance[50] = 78;
        quantum_luminance[51] = 87;
        quantum_luminance[52] = 103;
        quantum_luminance[53] = 121;
        quantum_luminance[54] = 120;
        quantum_luminance[55] = 101;
        quantum_luminance[56] = 72;
        quantum_luminance[57] = 92;
        quantum_luminance[58] = 95;
        quantum_luminance[59] = 98;
        quantum_luminance[60] = 112;
        quantum_luminance[61] = 100;
        quantum_luminance[62] = 103;
        quantum_luminance[63] = 99;

        for (j = 0; j < 64; j++) {
            temp = (quantum_luminance[j] * Quality + 50) / 100;
            if (temp <= 0)
                temp = 1;
            if (temp > 255)
                temp = 255;
            quantum_luminance[j] = temp;
        }
        index = 0;
        for (i = 0; i < 8; i++) {
            for (j = 0; j < 8; j++) {
                // The divisors for the LL&M method (the slow integer method used in
                // jpeg 6a library). This method is currently (04/04/98) incompletely
                // implemented.
                // DivisorsLuminance[index] = ((double) quantum_luminance[index]) << 3;
                // The divisors for the AAN method (the float method used in jpeg 6a
                // library.
                DivisorsLuminance[index] = (1.0
                        / (quantum_luminance[index] * AANscaleFactor[i] * AANscaleFactor[j] * 8.0));
                index++;
            }
        }

        // Creating the chrominance matrix

        quantum_chrominance[0] = 17;
        quantum_chrominance[1] = 18;
        quantum_chrominance[2] = 24;
        quantum_chrominance[3] = 47;
        quantum_chrominance[4] = 99;
        quantum_chrominance[5] = 99;
        quantum_chrominance[6] = 99;
        quantum_chrominance[7] = 99;
        quantum_chrominance[8] = 18;
        quantum_chrominance[9] = 21;
        quantum_chrominance[10] = 26;
        quantum_chrominance[11] = 66;
        quantum_chrominance[12] = 99;
        quantum_chrominance[13] = 99;
        quantum_chrominance[14] = 99;
        quantum_chrominance[15] = 99;
        quantum_chrominance[16] = 24;
        quantum_chrominance[17] = 26;
        quantum_chrominance[18] = 56;
        quantum_chrominance[19] = 99;
        quantum_chrominance[20] = 99;
        quantum_chrominance[21] = 99;
        quantum_chrominance[22] = 99;
        quantum_chrominance[23] = 99;
        quantum_chrominance[24] = 47;
        quantum_chrominance[25] = 66;
        quantum_chrominance[26] = 99;
        quantum_chrominance[27] = 99;
        quantum_chrominance[28] = 99;
        quantum_chrominance[29] = 99;
        quantum_chrominance[30] = 99;
        quantum_chrominance[31] = 99;
        quantum_chrominance[32] = 99;
        quantum_chrominance[33] = 99;
        quantum_chrominance[34] = 99;
        quantum_chrominance[35] = 99;
        quantum_chrominance[36] = 99;
        quantum_chrominance[37] = 99;
        quantum_chrominance[38] = 99;
        quantum_chrominance[39] = 99;
        quantum_chrominance[40] = 99;
        quantum_chrominance[41] = 99;
        quantum_chrominance[42] = 99;
        quantum_chrominance[43] = 99;
        quantum_chrominance[44] = 99;
        quantum_chrominance[45] = 99;
        quantum_chrominance[46] = 99;
        quantum_chrominance[47] = 99;
        quantum_chrominance[48] = 99;
        quantum_chrominance[49] = 99;
        quantum_chrominance[50] = 99;
        quantum_chrominance[51] = 99;
        quantum_chrominance[52] = 99;
        quantum_chrominance[53] = 99;
        quantum_chrominance[54] = 99;
        quantum_chrominance[55] = 99;
        quantum_chrominance[56] = 99;
        quantum_chrominance[57] = 99;
        quantum_chrominance[58] = 99;
        quantum_chrominance[59] = 99;
        quantum_chrominance[60] = 99;
        quantum_chrominance[61] = 99;
        quantum_chrominance[62] = 99;
        quantum_chrominance[63] = 99;

        for (j = 0; j < 64; j++) {
            temp = (quantum_chrominance[j] * Quality + 50) / 100;
            if (temp <= 0)
                temp = 1;
            if (temp >= 255)
                temp = 255;
            quantum_chrominance[j] = temp;
        }
        index = 0;
        for (i = 0; i < 8; i++) {
            for (j = 0; j < 8; j++) {
                // The divisors for the LL&M method (the slow integer method used in
                // jpeg 6a library). This method is currently (04/04/98) incompletely
                // implemented.
                // DivisorsChrominance[index] = ((double) quantum_chrominance[index]) <<
                // 3;
                // The divisors for the AAN method (the float method used in jpeg 6a
                // library.
                DivisorsChrominance[index] = 1.0
                        / (quantum_chrominance[index] * AANscaleFactor[i] * AANscaleFactor[j] * 8.0);
                index++;
            }
        }

        // quantum and Divisors are objects used to hold the appropriate matices

        quantum[0] = quantum_luminance;
        Divisors[0] = DivisorsLuminance;
        quantum[1] = quantum_chrominance;
        Divisors[1] = DivisorsChrominance;

    }

    /*
     * This method preforms forward DCT on a block of image data using the literal
     * method specified for a 2-D Discrete Cosine Transform. It is included as a
     * curiosity and can give you an idea of the difference in the compression
     * result (the resulting image quality) by comparing its output to the output
     * of the AAN method below. It is ridiculously inefficient.
     */

    // For now the final output is unusable. The associated quantization step
    // needs some tweaking. If you get this part working, please let me know.
    public double[][] forwardDCTExtreme(float input[][]) {
        double output[][] = new double[N][N];
        int v, u, x, y;
        for (v = 0; v < 8; v++) {
            for (u = 0; u < 8; u++) {
                for (x = 0; x < 8; x++) {
                    for (y = 0; y < 8; y++) {
                        output[v][u] += input[x][y] * Math.cos(((double) (2 * x + 1) * (double) u * Math.PI) / 16)
                                * Math.cos(((double) (2 * y + 1) * (double) v * Math.PI) / 16);
                    }
                }
                output[v][u] *= (0.25) * ((u == 0) ? (1.0 / Math.sqrt(2)) : (double) 1.0)
                        * ((v == 0) ? (1.0 / Math.sqrt(2)) : (double) 1.0);
            }
        }
        return output;
    }

    /*
     * This method preforms a DCT on a block of image data using the AAN method as
     * implemented in the IJG Jpeg-6a library.
     */
    public double[][] forwardDCT(float input[][]) {
        double output[][] = new double[N][N];
        double tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
        double tmp10, tmp11, tmp12, tmp13;
        double z1, z2, z3, z4, z5, z11, z13;
        int i;
        int j;

        // Subtracts 128 from the input values
        for (i = 0; i < 8; i++) {
            for (j = 0; j < 8; j++) {
                output[i][j] = (input[i][j] - 128.0);
                // input[i][j] -= 128;

            }
        }

        for (i = 0; i < 8; i++) {
            tmp0 = output[i][0] + output[i][7];
            tmp7 = output[i][0] - output[i][7];
            tmp1 = output[i][1] + output[i][6];
            tmp6 = output[i][1] - output[i][6];
            tmp2 = output[i][2] + output[i][5];
            tmp5 = output[i][2] - output[i][5];
            tmp3 = output[i][3] + output[i][4];
            tmp4 = output[i][3] - output[i][4];

            tmp10 = tmp0 + tmp3;
            tmp13 = tmp0 - tmp3;
            tmp11 = tmp1 + tmp2;
            tmp12 = tmp1 - tmp2;

            output[i][0] = tmp10 + tmp11;
            output[i][4] = tmp10 - tmp11;

            z1 = (tmp12 + tmp13) * 0.707106781;
            output[i][2] = tmp13 + z1;
            output[i][6] = tmp13 - z1;

            tmp10 = tmp4 + tmp5;
            tmp11 = tmp5 + tmp6;
            tmp12 = tmp6 + tmp7;

            z5 = (tmp10 - tmp12) * 0.382683433;
            z2 = 0.541196100 * tmp10 + z5;
            z4 = 1.306562965 * tmp12 + z5;
            z3 = tmp11 * 0.707106781;

            z11 = tmp7 + z3;
            z13 = tmp7 - z3;

            output[i][5] = z13 + z2;
            output[i][3] = z13 - z2;
            output[i][1] = z11 + z4;
            output[i][7] = z11 - z4;
        }

        for (i = 0; i < 8; i++) {
            tmp0 = output[0][i] + output[7][i];
            tmp7 = output[0][i] - output[7][i];
            tmp1 = output[1][i] + output[6][i];
            tmp6 = output[1][i] - output[6][i];
            tmp2 = output[2][i] + output[5][i];
            tmp5 = output[2][i] - output[5][i];
            tmp3 = output[3][i] + output[4][i];
            tmp4 = output[3][i] - output[4][i];

            tmp10 = tmp0 + tmp3;
            tmp13 = tmp0 - tmp3;
            tmp11 = tmp1 + tmp2;
            tmp12 = tmp1 - tmp2;

            output[0][i] = tmp10 + tmp11;
            output[4][i] = tmp10 - tmp11;

            z1 = (tmp12 + tmp13) * 0.707106781;
            output[2][i] = tmp13 + z1;
            output[6][i] = tmp13 - z1;

            tmp10 = tmp4 + tmp5;
            tmp11 = tmp5 + tmp6;
            tmp12 = tmp6 + tmp7;

            z5 = (tmp10 - tmp12) * 0.382683433;
            z2 = 0.541196100 * tmp10 + z5;
            z4 = 1.306562965 * tmp12 + z5;
            z3 = tmp11 * 0.707106781;

            z11 = tmp7 + z3;
            z13 = tmp7 - z3;

            output[5][i] = z13 + z2;
            output[3][i] = z13 - z2;
            output[1][i] = z11 + z4;
            output[7][i] = z11 - z4;
        }

        return output;
    }

    /*
     * This method quantitizes data and rounds it to the nearest integer.
     */
    public int[] quantizeBlock(double inputData[][], int code) {
        int outputData[] = new int[N * N];
        int i, j;
        int index;
        index = 0;
        for (i = 0; i < 8; i++) {
            for (j = 0; j < 8; j++) {
                // The second line results in significantly better compression.
                outputData[index] = (int) (Math.round(inputData[i][j] * (((double[]) (Divisors[code]))[index])));
                // outputData[index] = (int)(((inputData[i][j] * (((double[])
                // (Divisors[code]))[index])) + 16384.5) -16384);
                index++;
            }
        }

        return outputData;
    }

    /*
     * This is the method for quantizing a block DCT'ed with forwardDCTExtreme
     * This method quantitizes data and rounds it to the nearest integer.
     */
    public int[] quantizeBlockExtreme(double inputData[][], int code) {
        int outputData[] = new int[N * N];
        int i, j;
        int index;
        index = 0;
        for (i = 0; i < 8; i++) {
            for (j = 0; j < 8; j++) {
                outputData[index] = (int) (Math.round(inputData[i][j] / (((int[]) (quantum[code]))[index])));
                index++;
            }
        }

        return outputData;
    }
}

// This class was modified by James R. Weeks on 3/27/98.
// It now incorporates Huffman table derivation as in the C jpeg library
// from the IJG, Jpeg-6a.

class Huffman {
    int bufferPutBits, bufferPutBuffer;

    public int ImageHeight;

    public int ImageWidth;

    public int DC_matrix0[][];

    public int AC_matrix0[][];

    public int DC_matrix1[][];

    public int AC_matrix1[][];

    public Object DC_matrix[];

    public Object AC_matrix[];

    public int code;

    public int NumOfDCTables;

    public int NumOfACTables;

    public int[] bitsDCluminance = { 0x00, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };

    public int[] valDCluminance = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };

    public int[] bitsDCchrominance = { 0x01, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };

    public int[] valDCchrominance = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };

    public int[] bitsACluminance = { 0x10, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };

    public int[] valACluminance = { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13,
            0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52,
            0xd1, 0xf0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27,
            0x28, 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
            0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a,
            0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92,
            0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa,
            0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9,
            0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
            0xe8, 0xe9, 0xea, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa };

    public int[] bitsACchrominance = { 0x11, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };

    public int[] valACchrominance = { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51,
            0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33,
            0x52, 0xf0, 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a,
            0x26, 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
            0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
            0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
            0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8,
            0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
            0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6,
            0xe7, 0xe8, 0xe9, 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa };

    public Vector bits;

    public Vector val;

    /*
     * jpegNaturalOrder[i] is the natural-order position of the i'th element of
     * zigzag order.
     */
    public static int[] jpegNaturalOrder = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33,
            40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37,
            44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63, };

    /*
     * The Huffman class constructor
     */
    public Huffman(int Width, int Height) {

        bits = new Vector();
        bits.addElement(bitsDCluminance);
        bits.addElement(bitsACluminance);
        bits.addElement(bitsDCchrominance);
        bits.addElement(bitsACchrominance);
        val = new Vector();
        val.addElement(valDCluminance);
        val.addElement(valACluminance);
        val.addElement(valDCchrominance);
        val.addElement(valACchrominance);
        initHuf();
        ImageWidth = Width;
        ImageHeight = Height;

    }

    /**
     * HuffmanBlockEncoder run length encodes and Huffman encodes the quantized
     * data.
     * 
     * @param outStream
     * @param zigzag
     * @param prec
     * @param DCcode
     * @param ACcode
     */

    public void HuffmanBlockEncoder(BufferedOutputStream outStream, int zigzag[], int prec, int DCcode,
            int ACcode) {
        int temp, temp2, nbits, k, r, i;

        NumOfDCTables = 2;
        NumOfACTables = 2;

        // The DC portion

        temp = temp2 = zigzag[0] - prec;
        if (temp < 0) {
            temp = -temp;
            temp2--;
        }
        nbits = 0;
        while (temp != 0) {
            nbits++;
            temp >>= 1;
        }
        // if (nbits > 11) nbits = 11;
        bufferIt(outStream, ((int[][]) DC_matrix[DCcode])[nbits][0], ((int[][]) DC_matrix[DCcode])[nbits][1]);
        // The arguments in bufferIt are code and size.
        if (nbits != 0) {
            bufferIt(outStream, temp2, nbits);
        }

        // The AC portion

        r = 0;

        for (k = 1; k < 64; k++) {
            if ((temp = zigzag[jpegNaturalOrder[k]]) == 0) {
                r++;
            } else {
                while (r > 15) {
                    bufferIt(outStream, ((int[][]) AC_matrix[ACcode])[0xF0][0],
                            ((int[][]) AC_matrix[ACcode])[0xF0][1]);
                    r -= 16;
                }
                temp2 = temp;
                if (temp < 0) {
                    temp = -temp;
                    temp2--;
                }
                nbits = 1;
                while ((temp >>= 1) != 0) {
                    nbits++;
                }
                i = (r << 4) + nbits;
                bufferIt(outStream, ((int[][]) AC_matrix[ACcode])[i][0], ((int[][]) AC_matrix[ACcode])[i][1]);
                bufferIt(outStream, temp2, nbits);

                r = 0;
            }
        }

        if (r > 0) {
            bufferIt(outStream, ((int[][]) AC_matrix[ACcode])[0][0], ((int[][]) AC_matrix[ACcode])[0][1]);
        }

    }

    // Uses an integer long (32 bits) buffer to store the Huffman encoded bits
    // and sends them to outStream by the byte.

    void bufferIt(BufferedOutputStream outStream, int code, int size) {
        int PutBuffer = code;
        int PutBits = bufferPutBits;

        PutBuffer &= (1 << size) - 1;
        PutBits += size;
        PutBuffer <<= 24 - PutBits;
        PutBuffer |= bufferPutBuffer;

        while (PutBits >= 8) {
            int c = ((PutBuffer >> 16) & 0xFF);
            try {
                outStream.write(c);
            } catch (IOException e) {
                System.out.println("IO Error: " + e.getMessage());
            }
            if (c == 0xFF) {
                try {
                    outStream.write(0);
                } catch (IOException e) {
                    System.out.println("IO Error: " + e.getMessage());
                }
            }
            PutBuffer <<= 8;
            PutBits -= 8;
        }
        bufferPutBuffer = PutBuffer;
        bufferPutBits = PutBits;

    }

    void flushBuffer(BufferedOutputStream outStream) {
        int PutBuffer = bufferPutBuffer;
        int PutBits = bufferPutBits;
        while (PutBits >= 8) {
            int c = ((PutBuffer >> 16) & 0xFF);
            try {
                outStream.write(c);
            } catch (IOException e) {
                System.out.println("IO Error: " + e.getMessage());
            }
            if (c == 0xFF) {
                try {
                    outStream.write(0);
                } catch (IOException e) {
                    System.out.println("IO Error: " + e.getMessage());
                }
            }
            PutBuffer <<= 8;
            PutBits -= 8;
        }
        if (PutBits > 0) {
            int c = ((PutBuffer >> 16) & 0xFF);
            try {
                outStream.write(c);
            } catch (IOException e) {
                System.out.println("IO Error: " + e.getMessage());
            }
        }
    }

    /*
     * Initialisation of the Huffman codes for Luminance and Chrominance. This
     * code results in the same tables created in the IJG Jpeg-6a library.
     */

    public void initHuf() {
        DC_matrix0 = new int[12][2];
        DC_matrix1 = new int[12][2];
        AC_matrix0 = new int[255][2];
        AC_matrix1 = new int[255][2];
        DC_matrix = new Object[2];
        AC_matrix = new Object[2];
        int p, l, i, lastp, si, code;
        int[] huffsize = new int[257];
        int[] huffcode = new int[257];

        /*
         * init of the DC values for the chrominance [][0] is the code [][1] is the
         * number of bit
         */

        p = 0;
        for (l = 1; l <= 16; l++) {
            for (i = 1; i <= bitsDCchrominance[l]; i++) {
                huffsize[p++] = l;
            }
        }
        huffsize[p] = 0;
        lastp = p;

        code = 0;
        si = huffsize[0];
        p = 0;
        while (huffsize[p] != 0) {
            while (huffsize[p] == si) {
                huffcode[p++] = code;
                code++;
            }
            code <<= 1;
            si++;
        }

        for (p = 0; p < lastp; p++) {
            DC_matrix1[valDCchrominance[p]][0] = huffcode[p];
            DC_matrix1[valDCchrominance[p]][1] = huffsize[p];
        }

        /*
         * Init of the AC hufmann code for the chrominance matrix [][][0] is the
         * code & matrix[][][1] is the number of bit needed
         */

        p = 0;
        for (l = 1; l <= 16; l++) {
            for (i = 1; i <= bitsACchrominance[l]; i++) {
                huffsize[p++] = l;
            }
        }
        huffsize[p] = 0;
        lastp = p;

        code = 0;
        si = huffsize[0];
        p = 0;
        while (huffsize[p] != 0) {
            while (huffsize[p] == si) {
                huffcode[p++] = code;
                code++;
            }
            code <<= 1;
            si++;
        }

        for (p = 0; p < lastp; p++) {
            AC_matrix1[valACchrominance[p]][0] = huffcode[p];
            AC_matrix1[valACchrominance[p]][1] = huffsize[p];
        }

        /*
         * init of the DC values for the luminance [][0] is the code [][1] is the
         * number of bit
         */
        p = 0;
        for (l = 1; l <= 16; l++) {
            for (i = 1; i <= bitsDCluminance[l]; i++) {
                huffsize[p++] = l;
            }
        }
        huffsize[p] = 0;
        lastp = p;

        code = 0;
        si = huffsize[0];
        p = 0;
        while (huffsize[p] != 0) {
            while (huffsize[p] == si) {
                huffcode[p++] = code;
                code++;
            }
            code <<= 1;
            si++;
        }

        for (p = 0; p < lastp; p++) {
            DC_matrix0[valDCluminance[p]][0] = huffcode[p];
            DC_matrix0[valDCluminance[p]][1] = huffsize[p];
        }

        /*
         * Init of the AC hufmann code for luminance matrix [][][0] is the code &
         * matrix[][][1] is the number of bit
         */

        p = 0;
        for (l = 1; l <= 16; l++) {
            for (i = 1; i <= bitsACluminance[l]; i++) {
                huffsize[p++] = l;
            }
        }
        huffsize[p] = 0;
        lastp = p;

        code = 0;
        si = huffsize[0];
        p = 0;
        while (huffsize[p] != 0) {
            while (huffsize[p] == si) {
                huffcode[p++] = code;
                code++;
            }
            code <<= 1;
            si++;
        }
        for (int q = 0; q < lastp; q++) {
            AC_matrix0[valACluminance[q]][0] = huffcode[q];
            AC_matrix0[valACluminance[q]][1] = huffsize[q];
        }

        DC_matrix[0] = DC_matrix0;
        DC_matrix[1] = DC_matrix1;
        AC_matrix[0] = AC_matrix0;
        AC_matrix[1] = AC_matrix1;
    }

}

/*
 * JpegInfo - Given an image, sets default information about it and divides it
 * into its constituant components, downsizing those that need to be.
 */

class JpegInfo {
    String Comment;

    public Image imageobj;

    public int imageHeight;

    public int imageWidth;

    public int BlockWidth[];

    public int BlockHeight[];

    // the following are set as the default
    public int Precision = 8;

    public int NumberOfComponents = 3;

    public Object Components[];

    public int[] CompID = { 1, 2, 3 };

    public int[] HsampFactor = { 1, 1, 1 };

    public int[] VsampFactor = { 1, 1, 1 };

    public int[] QtableNumber = { 0, 1, 1 };

    public int[] DCtableNumber = { 0, 1, 1 };

    public int[] ACtableNumber = { 0, 1, 1 };

    public boolean[] lastColumnIsDummy = { false, false, false };

    public boolean[] lastRowIsDummy = { false, false, false };

    public int Ss = 0;

    public int Se = 63;

    public int Ah = 0;

    public int Al = 0;

    public int compWidth[], compHeight[];

    public int MaxHsampFactor;

    public int MaxVsampFactor;

    public JpegInfo(Image image) {
        Components = new Object[NumberOfComponents];
        compWidth = new int[NumberOfComponents];
        compHeight = new int[NumberOfComponents];
        BlockWidth = new int[NumberOfComponents];
        BlockHeight = new int[NumberOfComponents];
        imageobj = image;
        imageWidth = image.getWidth(null);
        imageHeight = image.getHeight(null);
        Comment = "JPEG Encoder Copyright 1998, James R. Weeks and BioElectroMech.  ";
        getYCCArray();
    }

    public void setComment(String comment) {
        Comment.concat(comment);
    }

    public String getComment() {
        return Comment;
    }

    /*
     * This method creates and fills three arrays, Y, Cb, and Cr using the input
     * image.
     */

    private void getYCCArray() {
        int values[] = new int[imageWidth * imageHeight];
        int r, g, b, y, x;
        // In order to minimize the chance that grabPixels will throw an exception
        // it may be necessary to grab some pixels every few scanlines and process
        // those before going for more. The time expense may be prohibitive.
        // However, for a situation where memory overhead is a concern, this may be
        // the only choice.
        PixelGrabber grabber = new PixelGrabber(imageobj.getSource(), 0, 0, imageWidth, imageHeight, values, 0,
                imageWidth);
        MaxHsampFactor = 1;
        MaxVsampFactor = 1;
        for (y = 0; y < NumberOfComponents; y++) {
            MaxHsampFactor = Math.max(MaxHsampFactor, HsampFactor[y]);
            MaxVsampFactor = Math.max(MaxVsampFactor, VsampFactor[y]);
        }
        for (y = 0; y < NumberOfComponents; y++) {
            compWidth[y] = (((imageWidth % 8 != 0) ? ((int) Math.ceil(imageWidth / 8.0)) * 8 : imageWidth)
                    / MaxHsampFactor) * HsampFactor[y];
            if (compWidth[y] != ((imageWidth / MaxHsampFactor) * HsampFactor[y])) {
                lastColumnIsDummy[y] = true;
            }
            // results in a multiple of 8 for compWidth
            // this will make the rest of the program fail for the unlikely
            // event that someone tries to compress an 16 x 16 pixel image
            // which would of course be worse than pointless
            BlockWidth[y] = (int) Math.ceil(compWidth[y] / 8.0);
            compHeight[y] = (((imageHeight % 8 != 0) ? ((int) Math.ceil(imageHeight / 8.0)) * 8 : imageHeight)
                    / MaxVsampFactor) * VsampFactor[y];
            if (compHeight[y] != ((imageHeight / MaxVsampFactor) * VsampFactor[y])) {
                lastRowIsDummy[y] = true;
            }
            BlockHeight[y] = (int) Math.ceil(compHeight[y] / 8.0);
        }
        try {
            if (grabber.grabPixels() != true) {
                try {
                    throw new AWTException("Grabber returned false: " + grabber.status());
                } catch (Exception e) {
                }
            }
        } catch (InterruptedException e) {
        }
        float Y[][] = new float[compHeight[0]][compWidth[0]];
        float Cr1[][] = new float[compHeight[0]][compWidth[0]];
        float Cb1[][] = new float[compHeight[0]][compWidth[0]];
        // float Cb2[][] = new float[compHeight[1]][compWidth[1]];
        // float Cr2[][] = new float[compHeight[2]][compWidth[2]];
        int index = 0;
        for (y = 0; y < imageHeight; ++y) {
            for (x = 0; x < imageWidth; ++x) {
                r = ((values[index] >> 16) & 0xff);
                g = ((values[index] >> 8) & 0xff);
                b = (values[index] & 0xff);

                // The following three lines are a more correct color conversion but
                // the current conversion technique is sufficient and results in a
                // higher
                // compression rate.
                // Y[y][x] = 16 + (float)(0.8588*(0.299 * (float)r + 0.587 * (float)g +
                // 0.114 * (float)b ));
                // Cb1[y][x] = 128 + (float)(0.8784*(-0.16874 * (float)r - 0.33126 *
                // (float)g + 0.5 * (float)b));
                // Cr1[y][x] = 128 + (float)(0.8784*(0.5 * (float)r - 0.41869 * (float)g
                // - 0.08131 * (float)b));
                Y[y][x] = (float) ((0.299 * r + 0.587 * g + 0.114 * b));
                Cb1[y][x] = 128 + (float) ((-0.16874 * r - 0.33126 * g + 0.5 * b));
                Cr1[y][x] = 128 + (float) ((0.5 * r - 0.41869 * g - 0.08131 * b));
                index++;
            }
        }

        // Need a way to set the H and V sample factors before allowing
        // downsampling.
        // For now (04/04/98) downsampling must be hard coded.
        // Until a better downsampler is implemented, this will not be done.
        // Downsampling is currently supported. The downsampling method here
        // is a simple box filter.

        Components[0] = Y;
        // Cb2 = DownSample(Cb1, 1);
        Components[1] = Cb1;
        // Cr2 = DownSample(Cr1, 2);
        Components[2] = Cr1;
    }

    float[][] DownSample(float[][] C, int comp) {
        int inrow, incol;
        int outrow, outcol;
        float output[][];
        int bias;
        inrow = 0;
        incol = 0;
        output = new float[compHeight[comp]][compWidth[comp]];
        for (outrow = 0; outrow < compHeight[comp]; outrow++) {
            bias = 1;
            for (outcol = 0; outcol < compWidth[comp]; outcol++) {
                output[outrow][outcol] = (C[inrow][incol++] + C[inrow++][incol--] + C[inrow][incol++]
                        + C[inrow--][incol++] + bias) / (float) 4.0;
                bias ^= 3;
            }
            inrow += 2;
            incol = 0;
        }
        return output;
    }
}