Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package bes.injector; import java.util.BitSet; import java.util.TreeSet; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Future; import java.util.concurrent.TimeUnit; import java.util.concurrent.TimeoutException; import java.util.concurrent.locks.LockSupport; import org.apache.commons.math3.distribution.WeibullDistribution; import org.junit.Test; public class InjectorBurnTest { private static final class WaitTask implements Runnable { final long nanos; private WaitTask(long nanos) { this.nanos = nanos; } public void run() { LockSupport.parkNanos(nanos); } } private static final class Result implements Comparable<Result> { final Future<?> future; final long forecastedCompletion; private Result(Future<?> future, long forecastedCompletion) { this.future = future; this.forecastedCompletion = forecastedCompletion; } public int compareTo(Result that) { int c = Long.compare(this.forecastedCompletion, that.forecastedCompletion); if (c != 0) return c; c = Integer.compare(this.hashCode(), that.hashCode()); if (c != 0) return c; return Integer.compare(this.future.hashCode(), that.future.hashCode()); } } private static final class Batch implements Comparable<Batch> { final TreeSet<Result> results; final long timeout; final int executorIndex; private Batch(TreeSet<Result> results, long timeout, int executorIndex) { this.results = results; this.timeout = timeout; this.executorIndex = executorIndex; } public int compareTo(Batch that) { int c = Long.compare(this.timeout, that.timeout); if (c != 0) return c; c = Integer.compare(this.results.size(), that.results.size()); if (c != 0) return c; return Integer.compare(this.hashCode(), that.hashCode()); } } @Test public void testPromptnessOfExecution() throws InterruptedException, ExecutionException, TimeoutException { testPromptnessOfExecution(TimeUnit.MINUTES.toNanos(2L), 0.5f); } private void testPromptnessOfExecution(long intervalNanos, float loadIncrement) throws InterruptedException, ExecutionException, TimeoutException { final int executorCount = 4; int threadCount = 8; int maxQueued = 1024; final WeibullDistribution workTime = new WeibullDistribution(3, 200000); final long minWorkTime = TimeUnit.MICROSECONDS.toNanos(1); final long maxWorkTime = TimeUnit.MILLISECONDS.toNanos(1); final int[] threadCounts = new int[executorCount]; final WeibullDistribution[] workCount = new WeibullDistribution[executorCount]; final ExecutorService[] executors = new ExecutorService[executorCount]; final Injector injector = new Injector(""); for (int i = 0; i < executors.length; i++) { executors[i] = injector.newExecutor(threadCount, maxQueued); threadCounts[i] = threadCount; workCount[i] = new WeibullDistribution(2, maxQueued); threadCount *= 2; maxQueued *= 2; } long runs = 0; long events = 0; final TreeSet<Batch> pending = new TreeSet<Batch>(); final BitSet executorsWithWork = new BitSet(executorCount); long until = 0; // basic idea is to go through different levels of load on the executor service; initially is all small batches // (mostly within max queue size) of very short operations, moving to progressively larger batches // (beyond max queued size), and longer operations for (float multiplier = 0f; multiplier < 2.01f;) { if (System.nanoTime() > until) { System.out.println(String.format("Completed %.0fK batches with %.1fM events", runs * 0.001f, events * 0.000001f)); events = 0; until = System.nanoTime() + intervalNanos; multiplier += loadIncrement; System.out.println(String.format("Running for %ds with load multiplier %.1f", TimeUnit.NANOSECONDS.toSeconds(intervalNanos), multiplier)); } // wait a random amount of time so we submit new tasks in various stages of long timeout; if (pending.isEmpty()) timeout = 0; else if (Math.random() > 0.98) timeout = Long.MAX_VALUE; else if (pending.size() == executorCount) timeout = pending.first().timeout; else timeout = (long) (Math.random() * pending.last().timeout); while (!pending.isEmpty() && timeout > System.nanoTime()) { Batch first = pending.first(); boolean complete = false; try { for (Result result : first.results.descendingSet()) result.future.get(timeout - System.nanoTime(), TimeUnit.NANOSECONDS); complete = true; } catch (TimeoutException e) { } if (!complete && System.nanoTime() > first.timeout) { for (Result result : first.results) if (!result.future.isDone()) throw new AssertionError(); complete = true; } if (complete) { pending.pollFirst(); executorsWithWork.clear(first.executorIndex); } } // if we've emptied the executors, give all our threads an opportunity to spin down if (timeout == Long.MAX_VALUE) { try { Thread.sleep(10); } catch (InterruptedException e) { } } // submit a random batch to the first free executor service int executorIndex = executorsWithWork.nextClearBit(0); if (executorIndex >= executorCount) continue; executorsWithWork.set(executorIndex); ExecutorService executor = executors[executorIndex]; TreeSet<Result> results = new TreeSet<Result>(); int count = (int) (workCount[executorIndex].sample() * multiplier); long targetTotalElapsed = 0; long start = System.nanoTime(); long baseTime; if (Math.random() > 0.5) baseTime = 2 * (long) (workTime.sample() * multiplier); else baseTime = 0; for (int j = 0; j < count; j++) { long time; if (baseTime == 0) time = (long) (workTime.sample() * multiplier); else time = (long) (baseTime * Math.random()); if (time < minWorkTime) time = minWorkTime; if (time > maxWorkTime) time = maxWorkTime; targetTotalElapsed += time; Future<?> future = executor.submit(new WaitTask(time)); results.add(new Result(future, System.nanoTime() + time)); } long end = start + (long) Math.ceil(targetTotalElapsed / (double) threadCounts[executorIndex]) + TimeUnit.MILLISECONDS.toNanos(100L); long now = System.nanoTime(); if (runs++ > executorCount && now > end) throw new AssertionError(); events += results.size(); pending.add(new Batch(results, end, executorIndex)); // System.out.println(String.format("Submitted batch to executor %d with %d items and %d permitted millis", executorIndex, count, TimeUnit.NANOSECONDS.toMillis(end - start))); } } public static void main(String[] args) throws InterruptedException, ExecutionException, TimeoutException { // do longer test new InjectorBurnTest().testPromptnessOfExecution(TimeUnit.HOURS.toNanos(2L), 0.1f); } }