at.gridtec.lambda4j.operator.ternary.LongTernaryOperator.java Source code

Java tutorial

Introduction

Here is the source code for at.gridtec.lambda4j.operator.ternary.LongTernaryOperator.java

Source

/*
 * Copyright (c) 2016 Gridtec. All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package at.gridtec.lambda4j.operator.ternary;

import at.gridtec.lambda4j.Lambda;
import at.gridtec.lambda4j.consumer.tri.TriLongConsumer;
import at.gridtec.lambda4j.function.conversion.BooleanToLongFunction;
import at.gridtec.lambda4j.function.conversion.ByteToLongFunction;
import at.gridtec.lambda4j.function.conversion.CharToLongFunction;
import at.gridtec.lambda4j.function.conversion.FloatToLongFunction;
import at.gridtec.lambda4j.function.conversion.LongToByteFunction;
import at.gridtec.lambda4j.function.conversion.LongToCharFunction;
import at.gridtec.lambda4j.function.conversion.LongToFloatFunction;
import at.gridtec.lambda4j.function.conversion.LongToShortFunction;
import at.gridtec.lambda4j.function.conversion.ShortToLongFunction;
import at.gridtec.lambda4j.function.tri.TriLongFunction;
import at.gridtec.lambda4j.function.tri.conversion.TriBooleanToLongFunction;
import at.gridtec.lambda4j.function.tri.conversion.TriByteToLongFunction;
import at.gridtec.lambda4j.function.tri.conversion.TriCharToLongFunction;
import at.gridtec.lambda4j.function.tri.conversion.TriDoubleToLongFunction;
import at.gridtec.lambda4j.function.tri.conversion.TriFloatToLongFunction;
import at.gridtec.lambda4j.function.tri.conversion.TriIntToLongFunction;
import at.gridtec.lambda4j.function.tri.conversion.TriLongToByteFunction;
import at.gridtec.lambda4j.function.tri.conversion.TriLongToCharFunction;
import at.gridtec.lambda4j.function.tri.conversion.TriLongToDoubleFunction;
import at.gridtec.lambda4j.function.tri.conversion.TriLongToFloatFunction;
import at.gridtec.lambda4j.function.tri.conversion.TriLongToIntFunction;
import at.gridtec.lambda4j.function.tri.conversion.TriLongToShortFunction;
import at.gridtec.lambda4j.function.tri.conversion.TriShortToLongFunction;
import at.gridtec.lambda4j.function.tri.to.ToLongTriFunction;
import at.gridtec.lambda4j.operator.binary.LongBinaryOperator2;
import at.gridtec.lambda4j.operator.unary.LongUnaryOperator2;
import at.gridtec.lambda4j.predicate.tri.TriLongPredicate;

import org.apache.commons.lang3.tuple.Triple;

import javax.annotation.Nonnegative;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.Objects;
import java.util.concurrent.ConcurrentHashMap;
import java.util.function.DoubleToLongFunction;
import java.util.function.IntToLongFunction;
import java.util.function.LongConsumer;
import java.util.function.LongFunction;
import java.util.function.LongPredicate;
import java.util.function.LongToDoubleFunction;
import java.util.function.LongToIntFunction;
import java.util.function.LongUnaryOperator;
import java.util.function.ToLongFunction;

/**
 * Represents an operation that accepts three {@code long}-valued input arguments and produces a
 * {@code long}-valued result.
 * This is a primitive specialization of {@link TernaryOperator}.
 * <p>
 * This is a {@link FunctionalInterface} whose functional method is {@link #applyAsLong(long, long, long)}.
 *
 * @see TernaryOperator
 */
@SuppressWarnings("unused")
@FunctionalInterface
public interface LongTernaryOperator extends Lambda {

    /**
     * Constructs a {@link LongTernaryOperator} based on a lambda expression or a method reference. Thereby the given
     * lambda expression or method reference is returned on an as-is basis to implicitly transform it to the desired
     * type. With this method, it is possible to ensure that correct type is used from lambda expression or method
     * reference.
     *
     * @param expression A lambda expression or (typically) a method reference, e.g. {@code this::method}
     * @return A {@code LongTernaryOperator} from given lambda expression or method reference.
     * @implNote This implementation allows the given argument to be {@code null}, but only if {@code null} given,
     * {@code null} will be returned.
     * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#syntax">Lambda
     * Expression</a>
     * @see <a href="https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html">Method Reference</a>
     */
    static LongTernaryOperator of(@Nullable final LongTernaryOperator expression) {
        return expression;
    }

    /**
     * Calls the given {@link LongTernaryOperator} with the given arguments and returns its result.
     *
     * @param operator The operator to be called
     * @param value1 The first argument to the operator
     * @param value2 The second argument to the operator
     * @param value3 The third argument to the operator
     * @return The result from the given {@code LongTernaryOperator}.
     * @throws NullPointerException If given argument is {@code null}
     */
    static long call(@Nonnull final LongTernaryOperator operator, long value1, long value2, long value3) {
        Objects.requireNonNull(operator);
        return operator.applyAsLong(value1, value2, value3);
    }

    /**
     * Creates a {@link LongTernaryOperator} which uses the {@code first} parameter of this one as argument for the
     * given {@link LongUnaryOperator}.
     *
     * @param operator The operator which accepts the {@code first} parameter of this one
     * @return Creates a {@code LongTernaryOperator} which uses the {@code first} parameter of this one as argument for
     * the given {@code LongUnaryOperator}.
     * @throws NullPointerException If given argument is {@code null}
     */
    @Nonnull
    static LongTernaryOperator onlyFirst(@Nonnull final LongUnaryOperator operator) {
        Objects.requireNonNull(operator);
        return (value1, value2, value3) -> operator.applyAsLong(value1);
    }

    /**
     * Creates a {@link LongTernaryOperator} which uses the {@code second} parameter of this one as argument for the
     * given {@link LongUnaryOperator}.
     *
     * @param operator The operator which accepts the {@code second} parameter of this one
     * @return Creates a {@code LongTernaryOperator} which uses the {@code second} parameter of this one as argument for
     * the given {@code LongUnaryOperator}.
     * @throws NullPointerException If given argument is {@code null}
     */
    @Nonnull
    static LongTernaryOperator onlySecond(@Nonnull final LongUnaryOperator operator) {
        Objects.requireNonNull(operator);
        return (value1, value2, value3) -> operator.applyAsLong(value2);
    }

    /**
     * Creates a {@link LongTernaryOperator} which uses the {@code third} parameter of this one as argument for the
     * given {@link LongUnaryOperator}.
     *
     * @param operator The operator which accepts the {@code third} parameter of this one
     * @return Creates a {@code LongTernaryOperator} which uses the {@code third} parameter of this one as argument for
     * the given {@code LongUnaryOperator}.
     * @throws NullPointerException If given argument is {@code null}
     */
    @Nonnull
    static LongTernaryOperator onlyThird(@Nonnull final LongUnaryOperator operator) {
        Objects.requireNonNull(operator);
        return (value1, value2, value3) -> operator.applyAsLong(value3);
    }

    /**
     * Creates a {@link LongTernaryOperator} which always returns a given value.
     *
     * @param ret The return value for the constant
     * @return A {@code LongTernaryOperator} which always returns a given value.
     */
    @Nonnull
    static LongTernaryOperator constant(long ret) {
        return (value1, value2, value3) -> ret;
    }

    /**
     * Applies this operator to the given arguments.
     *
     * @param value1 The first argument to the operator
     * @param value2 The second argument to the operator
     * @param value3 The third argument to the operator
     * @return The return value from the operator, which is its result.
     */
    long applyAsLong(long value1, long value2, long value3);

    /**
     * Applies this operator partially to some arguments of this one, producing a {@link LongBinaryOperator2} as result.
     *
     * @param value1 The first argument to this operator used to partially apply this function
     * @return A {@code LongBinaryOperator2} that represents this operator partially applied the some arguments.
     */
    @Nonnull
    default LongBinaryOperator2 papplyAsLong(long value1) {
        return (value2, value3) -> this.applyAsLong(value1, value2, value3);
    }

    /**
     * Applies this operator partially to some arguments of this one, producing a {@link LongUnaryOperator2} as result.
     *
     * @param value1 The first argument to this operator used to partially apply this function
     * @param value2 The second argument to this operator used to partially apply this function
     * @return A {@code LongUnaryOperator2} that represents this operator partially applied the some arguments.
     */
    @Nonnull
    default LongUnaryOperator2 papplyAsLong(long value1, long value2) {
        return (value3) -> this.applyAsLong(value1, value2, value3);
    }

    /**
     * Returns the number of arguments for this operator.
     *
     * @return The number of arguments for this operator.
     * @implSpec The default implementation always returns {@code 3}.
     */
    @Nonnegative
    default int arity() {
        return 3;
    }

    /**
     * Returns a composed {@link ToLongTriFunction} that first applies the {@code before} functions to its input, and
     * then applies this operator to the result.
     * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation.
     *
     * @param <A> The type of the argument to the first given function, and of composed function
     * @param <B> The type of the argument to the second given function, and of composed function
     * @param <C> The type of the argument to the third given function, and of composed function
     * @param before1 The first function to apply before this operator is applied
     * @param before2 The second function to apply before this operator is applied
     * @param before3 The third function to apply before this operator is applied
     * @return A composed {@code ToLongTriFunction} that first applies the {@code before} functions to its input, and
     * then applies this operator to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is able to handle every type.
     */
    @Nonnull
    default <A, B, C> ToLongTriFunction<A, B, C> compose(@Nonnull final ToLongFunction<? super A> before1,
            @Nonnull final ToLongFunction<? super B> before2, @Nonnull final ToLongFunction<? super C> before3) {
        Objects.requireNonNull(before1);
        Objects.requireNonNull(before2);
        Objects.requireNonNull(before3);
        return (a, b, c) -> applyAsLong(before1.applyAsLong(a), before2.applyAsLong(b), before3.applyAsLong(c));
    }

    /**
     * Returns a composed {@link TriBooleanToLongFunction} that first applies the {@code before} functions to its input,
     * and then applies this operator to the result. If evaluation of either operation throws an exception, it is
     * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to
     * execute an operation which accepts {@code boolean} input, before this primitive operator is executed.
     *
     * @param before1 The first function to apply before this operator is applied
     * @param before2 The second function to apply before this operator is applied
     * @param before3 The third function to apply before this operator is applied
     * @return A composed {@code TriBooleanToLongFunction} that first applies the {@code before} functions to its input,
     * and then applies this operator to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code
     * boolean}.
     */
    @Nonnull
    default TriBooleanToLongFunction composeFromBoolean(@Nonnull final BooleanToLongFunction before1,
            @Nonnull final BooleanToLongFunction before2, @Nonnull final BooleanToLongFunction before3) {
        Objects.requireNonNull(before1);
        Objects.requireNonNull(before2);
        Objects.requireNonNull(before3);
        return (value1, value2, value3) -> applyAsLong(before1.applyAsLong(value1), before2.applyAsLong(value2),
                before3.applyAsLong(value3));
    }

    /**
     * Returns a composed {@link TriByteToLongFunction} that first applies the {@code before} functions to
     * its input, and then applies this operator to the result.
     * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation.
     * This method is just convenience, to provide the ability to execute an operation which accepts {@code byte} input,
     * before this primitive operator is executed.
     *
     * @param before1 The first function to apply before this operator is applied
     * @param before2 The second function to apply before this operator is applied
     * @param before3 The third function to apply before this operator is applied
     * @return A composed {@code TriByteToLongFunction} that first applies the {@code before} functions to its input,
     * and then applies this operator to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code
     * byte}.
     */
    @Nonnull
    default TriByteToLongFunction composeFromByte(@Nonnull final ByteToLongFunction before1,
            @Nonnull final ByteToLongFunction before2, @Nonnull final ByteToLongFunction before3) {
        Objects.requireNonNull(before1);
        Objects.requireNonNull(before2);
        Objects.requireNonNull(before3);
        return (value1, value2, value3) -> applyAsLong(before1.applyAsLong(value1), before2.applyAsLong(value2),
                before3.applyAsLong(value3));
    }

    /**
     * Returns a composed {@link TriCharToLongFunction} that first applies the {@code before} functions to
     * its input, and then applies this operator to the result.
     * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation.
     * This method is just convenience, to provide the ability to execute an operation which accepts {@code char} input,
     * before this primitive operator is executed.
     *
     * @param before1 The first function to apply before this operator is applied
     * @param before2 The second function to apply before this operator is applied
     * @param before3 The third function to apply before this operator is applied
     * @return A composed {@code TriCharToLongFunction} that first applies the {@code before} functions to its input,
     * and then applies this operator to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code
     * char}.
     */
    @Nonnull
    default TriCharToLongFunction composeFromChar(@Nonnull final CharToLongFunction before1,
            @Nonnull final CharToLongFunction before2, @Nonnull final CharToLongFunction before3) {
        Objects.requireNonNull(before1);
        Objects.requireNonNull(before2);
        Objects.requireNonNull(before3);
        return (value1, value2, value3) -> applyAsLong(before1.applyAsLong(value1), before2.applyAsLong(value2),
                before3.applyAsLong(value3));
    }

    /**
     * Returns a composed {@link TriDoubleToLongFunction} that first applies the {@code before} functions to its input,
     * and then applies this operator to the result. If evaluation of either operation throws an exception, it is
     * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to
     * execute an operation which accepts {@code double} input, before this primitive operator is executed.
     *
     * @param before1 The first function to apply before this operator is applied
     * @param before2 The second function to apply before this operator is applied
     * @param before3 The third function to apply before this operator is applied
     * @return A composed {@code TriDoubleToLongFunction} that first applies the {@code before} functions to its input,
     * and then applies this operator to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code
     * double}.
     */
    @Nonnull
    default TriDoubleToLongFunction composeFromDouble(@Nonnull final DoubleToLongFunction before1,
            @Nonnull final DoubleToLongFunction before2, @Nonnull final DoubleToLongFunction before3) {
        Objects.requireNonNull(before1);
        Objects.requireNonNull(before2);
        Objects.requireNonNull(before3);
        return (value1, value2, value3) -> applyAsLong(before1.applyAsLong(value1), before2.applyAsLong(value2),
                before3.applyAsLong(value3));
    }

    /**
     * Returns a composed {@link TriFloatToLongFunction} that first applies the {@code before} functions to its input,
     * and then applies this operator to the result. If evaluation of either operation throws an exception, it is
     * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to
     * execute an operation which accepts {@code float} input, before this primitive operator is executed.
     *
     * @param before1 The first function to apply before this operator is applied
     * @param before2 The second function to apply before this operator is applied
     * @param before3 The third function to apply before this operator is applied
     * @return A composed {@code TriFloatToLongFunction} that first applies the {@code before} functions to its input,
     * and then applies this operator to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code
     * float}.
     */
    @Nonnull
    default TriFloatToLongFunction composeFromFloat(@Nonnull final FloatToLongFunction before1,
            @Nonnull final FloatToLongFunction before2, @Nonnull final FloatToLongFunction before3) {
        Objects.requireNonNull(before1);
        Objects.requireNonNull(before2);
        Objects.requireNonNull(before3);
        return (value1, value2, value3) -> applyAsLong(before1.applyAsLong(value1), before2.applyAsLong(value2),
                before3.applyAsLong(value3));
    }

    /**
     * Returns a composed {@link TriIntToLongFunction} that first applies the {@code before} functions to
     * its input, and then applies this operator to the result.
     * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation.
     * This method is just convenience, to provide the ability to execute an operation which accepts {@code int} input,
     * before this primitive operator is executed.
     *
     * @param before1 The first function to apply before this operator is applied
     * @param before2 The second function to apply before this operator is applied
     * @param before3 The third function to apply before this operator is applied
     * @return A composed {@code TriIntToLongFunction} that first applies the {@code before} functions to its input, and
     * then applies this operator to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code
     * int}.
     */
    @Nonnull
    default TriIntToLongFunction composeFromInt(@Nonnull final IntToLongFunction before1,
            @Nonnull final IntToLongFunction before2, @Nonnull final IntToLongFunction before3) {
        Objects.requireNonNull(before1);
        Objects.requireNonNull(before2);
        Objects.requireNonNull(before3);
        return (value1, value2, value3) -> applyAsLong(before1.applyAsLong(value1), before2.applyAsLong(value2),
                before3.applyAsLong(value3));
    }

    /**
     * Returns a composed {@link LongTernaryOperator} that first applies the {@code before} operators to
     * its input, and then applies this operator to the result.
     * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation.
     * This method is just convenience, to provide the ability to execute an operation which accepts {@code long} input,
     * before this primitive operator is executed.
     *
     * @param before1 The first operator to apply before this operator is applied
     * @param before2 The second operator to apply before this operator is applied
     * @param before3 The third operator to apply before this operator is applied
     * @return A composed {@code LongTernaryOperator} that first applies the {@code before} operators to its input, and
     * then applies this operator to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code
     * long}.
     */
    @Nonnull
    default LongTernaryOperator composeFromLong(@Nonnull final LongUnaryOperator before1,
            @Nonnull final LongUnaryOperator before2, @Nonnull final LongUnaryOperator before3) {
        Objects.requireNonNull(before1);
        Objects.requireNonNull(before2);
        Objects.requireNonNull(before3);
        return (value1, value2, value3) -> applyAsLong(before1.applyAsLong(value1), before2.applyAsLong(value2),
                before3.applyAsLong(value3));
    }

    /**
     * Returns a composed {@link TriShortToLongFunction} that first applies the {@code before} functions to its input,
     * and then applies this operator to the result. If evaluation of either operation throws an exception, it is
     * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to
     * execute an operation which accepts {@code short} input, before this primitive operator is executed.
     *
     * @param before1 The first function to apply before this operator is applied
     * @param before2 The second function to apply before this operator is applied
     * @param before3 The third function to apply before this operator is applied
     * @return A composed {@code TriShortToLongFunction} that first applies the {@code before} functions to its input,
     * and then applies this operator to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to handle primitive values. In this case this is {@code
     * short}.
     */
    @Nonnull
    default TriShortToLongFunction composeFromShort(@Nonnull final ShortToLongFunction before1,
            @Nonnull final ShortToLongFunction before2, @Nonnull final ShortToLongFunction before3) {
        Objects.requireNonNull(before1);
        Objects.requireNonNull(before2);
        Objects.requireNonNull(before3);
        return (value1, value2, value3) -> applyAsLong(before1.applyAsLong(value1), before2.applyAsLong(value2),
                before3.applyAsLong(value3));
    }

    /**
     * Returns a composed {@link TriLongFunction} that first applies this operator to its input, and then applies the
     * {@code after} function to the result.
     * If evaluation of either operation throws an exception, it is relayed to the caller of the composed operation.
     *
     * @param <S> The type of return value from the {@code after} function, and of the composed function
     * @param after The function to apply after this operator is applied
     * @return A composed {@code TriLongFunction} that first applies this operator to its input, and then applies the
     * {@code after} function to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is able to return every type.
     */
    @Nonnull
    default <S> TriLongFunction<S> andThen(@Nonnull final LongFunction<? extends S> after) {
        Objects.requireNonNull(after);
        return (value1, value2, value3) -> after.apply(applyAsLong(value1, value2, value3));
    }

    /**
     * Returns a composed {@link TriLongPredicate} that first applies this operator to its input, and then applies the
     * {@code after} predicate to the result. If evaluation of either operation throws an exception, it is relayed to
     * the caller of the composed operation. This method is just convenience, to provide the ability to transform this
     * primitive operator to an operation returning {@code boolean}.
     *
     * @param after The predicate to apply after this operator is applied
     * @return A composed {@code TriLongPredicate} that first applies this operator to its input, and then applies the
     * {@code after} predicate to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code
     * boolean}.
     */
    @Nonnull
    default TriLongPredicate andThenToBoolean(@Nonnull final LongPredicate after) {
        Objects.requireNonNull(after);
        return (value1, value2, value3) -> after.test(applyAsLong(value1, value2, value3));
    }

    /**
     * Returns a composed {@link TriLongToByteFunction} that first applies this operator to its input, and then applies
     * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to
     * the caller of the composed operation. This method is just convenience, to provide the ability to transform this
     * primitive operator to an operation returning {@code byte}.
     *
     * @param after The function to apply after this operator is applied
     * @return A composed {@code TriLongToByteFunction} that first applies this operator to its input, and then applies
     * the {@code after} function to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code
     * byte}.
     */
    @Nonnull
    default TriLongToByteFunction andThenToByte(@Nonnull final LongToByteFunction after) {
        Objects.requireNonNull(after);
        return (value1, value2, value3) -> after.applyAsByte(applyAsLong(value1, value2, value3));
    }

    /**
     * Returns a composed {@link TriLongToCharFunction} that first applies this operator to its input, and then applies
     * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to
     * the caller of the composed operation. This method is just convenience, to provide the ability to transform this
     * primitive operator to an operation returning {@code char}.
     *
     * @param after The function to apply after this operator is applied
     * @return A composed {@code TriLongToCharFunction} that first applies this operator to its input, and then applies
     * the {@code after} function to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code
     * char}.
     */
    @Nonnull
    default TriLongToCharFunction andThenToChar(@Nonnull final LongToCharFunction after) {
        Objects.requireNonNull(after);
        return (value1, value2, value3) -> after.applyAsChar(applyAsLong(value1, value2, value3));
    }

    /**
     * Returns a composed {@link TriLongToDoubleFunction} that first applies this operator to its input, and then
     * applies the {@code after} function to the result. If evaluation of either operation throws an exception, it is
     * relayed to the caller of the composed operation. This method is just convenience, to provide the ability to
     * transform this primitive operator to an operation returning {@code double}.
     *
     * @param after The function to apply after this operator is applied
     * @return A composed {@code TriLongToDoubleFunction} that first applies this operator to its input, and then
     * applies the {@code after} function to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code
     * double}.
     */
    @Nonnull
    default TriLongToDoubleFunction andThenToDouble(@Nonnull final LongToDoubleFunction after) {
        Objects.requireNonNull(after);
        return (value1, value2, value3) -> after.applyAsDouble(applyAsLong(value1, value2, value3));
    }

    /**
     * Returns a composed {@link TriLongToFloatFunction} that first applies this operator to its input, and then applies
     * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to
     * the caller of the composed operation. This method is just convenience, to provide the ability to transform this
     * primitive operator to an operation returning {@code float}.
     *
     * @param after The function to apply after this operator is applied
     * @return A composed {@code TriLongToFloatFunction} that first applies this operator to its input, and then applies
     * the {@code after} function to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code
     * float}.
     */
    @Nonnull
    default TriLongToFloatFunction andThenToFloat(@Nonnull final LongToFloatFunction after) {
        Objects.requireNonNull(after);
        return (value1, value2, value3) -> after.applyAsFloat(applyAsLong(value1, value2, value3));
    }

    /**
     * Returns a composed {@link TriLongToIntFunction} that first applies this operator to its input, and then applies
     * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to
     * the caller of the composed operation. This method is just convenience, to provide the ability to transform this
     * primitive operator to an operation returning {@code int}.
     *
     * @param after The function to apply after this operator is applied
     * @return A composed {@code TriLongToIntFunction} that first applies this operator to its input, and then applies
     * the {@code after} function to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code
     * int}.
     */
    @Nonnull
    default TriLongToIntFunction andThenToInt(@Nonnull final LongToIntFunction after) {
        Objects.requireNonNull(after);
        return (value1, value2, value3) -> after.applyAsInt(applyAsLong(value1, value2, value3));
    }

    /**
     * Returns a composed {@link LongTernaryOperator} that first applies this operator to its input, and then applies
     * the {@code after} operator to the result. If evaluation of either operation throws an exception, it is relayed to
     * the caller of the composed operation. This method is just convenience, to provide the ability to transform this
     * primitive operator to an operation returning {@code long}.
     *
     * @param after The operator to apply after this operator is applied
     * @return A composed {@code LongTernaryOperator} that first applies this operator to its input, and then applies
     * the {@code after} operator to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code
     * long}.
     */
    @Nonnull
    default LongTernaryOperator andThenToLong(@Nonnull final LongUnaryOperator after) {
        Objects.requireNonNull(after);
        return (value1, value2, value3) -> after.applyAsLong(applyAsLong(value1, value2, value3));
    }

    /**
     * Returns a composed {@link TriLongToShortFunction} that first applies this operator to its input, and then applies
     * the {@code after} function to the result. If evaluation of either operation throws an exception, it is relayed to
     * the caller of the composed operation. This method is just convenience, to provide the ability to transform this
     * primitive operator to an operation returning {@code short}.
     *
     * @param after The function to apply after this operator is applied
     * @return A composed {@code TriLongToShortFunction} that first applies this operator to its input, and then applies
     * the {@code after} function to the result.
     * @throws NullPointerException If given argument is {@code null}
     * @implSpec The input argument of this method is a able to return primitive values. In this case this is {@code
     * short}.
     */
    @Nonnull
    default TriLongToShortFunction andThenToShort(@Nonnull final LongToShortFunction after) {
        Objects.requireNonNull(after);
        return (value1, value2, value3) -> after.applyAsShort(applyAsLong(value1, value2, value3));
    }

    /**
     * Returns a composed {@link TriLongConsumer} that fist applies this operator to its input, and then consumes the
     * result using the given {@link LongConsumer}. If evaluation of either operation throws an exception, it is relayed
     * to the caller of the composed operation.
     *
     * @param consumer The operation which consumes the result from this operation
     * @return A composed {@code TriLongConsumer} that first applies this operator to its input, and then consumes the
     * result using the given {@code LongConsumer}.
     * @throws NullPointerException If given argument is {@code null}
     */
    @Nonnull
    default TriLongConsumer consume(@Nonnull final LongConsumer consumer) {
        Objects.requireNonNull(consumer);
        return (value1, value2, value3) -> consumer.accept(applyAsLong(value1, value2, value3));
    }

    /**
     * Returns a memoized (caching) version of this {@link LongTernaryOperator}. Whenever it is called, the mapping
     * between the input parameters and the return value is preserved in a cache, making subsequent calls returning the
     * memoized value instead of computing the return value again.
     * <p>
     * Unless the operator and therefore the used cache will be garbage-collected, it will keep all memoized values
     * forever.
     *
     * @return A memoized (caching) version of this {@code LongTernaryOperator}.
     * @implSpec This implementation does not allow the input parameters or return value to be {@code null} for the
     * resulting memoized operator, as the cache used internally does not permit {@code null} keys or values.
     * @implNote The returned memoized operator can be safely used concurrently from multiple threads which makes it
     * thread-safe.
     */
    @Nonnull
    default LongTernaryOperator memoized() {
        if (isMemoized()) {
            return this;
        } else {
            final Map<Triple<Long, Long, Long>, Long> cache = new ConcurrentHashMap<>();
            final Object lock = new Object();
            return (LongTernaryOperator & Memoized) (value1, value2, value3) -> {
                final long returnValue;
                synchronized (lock) {
                    returnValue = cache.computeIfAbsent(Triple.of(value1, value2, value3),
                            key -> applyAsLong(key.getLeft(), key.getMiddle(), key.getRight()));
                }
                return returnValue;
            };
        }
    }

    /**
     * Returns a composed {@link TernaryOperator} which represents this {@link LongTernaryOperator}. Thereby the
     * primitive input argument for this operator is autoboxed. This method provides the possibility to use this {@code
     * LongTernaryOperator} with methods provided by the {@code JDK}.
     *
     * @return A composed {@code TernaryOperator} which represents this {@code LongTernaryOperator}.
     */
    @Nonnull
    default TernaryOperator<Long> boxed() {
        return this::applyAsLong;
    }

}